CS 6363.003 Midterm 1

March 11, 2021

Please read the following instructions carefully before you begin.

The exam has 4 problems, some of which have multiple parts. Please start the solution to
each problem on a new page.

The exam is meant to take around 1 hour and 15 minutes, but you have some extra time to
prepare the solutions for submission to eLearning and work through any related technical
issues. You must finish uploading your solutions within 2 hours of beginning the exam
or by 9:50am CST on Friday, March 12, whichever comes first. You may upload as many
versions of your solutions as you would like, but you can only submit them once. Your
solutions will be submitted automatically 2 hours after you begin the exam to prevent you
from uploading but forgetting to actually submit your solutions.

If you cannot successfully upload your solutions to eLearning before the end of the 2 hour
time limit, email a copy to Kyle as soon as you possibly can.

It is highly recommended that you take the exam between gam CST and 4pm CST on
Thursday, March 11th. Kyle will be actively watching for questions via email during this
time. He will also try to answer emailed questions at other times during the exam period,
but he may be slower to respond, especially if he is asleep! Feel free to ask for clarification
on any of the problems.

Questions are not necessarily given in order of difficulty, so read through them all before
you begin writing.

This exam is closed book. No notes or calculators are permitted.

If asked to describe an algorithm, you should state your algorithm clearly (preferably with
pseudocode) and briefly explain its asymptotic running time in big-O notation in terms
of the input size. Each individual problem will specify whether or not you must justify
correctness.

Just breathe. You can do this.

CS 6363.003 Midterm 1 Spring 2021

1. Answer each of the following questions. There is no need to justify your answers for these
questions.

(@) (2.5 out of 10) Using ©-notation in terms of n, what is the solution to the recurrence
T(n) =9T(n/3) +n??

(b) (2.5 out of 10) Using ©-notation in terms of n, what is the solution to the recurrence
T(n)=T(4n/7)+ T(2n/7)+n?

(¢) (2.5 out of 10) Using ©-notation in terms of n, what is the solution to the recurrence
T(n)=5T(n/3)+n?

(d) (2.5 out of 10) Consider the following recursive function which is defined in terms
of a fixed array X[1 .. n].

.. 0 ifi<Oorj<o
LaLa(i,j)= . . ')
max,<,<;(X[i]-LaLa(i—k,j—1)) otherwise
Using ©-notation in terms of n, how long does it take to compute LaLa(n,n) using
dynamic programming?

2. (a) (5 out of 10) Suppose we're given two strings A[1 .. m] and B[1 .. n]. A third
string C is a common supersequence of A and B if both A and B are subsequences
of C. Finding the length of a shortest common supersequence of A and B can be
accomplished recursively/using dynamic programming.

Specifically, let SCS(i, j) be the length of the shortest common supersequence of
A[1..i]and B[1 .. j]. Rewrite the following recursive definition of SCS(i, j) with all
five blanks filled in correctly. There is no need to justify your answer.

(i ifj=0
ifi=0
SCs(i,j)=4 [SCSGj-D+ .
fA[i]#B
SCS(i—1,j)+ ifAli]# Blj]
SCS(R)+1 otherwise

CS 6363.003 Midterm 1 Spring 2021

(b) (5 out of 10) Your kindly woodcrafting neighbor has just moved out of the country
but left you with n pieces of lumber. These pieces of wood have no particular value
to you, but you hope to sell them some day to a enterprising carpenter. To prepare
for your eventual payoff, you need to sort these pieces of lumber in increasing order
of quality. You know nothing about the lumber industry, so you decide to ask an
eccentric lumber enthusiast to compare pieces of lumber for you. The enthusiast
does not want to feel like he’s doing all the work for you, however, so he will only
sort a collection of lumber if it has already been divided up into three groups of
roughly equal size, and each individual group is already sorted.

More formally, you’re given an array L[1 .. n] of lumbers and a procedure
MERGE3(W(1 .. k]) that sorts a subarray of lumbers W[1 .. k] in O(k) time as-
suming the subarrays W[1 .. |[k/3]], W[|k/3]+1..12k/3]], and W[|2k/3]+1 .. k]
are already sorted. Design and analyze an algorithm to sort the array L. Accessing
elements of and making change to L must occur only within calls to MERGE3. In
particular, you may not compare lumbers directly.

You do not need to justify correctness of your algorithm for this problem.

3. (10 points) Suppose you are given an array A[1 .. n] with the special property that
A[1] = A[2] and A[n— 1] < A[n]. We say that an element A[x] is a local minimum if
it is less than or equal to both of its neighbors, or more formally, if Alx —1] > A[x] and
A[x] < A[x + 1]. For example, there are six local minima in the following array:

[ol7]7]2]1]3]7]5]4]7]3]3]4]8]6]9]
A A A A A A

We can easily find a local minimum in O(n) time by scanning through the whole
array. Describe and analyze a faster algorithm that finds a local minimum in O(logn)
time. You should briefly justify the correctness and running time of your algorithm. [Hint:
Recursively search a subarray with the same boundary conditions.]

CS 6363.003 Midterm 1 Spring 2021

4. Everybody is falling in love with Flower Monsters (also known as Flordmon), the exciting
new hobby where gardeners pit beautiful and dangerous plants against one another in
head-to-head competitions to see which ones can soak up the most nutriants from league
approved battle pots. Hoping to cash in on this craze, you decide to open up a Flower
Monster Nursery where you’ll grow shiny new Flower Monsters to sell to enthuiastic
gardeners.

Unfortunately, growing Flower Monsters is hard work, and you only have the time and
resources to take care of one Flower Monster at a time. It also costs you $10 for seeds and
material each time you plant a brand new Flower Monster, and thanks to the way their
abilities change throughout their strange life cycles, the amount you can sell your Flower
Monster for directly depends upon how many days it has been since you first planted it.

Suppose you are given an array P[1 .. n] where P[i] denotes the amount of revenue
you get from selling a Flower Monster i days after first planting it. (You may not sell
a Flower Monster on the same day you first plant it.) You want to design an algorithm
that will tell you the maximum total profit (total revenue minus the total cost of planting
new Flower Monsters) you can obtain over the course of n days. For simplicity, you may
assume the following: a) you plant a new Flower Monster on day 0; b) if you sell on any
day 1 through n—1, you immediately plant a new Flower Monster on the same day; and c)
you sell on day n without planting another Flower Monster. For example, if you decide to
sell on days 3, 10, and n, then your total profit is P[3—0]+P[10—3]+P[n—10]—3-10.

(@) (5 outof10) Forall0 <i <n—1,let MaxProfit(i) be the maximum total profit
you can obtain if you plant a new Flower Monster on day i and proceed to sell and
plant Flower Monsters over the course of days i + 1 through n. Our ultimate goal is
to compute MaxProfit(0).

Give a recursive definition of MaxProfit(i). If you wish, you may propose a con-
vinient definition for MaxProfit(n) to use as a base case. You should briefly justify
the correctness of your recursive definition.

(b) (5 out of 10) Describe and analyze an efficient dynamic programming algorithm to
compute the maximum total profit you can obtain over the course of n days. You
do not need to justify correctness of your algorithm, but you should go through the
standard memoization steps anyway to make sure your algorithm is correct. Don’t
forget to explain your running time. Unless you gave a recursive definition for which
there is no efficient memoization method, you may assume your answer to part (a)
is correct when designing your algorithm.

