
CS 6363.003.21S Lecture 6—February 4, 2021

Main topics are #example/closest_pair and #example/Karatsuba_multiplication .

Closest Pair

 Today, we’re going to look at one or two examples of divide-and-conquer that aren’t yet
another example of us doing sorting or order statistics
 Several of us professors at UTD focus on a particular area of algorithm design called
computation geometry. So today, I’m going to show you how divide-and-conquer can help
in solving geometric problems. In particular, we’re going to focus on the problem of
finding the closest pair of points in the plane
 We’re given a set of n points in the plane. To be concrete, let’s say they’re given as a pair of
arrays X[1 .. n] and Y[1 .. n] where the ith point has coordinates (X[i], Y[i]).
 Our goal is to find the two points that are closest. For simplicity, we’ll focus today on
computing their distance.
 Now, the most obvious thing we can do is explicitly check the distance between every pair
of points. But that’s Theta(n^2) pairs to check! Can we solve the problem more quickly?
 Let’s try using divide-and-conquer. The first thing that comes to mind for me when doing
divide-and-conquer for geometry is to partition the input as evenly as possible along one
dimension, recursively solve the problem on the two subsets of the partition, and fill in any
gaps that are leftover.
 So let’s try that: we’ll partition the points so half lie to the left of the median x-coordinate
and the rest lie to the right.
 Then we’ll ask the Recursion Fairy to find the closest pair distances in the left and right
halves separately.
 But maybe the closest pair includes one point from the left half and one point from the
right? We’d better check all those pairs as a conquer step and then return the smallest
distance we found. Here’s the pseudocode:

bear://x-callback-url/open-tag?name=example/closest_pair
bear://x-callback-url/open-tag?name=example/closest_pair
bear://x-callback-url/open-tag?name=example/closest_pair
bear://x-callback-url/open-tag?name=example/closest_pair
bear://x-callback-url/open-tag?name=example/Karatsuba_multiplication
bear://x-callback-url/open-tag?name=example/Karatsuba_multiplication
bear://x-callback-url/open-tag?name=example/Karatsuba_multiplication
bear://x-callback-url/open-tag?name=example/Karatsuba_multiplication

 So what is the running time here? We do two recursive calls on sets of half the size. But
then we have double-nested for loops with around n/2 iterations each. That’s still
Theta(n^2) distance checks total!
 The recurrence itself comes out to be T(n) = 2T(n/2) + Theta(n^2). As you might guess by
now, the recursion tree level sums are going to decrease exponentially. But we still have a
Theta(n^2) time algorithm.
 So now what? Well, it turns out there are two observations we can make that will help us
speed up this algorithm.
 Let d min{ell, r} be the smaller of the two distances returned by the Recursion Fairy.
 First off, suppose point p is more than d distance away from the vertical line through the
median point by x-coordinate. p is also more than d distance away from all points on the
other side of that line. So there’s no reason to consider point p during our conquer step!
 If the closest pair uses a point on each side of the median line, then both of those points
have to lie within distance d of that line.
 Great! But it’s possible that most or even all of the points lie within distance d of the line.
 For the second observation, consider a point p on the left side of the median line, and
suppose the closest pair includes p and a point q on the right side of the line.
 We already established that q lies within horizontal distance d of the median line.
 But it must also be true that q lies within vertical distance d of p. In other words, q must lie
within a rectangle of width d and height 2d where the left side of the rectangle lies on the
median line and the bottom and top are d units below and above p, respectively.
 So for each point p on the left, we need only check points within p’s rectangle.
 And here’s the kicker: The Recursion Fairy has already established that all pairs of points to
the right of the line are distance at least d apart.
 It turns out we can only fit 6 points of pairwise distance ≥ d in a d x 2d rectangle, so we
only need to compute distances between the n / 2 choices of p and at most 6 other points
each.
 I’ll prove a slightly weaker result that at most 8 points fit in the rectangle. Either way, that’s a

constant number of comparisons for each point p on the left.
 Divide the rectangle up into eight (d/2) x (d/2) squares.
 No two points can fit in a single square, because they’d be distance at most (d/2) /
sqrt{2} = d / sqrt{2} apart.
 So there must be at most one point per square or 8 points total in the rectangle.

 OK, it’s time to turn these observations into an efficient algorithm.
 We’ll ask the Recursion Fairy to compute closest pair distances within the leftmost n /2
points and the rightmost n / 2 points as before. Then we take note of the smaller distance
returned d and begin ignoring all points more than d distance from the median line.
 We’d like to spend time proportional to the number of pairs we’re actually comparing
during the conquer step.
 To do so, we’ll loop over points p to the left of the line in increasing order by y-coordinate.
 And we’ll also keep a finger on the lowest point on the right side that’s still within vertical
distance d of our current point p.
 For each point p, we’ll move our finger up to the lowest point in p’s rectangle (if
necessary), and then perform comparisons with the other points in the rectangle. So as
we’re dealing with points on the left side, we’re essentially scanning points on the right
side in increasing order by y-coordinate.
 And one final trick: it’s going to slow us down a bit if we have to sort all the points vertically
every time we do a recursive call. So instead, we’ll sort the points before the initial call to
our algorithm and make sure to pass along the sorted subsequences every time we make
a recursive call.
 Here’s the final pseudocode:

 We’re doing two recursive calls on point sets of half the size.
 Outside the recursive calls, we’re looping over O(n) values of i, one for each left side point
close to the median line. All updates to our lowest rectangle point (represented by jmin)
take O(n) time total. And as argued earlier, we’re doing at most 6 x n / 2 = O(n) distance
computations in the second while loop.
 The runtime recurrence comes out to be T(n) = 2T(n/2) + O(n). Which, again, solves to O(n
log n). That’s much better than Theta(n^2)!

Multiplication

 And here’s one last example in case we have time for it.
 A couple times already, we’ve discussed an algorithm for multiplying two large numbers x
and y.
 But as we saw, that algorithm takes O(n^2) time to multiply two n-digit numbers.
 Maybe we can do better using divide-and-conquer?
 Let m be some non-negative integer. We can split the digits of x and y roughly in half so
that x = (10^m a + b) and y = (10^m c + d) for some numbers a, b, c, and d.
 And now multiplying x and y comes down to observing (10^m a + b)(10^m c + d) =
10^(2m) ac + 10^m (bc + ad) + bd.
 The four products that don’t involve 10^something use numbers with fewer digits, so
maybe we can use divide-and-conquer!

 We’ll do the easier multiplications recursively, and then combine them using that formula.
 In pseudocode, we get the following algorithm. SplitMultiply(x, y, n) computes x * y
assuming they both use at most n digits.

 Correctness follows easily from induction (if n = 1, we just return the product. Otherwise,
we correctly multiply the smaller values by the induction hypothesis and combine them
according to the identity.)
 So what is the running time? The mods and multiplying by 10^whatever takes linear time
since it’s just digit shifts. Between that and the additions, everything outside the recursive
calls takes O(n) time. There are 4 recursive calls on problems of roughly half the size, so
we’ll say the running time follows the recurrence T(n) = 4T(n/2) + O(n).
 The recursion tree method shows us the level-sums are exponentially increasing, meaning
T(n) is bounded by the number of leaves. T(n) = O(n^{log_2 4}) = O(n^2).

 Oh, that didn’t help at all.
 In the 1950’s, renounced mathematician Andrei Kolmogorov publicly conjectured that
there is no algorithm for multiplying two n-digit numbers in o(n^2) time. He organized a
seminar in 1960 where he planned to discuss this conjecture and several related
problems. Almost one week later, 23-year-old student Anatolii Karatsuba found a better
algorithm after all. Kolmogorov told the seminar participants about the better algorithm,
and immediately terminated the seminar.
 So, how do we do better? Well, for our divide-and-conquer algorithm, we need to
compute bc + ad. It turns out, given ac and bd, we can compute that sum using only one
more multiplication instead of two.

 bc + ad = ac + bd - ac + bc + ad - bd = ac + bd - (a - b)(c - d).
 So we get this alternative algorithm with only three recursive calls instead of four!

 Now we have three recursive calls of size roughly n/2, so the running time follows T(n) =
3T(n/2) + O(n).
 The level-sums of the recursion tree still form an increasing geometric series bounded by
the number of leaves,…

but now T(n) = O(n^{log_2 3}) ~ O(n^1.58496). That’s a big improvement!
 So when you’re designing your own divide-and-conquer algorithms, see if you can limit
the number of recursive calls you perform to help speed things up.
 As for multiplication, you can take this idea even further by splitting the numbers into more
pieces and combining the products in more complicated ways.
 And after a long line of improvements David Harvey and Joris van der Hoeven ended up
finding an O(n log n) time algorithm using other techniques. This algorithm was accepted
for publication only a couple months ago!

