Main topics are #maximum_flow in #planar_graphs.

Maximum Flow

- I checked the calendar, and it looks like there’s time for one more topic before we move on to surface embedded graphs: we’re going to consider the maximum flow problem in planar graphs.
- First, some definitions. These may seem a bit different from what you’re used to, but it makes the math work out so beautifully in the end. I’m going to show you an “antisymmetric flow” formulation.
- Take an abstract graph $G = (V, D)$.
- A flow is a function $\phi : D \to \mathbb{R}$ from darts to the reals. FLOWS CAN BE NEGATIVE. In fact, they will be for about half the darts, because we need $\phi(d) = -\phi(\text{rev}(d))$ for any flow.
- Let s and t be two vertices. Function ϕ is an s,t-flow if $\sum_u \phi(u \to v) = 0$ for all $v \neq s, t$. These equations are often called the conservation constraints.
- Let $c : D \to \mathbb{R}^+$ be the capacities of the darts. The (s,t)-flow is feasible if $\phi(d) \leq c(d)$ for all darts d. These inequalities are often called the capacity constraints.
- The value of an s,t-flow is $\sum_u \phi(u \to t)$. Our goal is to quickly find an s,t-flow of maximum value given a graph with non-negative capacities.
- Given an s,t-cut (S, T), its capacity is $\sum_{u \to v : u \in S, v \in T} c(u \to v)$. Ford and Fulkerson proved the value of any s,t-flow is at most the capacity of any s,t-cut, and this is actually an equality for the maximum value flow and minimum capacity cut.
- Orlin’s ['13] algorithm can find both in $O(n^2 / \log n)$ time in an arbitrary planar graph, but (surprise!) we’re going to do better today and Monday.

$s,-$planar Graphs

- Let’s start with an easier case, where s and t lie on the outer face o. The following algorithm is by Hassin ['81].
- The minimum s,t-cut is a (directed) bond with two darts on the outer face, so its dual is a directed cycle through o^\ast. In this figure, it goes clockwise.
- s^* and t^* are both incident to o^*. Imagine slicing through o^* to create two dual vertices s' and t'. That shortest cycle through o^* is now a shortest path from s' to t'. So run Dijkstra's algorithm once to find it.
- We now know the minimum cut and its capacity, but can we find the maximum flow function itself?
- For each dual vertex f^*, let $\text{dist}(f^*)$ denote the distance from s'.
- For each dart $u \leftrightarrow v$, define $\phi(u \leftrightarrow v)$
 - $:= \text{dist}([u \leftrightarrow v]) - \text{dist}([v \leftrightarrow u])$
 - $= \text{dist}(y) - \text{dist}(x) \quad [\text{where } (u \leftrightarrow v)^* = x \leftrightarrow y]$
 - $= c(x \leftrightarrow y) - \text{slack}(x \leftrightarrow y) \quad [\text{by definition of slack}]$
 - $\leq c(x \leftrightarrow y)$
- We satisfied capacity constraints.
- If you go around any face of G^* other than s^* and t^* summing flows, the $+ \text{dist}(y)s$ and $-\text{dist}(u)s$ cancel, leading to 0 net flow. In G, this means we satisfied conservation constraints.
- By running Henzinger et al. shortest paths in the dual graph, we can compute ϕ in only $O(n)$ time.

Maximum Flows and Dual Shortest Paths

- So what if s and t are on different faces? We'll assume t lies on the outer face o^*.
- Venkatesan ['87] had an interesting observation. Fix a value $\lambda > 0$. Can we find a feasible s,t-flow of value λ if one exists?
- Let P be an arbitrary path from s to t. Let $p(d) =$
 - 1 if $d \in P$
 - -1 if $d \in \text{rev}(P)$
 - 0 otherwise
- Imagine sending lambda units of flow from s to t along P, ignoring the capacities. Now
define the residual capacity of a dart as $c_\lambda(u \to v) = c(u \to v) - \lambda \pi(u \to v)$.

- Intuitively, the residual capacities are telling you how much more (or less!) flow can go through each dart to have a feasible flow. RESIDUAL CAPACITIES CAN BE NEGATIVE! It just means you need to reduce the flow on the dart to make the flow feasible.

- Now imagine the residual capacities as edge lengths in the dual G^*. We refer to the combination of G^* and c_λ as the dual residual network $G^* \lambda$. Let $\text{dist}_\lambda(f^*)$ be the distance from o to f^* in G^* with regard to c_λ.

(The figure on the left should have t and s swapped.)

- These distances are well-defined if and only if there are no negative cycles wrt c_λ.

Suppose there is a negative cycle C in G^*.

- $c_\lambda(C) = \sum_{d \in C} (c(d) - \lambda \pi(d)) < 0$
- But $\sum_{d \in C} c(d) \geq 0$ and $\lambda \geq 0$, implying $\pi(C) \geq 0$.
- C goes around s^* exactly once, so $\pi(C) = 1$.

(These orientations seem to be backwards.)

- Meaning C goes clockwise around s^*. It’s dual to an s,t-cut!
- Also, $\sum_{d \in C^*} < \lambda$, implying $\lambda > \text{mincut} = \text{maxflow}$.

But what if dist_λ is well-defined?

- Define $\text{slack}_\lambda(p \to q) := \text{dist}_\lambda(p) + c_\lambda(p \to q) - \text{dist}_\lambda(q) \geq 0$
- Define $\phi_\lambda(p \to q)$
 - $:= \text{dist}_\lambda(q) - \text{dist}_\lambda(p) + \lambda \pi(p \to q)$
 - $= c(p \to q) - \text{slack}_\lambda(p \to q)$
- So $\phi_\lambda(p \to q) \leq c(p \to q)$.
- And similar to before, $\sum_u \phi(u \to v) = \sum_u \lambda \pi(u \to v)$
\[\begin{align*}
\lambda & \text{ if } v = t \\
-\lambda & \text{ if } v = s \\
0 & \text{ otherwise }
\end{align*} \]

So \(\phi_\lambda \) is a feasible \(s,t \)-flow of value \(\lambda \).

Parametric Shortest Paths

- But how do we find the maximum good value for \(\lambda \)?
- We’ll use a strategy similar to Monday’s. We’ll start with \(\lambda = 0 \) and compute the dual shortest path tree. Then we’ll continuously increase \(\lambda \) as we compute so-called **parametric shortest paths**.
- \(\text{dist}_\lambda \) and \(\phi_\lambda \) will vary continuously as we increase \(\lambda \), but shortest path tree \(T_\lambda \) will change at discrete **pivots** just like before.
- And just like before, we’ll wait until just before some \(\text{slack}_\lambda(p \leftrightarrow q) < 0 \), pivot \(p \leftrightarrow q \) into \(T_\lambda \), and pivot \(x \leftrightarrow q \) out.
- \(\text{slack'}_\lambda(p \leftrightarrow q) := \text{derivative of slack for } p \leftrightarrow q \) and \(\text{path}_\lambda(p) := \text{the shortest path in } T_\lambda \text{ to } p \)
- \(\text{slack'}_\lambda(p \leftrightarrow q) \)
 \[= \text{dist'}_\lambda(p) + \pi(p \leftrightarrow q) - \text{dist'}_\lambda(q) \]
 \[= -\pi(\text{path}_\lambda(p)) - \pi(p \leftrightarrow q) - \pi(\text{rev}(\text{path}_\lambda(q))) \]
 \[= -\pi(\text{cycle}(T_\lambda, p \leftrightarrow q)) \]
 \[\in \{-1, 0, 1\} \]
- Also, we see: \(\text{slack'}_\lambda(p \leftrightarrow q) = -\text{slack'}_\lambda(\text{rev}(p \leftrightarrow q)) \)
- We’ll call \(p \leftrightarrow q \) active if \(\text{slack'}(p \leftrightarrow q) = -1 \).
- But how do we find the active darts?
- Let \(L_\lambda = (G \setminus T_\lambda)^* \), the complementary spanning tree of \(G \).
- Assuming shortest paths are unique, \(L_\lambda \) is the set of **loose** edges, those where both darts have slack > 0.
- \(\text{LP}_\lambda := \text{unique path from } s \text{ to } t \text{ in } L_\lambda \)
- Lemma: \(d^* \) is active if and only if \(d \in \text{LP}_\lambda \)

 - Darts of \(T_\lambda \) have slack = 0, so \(\text{slack'} = 0 \) for them and their reversals.
 - \(d^* \) is active if and only if \(\pi(\text{cycle}(T_\lambda, d^*)) = 1 \) if and only if \(C(d) = (\text{cycle}(T_\lambda, d^*))^* \) is an \(s,t \)-cut

 - If \(d^* \) is active, then \(\text{LP}_\lambda \) contains at least one edge of \(C(d) \). But \(d \) is on the only loose edge of \(C(d) \), so \(d \) in \(\text{LP}_\lambda \)

 - If \(d \) in \(\text{LP}_\lambda \), then \(C(d) \) is an \(s,t \)-cut.
- So now the algorithm behaves similar to MSSP.
- As we increase \(\lambda \), \(\text{slack}_\lambda(d) \) decreases for all \(d \) in \(\text{LP}_\lambda \) and increases for all \(d \) in \(\text{rev}(\text{LP}_\lambda) \).
Equivalently, \(\phi_{\lambda}(d) \) increases along \(\text{LP}_{\lambda} \) and decreases along \(\text{rev}(\text{LP}_{\lambda}) \).

It’s like we’re pushing flow from \(s \) to \(t \) along \(\text{LP}_{\lambda} \).

Pivot \(d \) into \(T_{\lambda} \) when \(\text{slack}_{\lambda}(d) = 0 \). It’s like we saturated the dart.

Pivot \(\text{pred}(q) \Rightarrow q \) out at the same time. It’s like we made a new augmenting path!

Eventually, we do a pivot that creates a directed cycle of slack 0 darts.

But that means each of those darts is saturated. We found the minimum \(s,t \)-cut and the maximum \(s,t \)-flow!

Pseudocode:

- Create initial dual shortest path tree \(T_0 \)
- Maintain primal spanning tree \(L \)
- While \(L \) is connected
 - \(\text{LP} \): path from \(s \) to \(t \) in \(L \)
 - \((p \Rightarrow q) \): min slack edge in \(\text{LP}^* \)
 - decrease slacks along \(\text{LP} \) by \(\text{slack}(p \Rightarrow q) \). Increase slacks along \(\text{rev}(\text{LP}) \) by the same amount.
 - delete \((p \Rightarrow q)^* \) from \(L \)
 - insert \((\text{pred}(q) \Rightarrow q)^* \) into \(L \)
 - \(\text{pred}(q) \Rightarrow p \)
 - \(\phi \leftarrow c - \text{slack} \)

Analysis

- Using dynamic forests, each step of the algorithm can be implemented in \(O(\log n) \) time. Our running time therefore depends on the number of pivots.
- Let \(\text{path}_i \) denote the shortest walk from \(o \) to \(q \) s.t. \(\text{pi} \left(\text{path}_i(q) \right) = i \).
- We see \(\text{dist}_{\lambda}(q) = \min_i (c_{\lambda}(\text{path}_i(q))) \).
- We can also observe that whenever \(\text{path}_{\lambda}(q) \) changes, \(\text{pi}(\text{path}_{\lambda}(q)) \) increases by 1, because \(\text{pi}(\text{cycle}(T, p \Rightarrow q)) = 1 \) if \(p \Rightarrow q \) is pivoting in.
- So now we want to know, for which \(i \) is \(p \Rightarrow q \) in \(\text{path}_i(q) \)?
- Imagine removing faces \(s^* \) and \(t^* \) from the plane. We now have a sphere with two boundary, also known as an **annulus**.
- We’ll define something called the **universal cover** as follows: Imagine cutting along that path \(P \) from earlier, turning our annulus into a disk. Now make a doubly infinite sequence \(..., G^*_{-1}, G^*_0, G^*_1, G^*_2, ... \) of copies of \(G^* \) and paste them together along their respective copies of \(P \).
- Formally, its a plane graph \(G_{\star} = (V_{\star}, E_{\star}) \) where \(V_{\star} = \{p_i \mid p \in V^* \text{ and } i \in \mathbb{Z}\} \) and \(E_{\star} = \{p_i \Rightarrow q_j \mid i + \text{pi}(p \Rightarrow q) \in E^*\} \). We also have dart costs \(c(p_i \Rightarrow q_j) = c(p \Rightarrow q) \).
- Each vertex p_i is a lift of p to $Gbar^*$. There is a projection map $\omega bar(Gbar^* \rightarrow G^*)$ that drops subscripts so $\omega bar(p_i) = p$ and $\omega bar(p_i \cdot q_j) = p \cdot q$.
- The preimage $\omega bar^{-1}(Pi)$ for any path Pi in G^* is a doubly-infinite set of paths in $Gbar^*$ called the lifts of Pi. If Pi starts at p and ends at q, then for any i, there is a lift of Pi from p_i to $q_{(i + pi(Pi))}$.
- $s^* \text{ and } t^*$ lift to two unbounded faces $sbar^*$ and $tbar^*$, and every other face lists to an infinite sequence of faces.

- So now for the punchline. Each path $i(q)$ in G^* lifts to a shortest path to q_0 from $o_{(i)}$.
- The i for which $p \rightarrow q$ is in $\text{path}_i(q)$ are the set of i for which the shortest path from $o_{(i)}$ goes through $p_{(pi(p \rightarrow q))} \rightarrow q_0$.
- But we saw on Monday that these i are contiguous!
- So $p \rightarrow q$ pivots into T_{λ} at most once, and it leaves at most once.
- Which implies $O(n)$ pivots.
- Which implies an $O(n \log n)$ running time!
- Some quick notes:
 - Erickson ['10] described this formulation of the algorithm based on parametric shortest paths.
 - His algorithm is essentially identical to one by Borradaile and Klein ['09]. However, they describe things mostly in the primal graph, sending flow along LP each iteration to always have a “leftmost flow” of each value lambda. Their analysis is much more complicated, because they focus on how often you can saturate each dart with this primal flow.