Minimum Spanning Tree (MST)

Given connected undirected graph $G = (V, E)$.

Weights $w: E \rightarrow \mathbb{R}$ could be negative!

Goal: Find the minimum spanning tree, a spanning tree T minimizing $w(T) = \sum_{e \in T} w(e)$.
Assumption: $w(e) \neq w(e')$ when $e \neq e'$.

\Rightarrow guarantees MST is unique

Otherwise, could be multiple MST's

Ex. $w(e) = 1 \ \forall e \Rightarrow$ every spanning tree has weight $|V| - 1$
The One Algorithm:

T: the MST we want to find

want to select edges bit by bit

for T

part way through algorithm

F \subseteq T: the edges we chose so far

- acyclic (a forest)

- call it the intermediate spanning forest

- initially the set of (V) one-vertex trees
will add edges to make
\[F' \supset F \text{ s.t. } F' \subseteq T. \]
- then recursively find
\[\text{MST } T \supseteq F'. \]
- stop if \(F \) is connected
Given F, there are two special subsets of edges:

- **useless edges**: outside F but both endpoints in components of F. If F has no useless edges, $F + e$ has a cycle.
- Each component of F has a safe edge: the lightest one leaving the component.
If $F \neq T$, there is at least one safe edge.
If $F = T$, all $e \in T$ are useless.

Claim: MST T contains every safe edge. In fact, for all SCV tree T has lightest edge with one endpoint in S.

If MST T contains e.

O.w.

$e \in S$
$0 \in S$
exists a path in T between e's endpoints
path has an edge e' that goes from in S to not in S
T-e' has two components
Both components have one end point of e.
\[\Rightarrow T-e'+e \text{ is a spanning tree.} \]
But $w(e) < w(e')$
so $w(T-e'+e) < w(T)$
so $e \notin T \text{ after all!}$
So... add one or more safe edges to F, and recurse!

...but which ones?
Kruskal [56]:

Scan edges in increasing weight order; add each safe edge you see.

Claim: When we scan e, all e’ s.t. \(w(e') \leq w(e) \) are in \(F \) or useless.

If e not useless, it is lightest for both endpoints’ components \(\Rightarrow \) safe.
Disjoint Sets: Maintains disjoint subsets over a collection of objects.

MakeSet(v): creates set \{ v \}

Find(v): returns an "ID" for v's set. $\text{Find}(u) = \text{Find}(v)$ if $u \cup v$ in same set

Union(u,v): replaces sets for $u \cup v$ with union of the sets
KRUSKAL(V, E):
sort E by increasing weight
$F \leftarrow (V, \emptyset)$
for each vertex $v \in V$
 MAKESET(v)
for $i \leftarrow 1$ to $|E|$
 $uv \leftarrow$ ith lightest edge in E
 if FIND(u) \neq FIND(v)
 UNION(u, v)
 add uv to F
return F

\[O(E \log E) = O(E \log V^2) = O(E \log V) \]

Total time \[O(E \log V) + O(E \log V) = O(E \log V) \]
dominated by sorting

even with faster disjoint sets
Prim-Jarník:
Jarník [129], Prim [57].

F always has one non-trivial component T'. Others are isolated vertices.

Jarník: Repeatedly add safe edge of T' to T'.

(T' starts as any one vertex)
To implement:

keep a priority queue of edges incident to T.

each time you add an edge to T', add new incident edges to T'.

when you extract at least one endpoint in T, check if edge leaves T' & ignore it if not.

$O(\log E) = O(\log V)$ time per heap operation, so

$O(E \log V)$
But really, use Borůvka ('26).
See Erickson 7.3.