
Asymptotic Analysis1

Last week, we discussed how to present algorithms using pseudocode. For example, we
looked at an algorithm for singing the annoying song “99 Bottles of Beer on the Wall” for
arbitrary values of 99.

BottlesOfBeer(n):
for i← n down to 1

Sing “i bottles of beer on the wall, i bottles of beer,”
Sing “Take one down, pass it around, i− 1 bottles of beer on the wall.”

Sing “No bottles of beer on the wall, no bottles of beer,”
Sing “Go to the store, buy some more, n bottles of beer on the wall.”

Along with describing your algorithms, you also need to justify their correctness with a
proof, and analyze their running time. There’s nothing to justify here; we can just declare
that these are the lyrics to the song by definition! However, we can still discuss running
time.

It’s hard to give the exact running (singing?) time of this song, because different people
may sing at different speeds. Perhaps I sing r e a l l y r e a l l y s l o w l y while you sing
reallyreallyfast. What we could try, however, is to count the number of times we perform
certain instructions or reach certain milestones in the ‘code’. For example, it’s easy to see
that we sing the word “beer” three times for each value of i plus three more times at the
end for 3n+ 3 times total.

But let’s look at a more interesting example. The following song is usually sung as the
Christmas holiday approaches.2

1Supplementary lecture notes by Kyle Fox for UT Dallas course CS 4349.004. August 27, 2018.
2Traditional entries in the gifts array include turtle doves, French hens, calling birds, golden rings, geese

a-layin’, swans a-swimmin’, maids a-milkin’, lords a-leapin’, ladies dancin’, pipers pipin’, and drummers
drummin’.

1



NDaysOfChristmas(gifts[2..n]):
for i← 1 to n

Sing “On the ith day of Christmas, my true love gave to me”
for j ← i down to 2

Sing “j gifts[j]”
if i > 1

Sing “and”
Sing “a partridge in a pear tree.”

In this case, a good approximation on the singing time would be the number of times
the singer mentions the name of a gift, equal to

∑n
i=1 i = n(n + 1)/2. We might also

observe that
∑n

i=1

∑i
j=1 j = n(n + 1)(n + 2)/6 gifts are given in total; fortunately, the

singer does not have to count each individual gift, so the first expression more accurately
represents the singing time.

But let’s say now we want to know which song will take longer to sing. If we only look
at small values of n, say n < 6, we might assume BottlesOfBeer takes longer to sing;
there are strictly more beers mentioned than gifts. However, for n > 6, there are always
more gifts mentioned than beers. Intuitively, the number of gifts starts smaller than the
number of beers, but it grows with increasing n at a much higher rate thanks to the n2/2
term in the total number of gifts. We really only care about singing time for larger values
of n (“5 Bottles of Beer on the Wall” is a pretty short song), so we need some way to
emphasize these quickly growing terms and compare singing/running times for large values
of n.

1 Asymptotic Notation

1.1 Θ-notation

The most common way to express algorithm running times is to express them using asymp-
totic notation. Let g(n) : N→ R+ be a positive function over the natural numbers. We’ll
begin with a way to express exactly (up to constant factors) how other functions grow
relative to g(n) called Θ-notation . Formally, Θ(g(n)) is a set of functions defined as

Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.

In other words, f(n) ∈ g(n) if and only if they differ by constant factors for all sufficiently
large values of n. In these cases, we say g(n) is an asymptotically tight bound for f(n).
Often, we’ll simplify things by writing f(n) = Θ(g(n)) claiming f(n) is Θ(g(n)) whenever
we formally mean to say f(n) ∈ Θ(g(n)). One special case that arises often is g(n) = 1.
Whenever we have a function f(n) with f(n) = Θ(1), we can conclude f(n) lies sandwiched
between two constants c1, c2 > 0 for all sufficiently large values of n.

2



It is not difficult to verify (with a bit of algebra) that the first song given above mentions
beer Θ(n) times while the second song names a gift Θ(n2) times. And because the singing
times of these two songs are proportional to these two events, the singing times must be
Θ(n) and Θ(n2), respectively, as well. But we still don’t have a formal handle on which
song takes longer to sing.

1.2 O and Ω-notation

To better compare different functions and running times, we need to give possibly loose
upper and lower bounds. The first of these comes from O-notation (pronounced big-oh
notation), which you are likely the most familiar with.

O(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

Again, we may write f(n) = O(g(n)) when we really mean f(n) ∈ O(g(n)). With a bit of
algebra, we can verify 3n + 3 = O(n(n + 1)/2). In other words, it takes at most as long
to sing BottlesOfBeer as it does to sing NDaysOfChristmas for large values of n.
Note, however, that it is not the case that 3n + 3 = Θ(n(n + 1)/2). O-notation merely
gives an upper bound on function or running time growth. There is no guarantee that this
upper bound is tight, much like how 1 ≤ 3 does not imply 1 = 3.

This loose upper bound can be useful, however, especially when expressing the run-
ning time of algorithms. Given an array of n integers, the well-known sorting algorithm
InsertionSort runs in Θ(n2) time in the worst case, but if the input is already sorted,
then the running time is actually Θ(n). It is much easier to just claim the running time
as O(n2), because that statement is true for all inputs of size n. In general, you should
express your algorithm running times using O-notation, and using as simple a function as
possible while still giving the best bound you can. State that your algorithm runs in O(n3)
time, not O(n3 − 23n2 + 4n+ 3) time.

Rarely, we may want to give asymptotic lower bounds as well. For example, we may
want to declare that an algorithm uses a certain minimum running time for all inputs or
that any algorithm to a problem has that minimum running time. For these instances, we
use Ω-notation (big-omega notation).

Ω(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}.

Again, we may write f(n) = Ω(g(n)) when we really mean f(n) ∈ Ω(g(n)). As you might
expect, n(n+ 1)/2 = Ω(3n+ 3), so it takes at least as long to sing NDaysOfChristmas
as it does to sing BottlesOfBeer for large values of n.

3



1.3 o and ω-notation

Intuitively, O and Ω-notation provide a loose inequality between the growth of functions
or algorithm running times. Occasionally, we’ll want strict inequalities instead. For these
cases, we use o-notation (little-oh notation) or ω-notation (little-omega notation).

o(g(n)) = {f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0}

ω(g(n)) = {f(n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0 ≤ cg(n) < f(n) for all n ≥ n0}

In other words, no matter which constant c you choose, g(n) will eventually become bigger
or smaller than f(n) and they will continue to separate as n grows larger. For example, 2n =
o(n2), because 2n < cn2 whenever n > 2/c, no matter which c > 0 you choose. However, it
is not the case that 2n2 = o(n2), because you cannot claim 2n2 < 3n2 for any value of n > 0.
A bit of algebra implies 3n+ 3 = o(n(n+ 1)/2). We finally have formal confirmation that
BottlesOfBeer takes strictly less time to sing than NDaysOfChristmas assuming n
is sufficiently large.

2 Analyzing Algorithms

A key advantage of doing asymptotic analysis for algorithms instead of counting the ex-
act number of operations is that we can be a little lazier with our math. For example,
we don’t need to know there are exactly n(n + 1)/2 mentions of the name of a gift in
NDaysOfChristmas. An easier analysis would be to say there are n iterations of the
outer loop, and each iteration names at most n gifts, so there are at most n2 gifts named.
The running time is O(n2). Similarly, we can provide a lower bound on the singing time
by observing that at least n/2 iterations of the outer loop involve at least n/2 gift names,
implying there are at least n2/4 = Ω(n2) gift names. As stated earlier, the total singing
time is in fact Θ(n2).

Not all algorithms will be this straightforward to analyze. However, we will go over a
variety of techniques to help us in analyzing different styles of algorithms. For example,
we will discuss solving recurrences in one of the next two lectures, and doing so will help
us analyze divide-and-conquer algorithms. Hopefully through a combination of seeing
examples from class and your practice on the homework, the runtime analysis part of
algorithm design will become relatively easy compared to the rest of the process.

3 Useful Facts

We’ll conclude with some additional facts about asymptotics and common functions that
will come up throughout the course. Unless specified otherwise, we’ll assume throughout

4



that any functions we mention are positive for sufficiently large n.

3.1 Comparing functions

Many of the properties are you used to seeing from comparison of real numbers also apply
to asymptotics.

Transitivity f(n) = x(g(n)) and g(n) = x(h(n)) implies f(n) = x(h(n)) where x is any
one of the five Θ, O,Ω, o, ω discussed above.

Reflexivity f(n) = Θ(f(n)), f(n) = O(f(n)), and f(n) = Ω(f(n)).

Symmetry and transpose symmetry f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n))
if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)). Similarly, f(n) = O(g(n)) if and only
if g(n) = Ω(f(n)), and f(n) = o(g(n)) if and only if g(n) = ω(f(n)).

3.2 “Algebra”

Suppose f1(n) = Θ(g1(n)) and f2(n) = Θ(g2(n)). Then,

c · f1(n) = Θ(f1(n)) for any constant c,

f1(n) + f2(n) = Θ(g1(n) + g2(n)),

f1(n) · f2(n) = Θ(g1(n) · g2(n)), and

f1(n) + f2(n) = Θ(max {g1(n), g2(n)}).

The first equation applies to O and Ω as well. The remaining equations apply to all five
pieces of asymptotic notation.

3.3 Important growth functions

A polynomial in n of degree d is a function p(n) =
∑d

i=0 ain
i where each ai is a

coefficient of the polynomial and ad 6= 0. We have p(n) = Θ(nd). For any real constants
β > α ≥ 0, we have nα = o(nβ). A function f(n) is polynomially bounded if f(n) =
O(nk) for some constant k.

Exponential functions grow faster than polynomial functions, and the base of the ex-
ponential matters. In particular, nk = o(an) for any constant k and constant a > 1. Also,
an = o(bn) for any constants b > a > 0.

On the other hand, logarithmic functions grow slower than polynomials, even ones
that are in Θ(na) for really small constant a > 0. A function f(n) is polylogarithmically
bounded if f(n) = O(logk n) for some constant k. We have logk n = o(na) for any constant
k and constant a > 0. We will generally use log to denote the logarithm of base 10, lg to

5



denote the logarithm of base 2, and ln to denote the natural logarithm of base e (Euler’s
constant). However, from earlier facts we may observe that

loga n =
logb n

logb a
= Θ(logb n)

for any constants a, b > 1. In other words, the base of the logarithm does not matter when
doing asymptotics, as long as that base is a constant.

In the context of algorithm design, correct algorithms with exponential running times
are usually easy to find; these algorithms often correspond to some kind of “brute force”
solution where we try every possible output and return the best one. We usually don’t
consider an algorithm to be “efficient” unless it has a polynomial running time, but even
then, we prefer to get the running time as close to linear (O(n)) as possible. When the
input is very special, say a sorted array, we may be able to avoiding reading the whole
thing and achieve an even better polylogarithmic running time.

6


	Asymptotic Notation
	-notation
	O and -notation
	o and -notation

	Analyzing Algorithms
	Useful Facts
	Comparing functions
	``Algebra''
	Important growth functions


