Matroids

Jiashuai Lu University of Texas at Dallas What's a Matroid Definition Independent System Independent Set, Basis, Rank

Examples

Linear Matroid Uniform Matroid Graphic Matroid

Applications of Matroids

Matroid Optimization Problem

A Greedy Method for the Matroid Optimization Problem Finding Minimum Spanning Tree with GreedyBasis Scheduling with Deadlines

DALLAS

What's a Matroid

- 1. Definition of Matroid
- 2. Independent Systems
- 3. Indepenent Set, Basis, Rank

We say (S, \mathcal{I}) is a **matroid** if S is a finite *ground* set and \mathcal{I} is a collection of subsets of S such that the following properties are satisfied:

- 1. Non-emptiness: The empty set is in \mathcal{I} . (Thus, \mathcal{I} is not itself empty.)
- 2. Heredity: If \mathcal{I} contains a subset $X \subseteq S$, then $\forall Y \subset X$, $Y \in \mathcal{I}$.
- 3. **Exchange:** If X and Y are two sets in \mathcal{I} where |X| > |Y|, then $\exists x \in X \setminus Y$, such that $Y \cup x \in \mathcal{I}$.

(S, \mathcal{I}) is called an **Independent System** if it satisfies the first two properties: non-emptiness and heredity properties.

A matroid is an independent system satisfying the exchange property.

- 1. Every $X \in \mathcal{I}$ is typically called an **independent set**.
- 2. An independent set $X \in \mathcal{I}$ is called a **basis** of the matroid if $\nexists Y \in \mathcal{I}$ such that $X \subset Y$, i.e., a basis is a maximal independent set of \mathcal{I} .
- 3. Every basis of a matroid (S, \mathcal{I}) has the same size, and we denote this size as the **rank** of this matroid.

It easy to use the exchange property to prove the uniqueness of the size of bases in a matroid by contradiction:

Suppose a matroid (S, \mathcal{I}) has two maximal independent sets X and Y with sizes |X| > |Y|, then there must exist some element $x \in X \setminus Y$ such that $Y \cup x \in \mathcal{I}$. Then Y is not a basis of (S, \mathcal{I}) . A contradition.

Examples

- 1. Linear Matroid
- 2. Uniform Matroid
- 3. Graphic Matroid

Let M be an arbitrary $n \times m$ matrix, S be set of all m columns in M. Let \mathcal{I} be a collection of all the linearly independent subsets of S. Then (S, \mathcal{I}) is a matroid.

(We say a subset $X \subseteq S$ is a linearly independent subset if all the columns in X are linearly independent.)

A subset $X \subseteq \{1, 2, ..., n\}$ is independent if and only if $|X| \leq k$. Any subset of $\{1, 2, ..., n\}$ of size k is a basis of $U_{k,n}$.

Let G = (V, E) is an undirected graph. Let S = E and \mathcal{I} be the collection of all sets of edges that induce a forest of G. (S, \mathcal{I}) is the graphic matroid M(G) of G. Every spanning tree of G is a basis of M(G).

Applications of Matroids

- 1. Matroid Optimization Problem
- 2. A Greedy Method Solving Matroid Optimization Problem
- 3. Find Minimum Spanning Tree with Greedy Method
- 4. Scheduling with Deadlines

A matroid (S, \mathcal{I}) is weighted if every element $e \in S$ is weighted non-negatively by a weight function $w : S \to \mathbb{R}_{\geq 0}$.

The **matroid optimization problem** is finding a basis with maximum total weight.

For example, if M(G) is a graphic matroid for a undirected graph G = (V, E), then the problem is finding a maximum spanning tree of G.


```
\begin{array}{l} \underline{\text{GREEDYBASIS}(S[1..n], \mathcal{I}, w[1..n]):} \\ \text{sort } S \text{ in decreasing order of weight } w \\ G \leftarrow \emptyset \\ \text{for } i \leftarrow 1 \text{ to } n \\ \text{ if } G \cup \{S[i]\} \in \mathcal{I} \\ \quad G \leftarrow G \cup \{S[i]\} \\ \text{Return } G \end{array}
```

UN DALLAS

Theorem (3.1)

For any matroid $M = (S, \mathcal{I})$ and any weight function $w: S \to \mathbb{R}^+$, GreedyBasis (S, \mathcal{I}, w) returns a maximum-weight basis of M.

Firstly, we introduce the greedy choice property:

Lemma (3.2)

Let x be the first element in the weight decreasing order list s.t. $\{x\} \in \mathcal{I}$, then there is a basis A containing x.

Proof: Suppose otherwise there exists another basis B with maximum total weight not containing x. We construct a subset A starting from $A = \{x\}$, according to the exchange property, when |A| < |B|, we could always find an element $y \in B - A$ make $A \cup \{y\} \in \mathcal{I}$. Let $A = A \cup \{y\}$ and repeat this step until we finally get a basis |A| = |B|. Since $w(x) \ge w(y), \forall y \in B$, we have $w(A) \ge w(B)$.

Now we show the optimal substructure property:

Lemma (3.3)

Let x be the first element chosen by GreedyBasis. We define a matroid $M' = (S', \mathcal{I}')$ by:

$$S' = \{ y \in S | \{x, y\} \in \mathcal{I} \}$$
$$I' = \{ B \subseteq S' | B \cup \{x\} \in \mathcal{I} \}$$

Then finding a maximal total weight basis containing x in M reduces finding a maximal total weight basis in M'.

Theorem (3.4)

For any subset system S that is not a matroid, there is a weight function w such that GreedyBasis(S, w) does not return a maximum-weight set in S.

We already know that every basis of a graphic matroid M(G) is a spanning tree of G = (V, E), and GreedyBasis (S, \mathcal{I}, w) gives us a basis with maximum total weight w.r.t. weight function w.

Let $w': E \to \mathbb{R}$ be the original edge weight function for G. Firstly, we make every edge has non-negative weight by setting $w''(e) = w'(e) - \min_{e' \in E} \{w'(e'\})$. After that, we construct $w: E \to \mathbb{R}$ by assigning $w(e) = (\sum_{e \in E} w''(e)) - w''(e)$.

GreedyBasis (S, \mathcal{I}, w) gives us a minimum spanning tree of G. (Now GreedyBasis actually works as Kruskal's algorithm.) Suppose you have a list T of n tasks $[t_1, \ldots, t_n]$ to do, each of them needs a full day to finish, a list $D = [d_1, \ldots, d_n]$ of deadlines for those tasks, and a list $P = [p_1, \ldots, p_n]$ of overdue penalties for T.

A schedule is a permutation π of $\{1, 2, ..., n\}$ which is an order you will work on the tasks. The question is how to find a schedule π such that the total penalty is minimized, i.e.

$$\min_{\pi} \sum_{i=1}^n P[i] \cdot [\pi[i] > D[i]]$$

The cost of a schedule is determined by the subset of tasks that are on time.

Let π be a schedule.

Task t_i is late in π if it finishes after its deadline d_i , otherwise, it is early.

 π is in early-first form if all early tasks precede late tasks.

 π is in canonical form if it is early-first and all early tasks are scheduled in non-decreasing order of deadlines.

Every schedule π can be put into canonical form.

DALLAS

21

Definition: A set A of tasks is independent if there exists a schedule in which no task $t \in A$ is late.

22

DALLAS

Let
$$N_j(A) := |\{t_i \in A | d_i \le j\}|$$
 for $j = 0, ..., n$.

Lemma (3.5)

A is independent $\iff N_j(A) \leq j \text{ for } j = 0, \dots, n.$

Theorem (3.6)

Let S be a set of all tasks in T, \mathcal{I} be the collection of all independent sets of tasks. Then (S, \mathcal{I}) is a matroid. **Proof:**

- 1. Hereditary: from the definition.
- 2. Exchange Property: consider two independent sets of tasks A and B with |A|<|B|.

Let k be largest j s.t. $N_j(A) \ge N_j(B)$, then k < n and for $j = k + 1, \ldots, n$: $N_j(A) < N_j(B)$. Choose $x \in \{t_i \in B - A | d_i = k + 1\}$, then $N_j(A \cup \{x\}) = N_j(A)$ for $j = 0, \ldots, k$ and $N_j(A \cup \{x\}) \le N_j(A) + 1 \le N_j(B) \le j$ for $j = k + 1, \ldots, n$. Thus, $A \cup \{x\}$ is an independent set.

- 1. Construct the weight function w by setting $w(t_i) = p_i$ for all i = 1, ..., n. Let $M = (S, \mathcal{I})$ as we defined in Theorem 3.6.
- 2. Use Greedy Basis to find a maximum-weight basis ${\cal A}$ of tasks.
- 3. Create an optimal schedule by first scheduling tasks in A by order of non-decreasing deadlines.

Time complexity: $O(n^2)$ (Sorting uses $O(n \log n)$). Checking independence costs O(n) for each iteration. In total $O(n^2)$.)