an independent set of a graph \(G = (V, E) \): a subset \(I \subseteq V \) of vertices such that no pair of vertices in \(I \) share an edge.

Given a (rooted) tree \(T \) on \(n \) vertices, find a maximum cardinality independent set.
if we don't take root, take max. ind. sets from each child subtree

if we do take root, take max. ind. sets from each grandchild subtree

$\text{MIS}(v)$: size of MIS of v's subtree

include v?
Dynamic Programming:

subproblems: vertices \(v \) of \(T \)
memoization: \(v, MIS \) for each node \(v \) of \(T \)

dependencies: children and grand children

eval order: post-order traversal

space: \(O(n) \)

time: \(O(\# \text{times the nodes are children or grandchildren}) = O(n) \)
for each node v in post-order

compute v in MIS

return v. MIS

Can MIS(G) be is real

of T.
\(\text{MISyes}(v) \): size of MIS in \(v \)'s subtree that \underline{must} include \(v \)

\(\text{MISno}(v) \): same, but must \underline{not} include \(v \).

\[
\text{MISyes}(v) = 1 + \sum_{u \in v} \text{MISyes}(u) = 1 + \sum_{u \in v} \text{MISno}(u) = 1 + \sum_{u \in v} \text{MIS}(u)
\]

\[
\text{MISno}(v) = \overline{\text{MISno}(v)} \cap \overline{\text{MISyes}(v)} = \overline{\text{MISno}(v)} \cap \overline{\text{MISyes}(v)}
\]

<table>
<thead>
<tr>
<th>MIS(v):</th>
<th>MIS(v):</th>
<th>MIS(v):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v.\text{MISno} \leftarrow 0)</td>
<td>(v.\text{MISno} \leftarrow 0)</td>
<td>(v.\text{MISno} \leftarrow 0)</td>
</tr>
<tr>
<td>(v.\text{MISyes} \leftarrow 1)</td>
<td>(v.\text{MISyes} \leftarrow 1)</td>
<td>(v.\text{MISyes} \leftarrow 1)</td>
</tr>
<tr>
<td>for each child (v) of (\text{MISno} + \text{MISyes})</td>
<td>for each child (v) of (\text{MISno} + \text{MISyes})</td>
<td>for each child (v) of (\text{MISno} + \text{MISyes})</td>
</tr>
</tbody>
</table>
Class Scheduling

Given \(S[1..n] \) of start times \(F[1..n] \) of finish times.

\[0 \leq S[i] < F[i] \quad \forall i \]

Want a maximal conflict-free schedule: max size subset \(X \subseteq \{1, \ldots, n \} \)

s.t., for each \(i, j \in X \), \(i \neq j \)

either \(S[i] > F[j] \)

or \(S[j] > F[i] \)
(max of non-overlapping intervals)

Lemma: Optimal schedule includes the class that finishes first.

Proof: Let \(f \in E \) be a class that finishes earliest. Let \(X \) be an optimal schedule. If \(f \in X \), we are done.
Let g be the first class of X to finish. If f finishes before g, then f does not conflict with $X \setminus \{g, \emptyset\} \cup \{f\}$. So let $X' = (X \setminus \{g\}) \cup \{f\}$. X' is conflict free, and $|X'| \geq |X|$.
Lemma: Correct to take class finishing first & recurse.

Proof: We proved we can take that class f.
We can take any conflict free subset that does not conflict with

```
fold(S[1..n]) := fold(S[1..n])
if F and permute S to match F and permute S to match F
   count := 1
   X[count] := 1
   for i := 2 to n
      if S[i] > F[X[count]]
         count := count + 1
   if count < n
      return S[1..n]
   return S[1..n]
```

So we find the biggest one by induction.
Greedy Algorithms:

backtracking without backtracking

Can commit to best choice before recursing

First choice uses an exchange argument:

1) Start with a hypothetical optimal solution.
2) Do an exchange so new solution agrees with greedy choice.
3) Argue new solution is still optimal.

Usually want dynamic programming instead.