
CS 6363.003.21S Lecture 7—February 9, 2021

Main topics are #dynamic_programming with #example/fibonacci_numbers and
#example/rod_cutting .

Fibonacci Numbers

 Today, we’re going to look at a situation where recursion can go wrong and how to fix it.
 By now, I assume you're all familiar with Fibonacci numbers.
 These were described by Leonardo of Pisa (Fibonacci) around the 12th century, but the
Fibonacci recurrence was originally discovered by Indian scholar Virahanka 500 years
earlier during his study of classical Sanskrit poetry.
 In this class, Fibonacci numbers are defined using the following recurrence.

 F_0 = 0
 F_1 = 1
 F_n = F_{n-1} + F_{n-2}

Recursion is Sometimes Slow
 Fibonacci numbers describe many different phenomena, so it would be good if there was
some way to calculate them.
 Fibonacci numbers are defined recursively, so the most natural thing to do is compute
them recursively:

 Unfortunately, this algorithm is horribly slow.
 Let T(n) be the number of subproblems for computing F_n assuming arithmetic operations
takes constant time. Outside the recursive calls, we do only a constant number of steps, so
we might write T(n) = T(n - 1) + T(n - 2) + 1 with T(0) = 1 and T(1) = 1.
 It’s almost the same recurrence once again! And if we wrote out the first few terms we
could correctly guess T(n) = 2F_{n+1} - 1.
 But that means computing F_n takes as long as counting to it.
 Using techniques that some of you may have seen in discrete math, we can figure out F_n
= Theta(phi^n) where phi = (sqrt(5) + 1) / 2~ 1.61803, the golden ratio. This algorithm is
exponential in n!
 But is there an intuitive explanation for why is it so slow? Let’s look at a recursion tree. I’ll

bear://x-callback-url/open-tag?name=dynamic_programming
bear://x-callback-url/open-tag?name=dynamic_programming
bear://x-callback-url/open-tag?name=dynamic_programming
bear://x-callback-url/open-tag?name=dynamic_programming
bear://x-callback-url/open-tag?name=example/fibonacci_numbers
bear://x-callback-url/open-tag?name=example/fibonacci_numbers
bear://x-callback-url/open-tag?name=example/fibonacci_numbers
bear://x-callback-url/open-tag?name=example/fibonacci_numbers
bear://x-callback-url/open-tag?name=example/rod_cutting
bear://x-callback-url/open-tag?name=example/rod_cutting
bear://x-callback-url/open-tag?name=example/rod_cutting
bear://x-callback-url/open-tag?name=example/rod_cutting

mark which number we’re trying to compute.

 All these numbers come from adding up values computed in the recursive calls, so there
must be F_n leaves with value 1. These are the calls to RecFibo(1). There’s at most that
many calls to RecFibo(0), so Theta(F_n) leaves total. It’s a full binary tree, so there must be
Theta(F_n) nodes. That’s a lot of recursive calls!

Memoization
 Of course, even in this small example, you can tell we’re wasting a lot of time recomputing
the same numbers over and over again. You can even prove via induction that RecFibo(n -
k) is called F_{k - 1} times.
 Now one thing we could do is try to remember which values we’ve already computed by
storing them in a global array. This is called memoization.

 I claim this algorithm is a lot more efficient than the previous one, but the exact asymptotic
running time isn’t really clear.
 Rather than try to fully explain the running time, I will offer one useful observation: because
computing each value F[i] depends upon calls to MemFibo(i -1) and MemFibo(i - 2), we
must be filling in the array F[] from the bottom up. We compute F[i] for all i from 0 to n, in
that order.

Filling Deliberately and Dynamic Programming
 But now that we see how the array is filled, why don’t we just do so deliberately to make

the algorithm even simpler? We’ll use a simple iterative algorithm that fills the array entries
one by one.

 Not only does this algorithm avoid recursion and probably perform better in practice, but
it’s a lot easier to analyze. There’s a single for loop over n entries, so it performs only O(n)
additions. We can easily tell that it stores O(n) integers as well.
 This is an example of a dynamic programming algorithm, formalized and popularized by
Richard Bellman in the mid-1950s, although others including Virahanka and Fibonacci
already applied it to this example centuries earlier.
 Bellman claimed the term dynamic programming was used to hide the fact he was doing
mathematics research from his industry-minded military bosses, although there are
reasons to doubt that story.
 Note the word programming here doesn’t refer to writing code. It’s being used in the
same way that television and radio stations plan or schedule their “programs”, typically by
filling a table. They were originally trying to optimize for certain time-varying processes, so
Bellman used the term dynamic. Think of dynamic as a noun instead of an adjective, and
maybe it makes more sense.
 Dynamic programming is now a standard tool for multistage planning in a variety of areas,
and it’s one of the most useful tools we have for designing algorithms. Even the unix diff
utility is using a dynamic programing algorithm.

Saving Space
 [Save for later unless somebody asks]
 Our job with dynamic programming was (ultimately) to recognize how to fill a table with
Fibonacci numbers, but keeping a whole table around when all you need is a single
answer is somewhat wasteful.
 Since we only refer back to the last two entries in each iteration of the for loop, we can
easily save some space in this instance.

 Now we’re only storing a constant number of integers.
 I usually won’t ask you about space usage in this class, but I may for the next couple weeks
since it’s easy enough to figure out and you can sometimes make easy improvements
when doing dynamic programming.

Rod Cutting

 By now, we’ve seen how certain computations, in particular those based on evaluating a
recurrence relation, can be done more quickly by using dynamic programming. But now
we should ask, where do these recurrences typically come from, and why are they useful?
 Recurrences, and their dynamic programing evaluations, often pop up when attempting to
solve certain optimization problems.
 An optimization problem is one where they may be many valid or feasible solutions, and
each solution has a numerical value. We wish to find the solution with optimal (maximum
or minimum) value.
 Let’s look at one more example before I discuss the general strategy behind the whole
recurrence to dynamic programming paradigm.
 We’ll look at what CLRS calls the rod-cutting problem. Imagine we’re working for a
company that buys large lengths of steal rod and cuts them up to resale the smaller
pieces. We want to maximum has much revenue we make.
 For our problem input, we are given a non-negative integer n representing the length of
our original rod. We are also given an array P[1 .. n] where P[i] is the revenue we obtain
selling a rod piece of length i. A solution to our problem is a list of positive integer lengths
i_1, i_2, …, i_k such that sum_{j = 1}^k i_j = n. We want to maximize the value of our
solution sum_{j = 1}^k P[i_j]. Note we’re making no additional assumptions about the price
array. Maybe people are willing to spend huge for lengths 12 and 14, but nothing for
length 13.
 For example, if n = 4, and P[1 .. n] = <1, 5, 8, 9>, we could sell the whole rod for 9 dollars.
Or we could instead cut the rod into four pieces of length 1 for 4 * 1 = 4 dollars. But the
best option is to cut the rod into two pieces of length 2 for 5 + 5 = 10 dollars.
 Now, when initially designing algorithms for optimization problems, it’s easiest if we focus
not on computing the solution itself but instead computing the optimal value of the
solution. So that’s what we’ll primarily focus on. We can come back to outputting the actual
solutions later.

 The first and hardest step in designing a dynamic programming algorithm is to formulate
and solve your problem recursively.
 I like to think of these kinds of optimization problems as us having to make a sequence of
decisions. Once we’ve made a decision, we’re left trying to deal with the consequences,

and that hopefully means solving a smaller version of the same problem.
 So, we need to find a collection of rod lengths that sum up to n. what is a first decision
we might make for rod cutting?
 Let’s go with length of the first piece.
 Say we chop off a first piece of length j to sell it. We’re left with a rod of length n - j. The
best thing to do at this point is to maximize revenue on a rod of length n - j!
 We can most easily write down this relationship between the max revenue for length n and
the max revenue for length n - j using a recurrence relation.
 Let CutRod(i) denote the maximum revenue obtainable cutting a rod of length n given the
array P[1 .. n]. If we know we start with a piece of length j, then, CutRod(i) = P[j] + CutRod(i
- j)
 But wait. What is j? We don’t know in advance which length j is the best. Therefore, we’ll
have to try them all! We need to use the j that maximizes the total revenue from the first
cut and the remaining cuts.
 CutRod(i) =

 max_{1 ≤ j ≤ i} P[j] + CutRod(i - j) if i > 0
 I want to emphasize that we’re not doing anything particularly clever here. We’re assuming
almost nothing about the solution, other than we want to optimize how we cut up the
remaining i - j units of rod after selling our first piece of length j. We have no way of
knowing which j is best, so we really do have to try them all and take the choice that
maximizes that sum.
 OK, so CutRode(i) still isn’t defined for every non-negative integer i, because it’s missing
the case i = 0. But zero units of rod should sell for 0.
 CutRod(i) =

 0 if i = 0
 max_{1 ≤ j ≤ i} P[j] + CutRod(i - j) if i > 0

 This recurrence immediately implies a (slow) algorithm for computing the optimal revenue.
Simply evaluate CutRod(n) using the recurrence definition.
 This idea of trying each option for exactly one decision (e.g. length of the first piece) and
then recursively solving problem instances consistent with each option is called
backtracking.
 The specific idea that an optimal solution to this optimization problem incorporates
optimal solutions to related subproblems is called the optimal substructure property by
CLRS.

 OK, so we have an algorithm, but it’s going to be very very slow.
 But! We already saw how to speed up the algorithm: we need to solve all the subproblems
by writing their solutions into a data structure.
 An array CutRod[0 .. n] will do. It has one entry per parameter value to the recurrence.

 We need to figure out what order we can fill the array. I like to do this by drawing a picture.
 We draw the array. We write down the solution to any base cases. Then we pick a generic
element and draw arrows into it depicting which subproblems are used to gets its solution.
 [0 []]
 So we fill in the table from left to right (low index to high index).
 Now we’re ready to write the iterative algorithm.

 Now it’s easy to figure out the running time. We have two for loops where i goes from 1 to
n and j goes from 1 to at most n. The algorithm takes O(n^2) time.

Dynamic Programming

 Dynamic programming is recursion without repetition. You store the solutions to the
intermediate subproblems, often but not always in an array or table.
 Many students focus on the table, because tables are easy and familiar. But you need to
focus on the much more important (and difficult) problem of finding a correct recurrence.
If you memoize the correct recurrence, you may not even need an explicit table, but if the
recursion is incorrect, nothing works. In particular, if you jump straight to making a table on
your homework or exam solutions, you’re going to have a much harder time convincing
me your algorithm is correct, and my default assumption will be that it’s actually wrong.

 That said, there is a framework that you can and should follow to make things easier. Even
if you normally ignore the reading (which is a bad idea), you really really should look over
Erickson Section 3.4 and commit its recommendations to heart.

1. Formulate the problem recursively. Write down a recursive formula or algorithm for
the whole problem in terms of smaller subproblems. This is the hard part. (I greatly
prefer recursive formulas, as they make the second stage easier.)

1. Specification. Describe the problem you want to solve recursively in coherent and
precise English. Not how to solve the problem, but what the problem is. Without
this, we cannot tell if your solution is correct (the solution to what?). Also, which
call do you make to solve the original problem you were asked about? We
needed to evaluate RecFibo(n) and CutRod(n).

2. Solution. Give a clear recursive formula or algorithm for the whole problem in
terms of answers to smaller instances of exactly the same problem.

2. Build solutions to the recurrence from the bottom up. Write an algorithm that starts
with base cases for your recurrence and works its way up to the final solution by
considering intermediate subproblems in the correct order. This is the easy(er) part,
and can be broken down into smaller relatively mechanical steps (an algorithm for
designing algorithms!)

1. Identify the subproblems. What are the different ways your recursive algorithm
can call itself? Both RecFibo and CutRod take integers between 0 and n.

2. Choose a memoization data structure. Find a structure to store the solution to
every subproblem from part (a). This is usually but not always a multidimensional
array. I usually name it after the recurrence defined in the specification step.

3. Identify dependencies. Except for base cases, every subproblem depends on
other subproblems. Which ones? Draw a picture of your data structure, pick a
generic element, and draw arrows from each element it depends upon.

4. Find a good evaluation order. Order the subproblems so that each one comes
after the subproblems it depends on.

5. Analyze space and running time. The number of distinct subproblems determine
the space complexity of your algorithm. For total running time, add up the
running time for evaluating all possible subproblems, assuming deeper recursive
calls have already been memoized.

 Running time is at most [number of subproblems] * [max time per
subproblem].
 But sometimes you can argue for a lower running time using a more clever
analysis.

6. Write down the algorithm. You know the order to consider subproblems and how
to solve them, so do that! If the data structure is an array, you’ll usually write some
nested for-loops around the recurrence and replace recursive calls with array
lookups. Make sure you don’t accidentally skip the base cases!

 Don’t forget to prove these steps are correct. Why does your recurrence/recursive
algorithm solve the problem (induction)? Tell me the dependencies so I know you're
solving subproblems in the correct order.

Greed is Bad, Actually

 Now, if you’re very lucky, you might be able to run a greedy algorithm.
 It’s like backtracking, except you don’t make one recursive call per option. Instead, you
immediately commit to a "best" option and do one recursive call total to find out the
consequences. So backtracking without ever tracking back.

 It seems natural, but very few problems can be solved correctly in this way.
 For example, for rod cutting, you might set j to the value that maximizes P[j] and then
attempt to recursively cut the rest of the rod.
 But even a simple example like n = 4, and P[1~..~4] = <0, 50, 51, 0> shows that strategy
won’t work.
 So remember

(ok, sometimes they do and we’ll discuss some examples later in the semester).
 If you ever get an inkling that a greedy approach might work, you really want to use
dynamic programming instead. Really.
 In a couple weeks, we’ll go over what’s involved in designing a greedy algorithm and
proving it correct. Until then, don’t even try to use one.

