
CS 6363.003.21S Lecture 22—April 27, 2021

Main topics for #lecture  include  #NP-hardness .

3SAT

 Last time, we discussed the complexity classes P and NP and how problems that are NP-
hard problem probably have no polynomial time solution. Today, we’ll look at a few more 
NP-hard problems.
 We’ll start with a special case of SAT called 3SAT or sometimes 3CNF-SAT. 3SAT is a good 
example of how problems can remain NP-hard even if you put a bunch of restrictions on 
the input. In turn, these restrictions make it a useful problem from which to do further 
reductions.
 First, some definitions you may have seen.
 A literal is a boolean variable or its negation (a or not(a)).
 A clause is a disjunction (OR) of several literals (b or not(c) or not(d))
 A boolean formula is in conjunctive normal form (CNF) if it is a conjunction (AND) of 
several clauses.

 A 3CNF formula is a CNF formula with exactly three literals per clause. So this example is 
not a 3CNF formula since the first and last clauses have the wrong number of literals.
 3SAT: Given a 3CNF formula, is there an assignment of the variables that makes the 
formula evaluate to True?
 3SAT looks like it should be easier than general SAT since I’m heavily restricting what types 
of inputs you get, but it turns out the problem is still NP-hard. 
 Remember: To prove NP-hardness, you need to reduce from a known NP-hard problem to 
your new problem.
 We’ll use a reduction directly from CircuitSAT to show 3SAT is NP-hard. This should be the 
last time we reduce directly from CircuitSAT.
 Given a boolean circuit:

1.  Change it so every AND and OR gate has only two inputs. If a gate has k > 2 inputs, 
replace it with a binary tree of k - 1 two-input gates.

2.  Write down the circuit as a formula with one clause per gate. Just like in the reduction 
to SAT.

3.  Change every gate clause into a CNF formula.
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4.  Make sure every clause has exactly three literals by introducing new literals for every 
one and two-literal clause and expanding them into new clauses.

 Here’s the 3CNF formula you get from our favorite example circuit: 

 Yeah, that’s gross, but it’s only a constant factor larger than the original circuit, and you can 
compute it in polynomial time.
 In summary, here is what our reduction looked like:

 So a polynomial time algorithm for 3SAT gives a polynomial time algorithm for CircuitSAT 
and therefore every problem in NP. 3SAT is NP-hard.
 3SAT is a special case of SAT, so it must be in NP also. Together with its hardness, we see 
3SAT is NP-complete.



Maximum Independent Set

 3SAT serves as a great jumping off point for a variety of problems that simply based on 
booleans.
 Suppose we’re given a simple, unweighted graph G.
 An independent set in G is a subset of vertices with no edges between them.
 The maximum independent set problem (MaxIndSet) asks for the largest independent set 
in the graph. A couple months ago, we saw a linear time algorithm for when G is a tree. But 
what happens when G is allowed to be any graph?
 Claim: MaxIndSet is NP-hard.
 We’ll do a reduction from 3SAT.
 Suppose we’re given a 3CNF formula Phi. Let k be the number of clauses in Phi.
 We’ll make a graph G with 3k vertices, one for each literal in Phi.
 Any two literals in the same clause get a “triangle” edge. Also, any two literals representing 
a variable and its inverse get a “negation” edge.
 For example, here’s the graph you get from the formula below it.

 I claim G contains an independent set of size exactly k if and only if Phi is satisfiable.
 If Phi is satisfiable, fix a satisfying assignment. Each clause contains at least one true 
literal, so arbitrarily choose one per clause to make vertex set S. That’s one choice per 
clause so no triangle edge has both sides chosen. And we only chose True literals, so 
no negation edge has both sides chosen. So S is an independent set of size k.
 Suppose there is an independent set S of size k. Make each chosen literal True and 
assign arbitrary values to variables that weren’t represented by S. Set S contains at 
most one vertex per each of the k clause triangles, so we must choose exactly one 
literal per clause. And we never set two contradictory literals to True because of the 
negation edges.

 The transformation itself takes O(n) time, so it is a polynomial time reduction.
 Here’s our overall algorithm: Do the transformation, and return True if and only if the 



maximum independent set has size k.

 So to solve any problem in NP, we can reduce to CircuitSAT and then reduce to 3SAT and 
then reduce to MaxIndSet, so MaxIndSet is NP-hard. In other words, a polynomial time 
algorithm for MaxIndSet implies P = NP, so there probably isn’t one!
 We can also consider a decision version of this problem. Here, we’re given the unweighted 
graph G along with an integer k. We want to decide whether or not G has an independent 
set of size at least k.
 The exact reduction given above implies the decision version is NP-hard as well. The 
decision version is also in NP, because True answers can be proven by just listing the k 
vertices in the independent set. So the decision version is actually NP-complete.

The General Pattern

 We’ve now seen a couple examples, so let’s talk about the general pattern behind most 
NP-hardness proofs.
 To prove problem B is NP-hard, we reduce NP-hard problem A to the new problem B. We 
usually need to do three things:

1.  Describe a polynomial time algorithm to transform an arbitrary instance a of A to a 
special instance b of B.

2.  Prove that if a is a “good” instance of A, then b is a “good” instance of B.
3.  Prove that if b is a “good” instance of B, then a is a “good” instance of A.

 You have to show both directions for the proof!
 And you normally think about all three things at once so they’re all coherent.
 To address one point of possible confusion: We only have to do the reduction itself in one 
direction, from A to B. But the correctness proof itself goes in both directions, between the 
instances a and b.
 It may help to think about writing these proofs as algorithms themselves. Being in NP 
means you have some kind of certificate proving the answer is Yes or True. e.g., what 
inputs to the circuits, what settings of the variables, which vertices to include in a large 
independent set.
 Step 1 above is an algorithm to transform instances of A to instances of B in polynomial 
time.



 Step 2 is transforming an arbitrary certificate for a to a certificate for b.
 Step 3 is transforming an arbitrary certificate for b to a certificate for a.
 For example, in 3SAT to MaxIndSet:

1.  We transformed an arbitrary 3CNF formula into a graph and a specific integer k in 
polynomial time.

2.  We transformed a satisfying assignment into an independent set of size k.
3.  We transformed an independent set of size k into a satisfying assignment.

Clique and Vertex Cover

 Let’s define a couple more problems. A clique is another name for a complete graph. The 
MaxClique problem asks for the number of vertices in the largest complete subgraph of G.
 A vertex cover is a set of vertices that touch every edge in the graph. MinVertexCover asks 
for the size of the smallest vertex cover in the graph.
 Below, we have a clique to the left and an vertex cover to the right.

 Claim: MaxClique and MinVertexCover are both NP-hard.
 For MaxClique, we define the edge-complement -G of G as the graph with the same 
vertices but the opposite set of edges so uv is an edge in -G if and only if it wasn’t an edge 
in G.
 A set of vertices is independent in G if and only if it is a clique in -G, so we can solve 
MaxIndSet by solving MaxClique in the complement!

 For MinVertexCover, observe that I is an independent set in G = (V, E) if and only if V \ I is a 
vertex cover. So the largest independent set in G is the complement of the smallest vertex 
cover. If the smallest vertex cover has size k, the largest independent set has size n - k.



 Like before, the decisions versions of these problems are also hard. Given G and an 
integer k, the problems of deciding if there is a clique of size k and if there is a vertex 
cover of size k are both NP-complete.


