Main topics are #persistent_homology.

- Last week, we defined and computed simplicial homology over the integers.
- Today, we’re going to extend that idea so we can work with situations where we don’t know ahead of time what the appropriate complex is exactly.
- Imagine the following scenario: you have a bunch of data points in \(\mathbb{R}^d \), and you believe they represent some kind of topological space. Unfortunately, you don’t know what that space is.
- So you try computing, say, the Aleksandrov-Čech complex for various values of \(\epsilon \), analyzing each one you build. Across many values of \(\epsilon \) you see different complexes with different topological features. But which are most important?
- Intuitively, the ones that survive or persist across the most values of \(\epsilon \) are probably pretty important or “real”.
- That’s what we’re going to study today, using something called persistent homology to study topological features (homology groups and non-boundary cycles) that persist across many of these complexes. In fact, we can ignore exactly where the complexes come from as the technique is fairly general.
- One not-so-general thing we’ll do though: we’re going to focus only on homology with the coefficient ring \(\mathbb{Z}_2 \) from here on. Properly handling the integer case is much harder, because the integers aren’t a field, although I found a paper from 2014 that claims the authors can do so.
- Working with \(\mathbb{Z}_2 \) actually simplifies last week’s work quite a bit. We only deal with 0s and 1s, including in the boundary matrix. All addition and multiplication is now done mod 2. And there’s no torsion components to worry about!

Filtrations

- Let \(X \) be a simplicial complex. A *filtration* is a nested sequence of subcomplexes

 \[
 \emptyset = X_0 \subset X_1 \subset \ldots \subset X_n = X
 \]

 Imagine constructing \(X \) bit by bit by adding chunks of simplicies at a time. In terms of Aleksandrov-Čech-complexes, you might be growing the \(\epsilon \)-balls slowly over time, adding new simplices to your complex as new subsets of balls start to overlap.

- There exists a simple *inclusion map* \(f : X_{i-1} \to X_i \) for each \(i \) where \(f(x) = x \). By following their generators along, these maps induce a homomorphism between the homology groups, \(f_* : H_k(X_{i-1}) \to H_k(X_i) \). And putting them together, we get a whole sequences of homology groups connected by homomorphisms:

 \[
 0 = H_k(X_0) \to H_k(X_1) \to \ldots \to H_k(X_n) = H_k(X)
 \]
for each k.

- Our goal here is to learn about this sequence of groups and their Betti numbers.
- For simplicity, though, we'll assume each $X_i - X_{i-1}$ consists of exactly one simplex σ_i. We can assume this holds in general by breaking ties if several simplices are supposed to be added at once, making sure to add all faces of a σ_i before adding σ_i itself.
- Now consider what happens to X_{i-1} when we create $X_i = X_{i-1} \cup \{\sigma_i\}$.
- Let k be the dimension of σ_i.
- Adding σ_i changes exactly two of the boundary matrices partial_k and partial_{k+1}.
 - Let's assume both of these matrices are already reduced to their Smith normal form.
 - σ_i is not yet a face of any $(k+1)$-dimensional simplex, so the additional row in partial_{k+1} is all 0s. Therefore, Z_{k+1} and B_k remain unchanged.
 - However, the new column in partial_k may have 1s. There are two cases to consider:
 1. If the new column is a linear combination of prior columns, then we can zero it out using column operations like last Wednesday. The rank of Z_k increases by one, and the rank of B_{k-1} remains the same. Therefore, $\beta_k(X_i) = \beta_k(X_{i-1}) + 1$ and other Betti numbers remain the same.
 2. Otherwise, we can use row and column operations to extend the diagonal entries (which are all 1 since we're using Z_2) by one position. The rank of Z_k remains unchanged, and the rank of B_{k-1} increases by one. Therefore, $\beta_{k-1}(X_i) = \beta_{k-1}(X_{i-1}) - 1$ and other Betti numbers remain the same.

So if we want to learn the sequence of Betti numbers induced by the filtration, we just need to decide whether each new k-simplex gives birth to a new non-trivial k-cycle, increasing β_k or gives death to a non-trivial $(k-1)$-cycle (changing it to a $(k-1)$-boundary), decreasing β_{k-1}.

- We call the former simplices positive and the latter negative.
- The high level idea behind persistence is that we're going to pair up positive and negative simplices to access the lifetime of homology classes within the filtration.
Persistent Homology Groups

- Remember, the filtration induces a sequence of homology groups connected by homomorphisms. Let’s simplify notation by defining $H^i_k := H_k(X_i)$ and add 0 to the end of the sequence to get
 $0 = H^0_k \to H^1_k \to \ldots \to H^n_k \to H^{n + 1}_k = 0$.
- Let $f^{i, j}_k : H^i_k \to H^j_k$ be the composition of homomorphisms from H^i_k to H^j_k.
- The image of $f^{i, j}_k$ consists of all k-dimensional homology classes that are born at or before X_i and die after X_j. (We added the zero group at the end to guarantee every class eventually dies.)
- The **dimension k persistent homology groups** are these images $H^{i, j}_k = \text{im} f^{i, j}_k$ for $0 \leq i \leq j \leq n + 1$. The **dimension k persistent Betti numbers** are the ranks of these groups, $\beta^{i, j}_k = \text{rank} H^{i, j}_k$.
- One way to think of the persistent Betti numbers is that $\beta^{i, j}_k$ counts the independent homology classes in X_j that are born at or before X_i.
- Note by definition $H^{i, i}_k = H^i_k$. We may also observe $H^{i, j}_k = Z^i_k / (B^j_k \cap Z^i_k)$.
- Now, let $\mu^{i, j}_k = (\beta^{i, j - 1}_k - \beta^{i, j}_k) - (\beta^{i - 1, j - 1}_k - \beta^{i - 1, j}_k)$ for all $i < j$. The first difference is counting homology classes in $X_{j - 1}$ born at or before X_i that die entering X_j. The second counts classes in $X_{j - 1}$ born at or before $X_{i - 1}$ that die entering X_j.
- So, $\mu^{i, j}_k$ is counting k-dimensional homology classes born at X_i that die entering X_j.
- And we already argued at most one class is born each step, so $\mu^{i, j}_k$ is either 0 or 1.
- Let’s plot where the 1s go. The **dimension k persistence diagram** of the filtration is the set of points (i, j) in R^2 where $\mu^{i, j}_k = 1$. Because we always have $i < j$, these points only lie above the main diagonal.
- Surprisingly, we can take these μ values, and use them to compute Betti numbers.
- Lemma: $\beta^{a, b}_k = \sum_{i \leq a, j > b} \mu^{i, j}_k$.
 - Each $\mu^{i, j}_k$ is made from the positive and negative contributions of the persistent Betti numbers in a unit square below and left.
 - If we draw all these square in the upper left quadrant at (a, b), we see all the terms in the sum cancel each other out except for $\beta^{a, b}_k$.

Alternatively, we’re counting classes born up to time a that die after time b. There’s one of those per point in the upper left quadrant.

So, the diagram encodes all the information we need to know the persistent homology groups!

Computing Persistent Homology

- Like with computing the homology classes as we did last week, we can compute persistence quickly doing matrix reductions. In fact, we only have to work with a single matrix.
- Let D be a boundary matrix covering all dimensions at once. Recall σ_i is the sole simplex in $X_i - X_{i-1}$. Let $D_{i,j} = 1$ if σ_i is a facet of σ_j. In other words, the rows and columns are ordered by when the simplices enter the complex, and each column records the boundary of its complex. Again, \mathbb{Z}_2, so 0 and 1 suffice to describe the boundary.
- Similar to before, we’ll iteratively reduce D to another 0-1 matrix R.
- Let $\text{low}(j)$ be the row index of the last 1 in column j. We call R reduced if $\text{low}(j) \neq \text{low}(j_0)$ for any two non-zero columns $j \neq j_0$.
- The algorithm simply adds columns to other columns to their right as follows:
 - $R = D$
 - for $j \leftarrow 1$ to n
 - while there exists $j_0 < j$ with $\text{low}(j_0) = \text{low}(j)$
 - add column j_0 to column j
 - The algorithm takes only $O(n^3)$ time.
- We can track the column sums in another matrix V where the jth column of V encodes the columns in D that sum up to give the jth column in R. In other words, $R = D \ast V$.
- And now we can easily find the points in the persistent diagrams.
 - If the jth column of R is non-zero, then the addition of simplex j kills a cycle born from the addition of simplex $\text{low}(j)$. Indeed, the sum of simplices indicated by the jth column of V has a non-trivial boundary consisting of only simplices from $\text{low}(j)$.
and earlier.
- If the jth column of R is all zeros, then a new cycle is born. Indeed, the sum of simplices indicated by the jth column of V has trivial boundary.
- Let’s look at a simple example. Let X consist of a triangle and its faces.
- To get a filtration, we add the vertices, then the edges, and then the triangle itself. Let’s number the simplices in this order from 1 to 7.
- The boundary matrix D, the final reduced matrix R, and the matrix V describing the reduction steps are given below.

```
\[
\begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 &   &   & 1 &   &   & 1 \\
2 &   &   &   &   &   & 1 \\
3 &   &   &   &   &   & 1 \\
4 &   &   &   &   &   & 1 \\
5 &   &   &   &   &   & 1 \\
6 &   &   &   &   &   & 1 \\
7 &   &   &   &   &   & 1 \\
\end{array}
\]
```

```
\[
\begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 &   &   & 1 &   &   & 1 \\
2 &   &   &   &   &   & 1 \\
3 &   &   &   &   &   & 1 \\
4 &   &   &   &   &   & 1 \\
5 &   &   &   &   &   & 1 \\
6 &   &   &   &   &   & 1 \\
7 &   &   &   &   &   & 1 \\
\end{array}
\]
```

```
\[
\begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 &   &   & 1 &   &   & 1 \\
2 &   &   &   &   &   & 1 \\
3 &   &   &   &   &   & 1 \\
4 &   &   &   &   &   & 1 \\
5 &   &   &   &   &   & 1 \\
6 &   &   &   &   &   & 1 \\
7 &   &   &   &   &   & 1 \\
\end{array}
\]
```

- So what happens? Adding vertices 1 through 3 only adds cycles, because all vertex boundaries are trivial.
- Adding edge 4 kills the 0-cycle born from vertex 2. $\mu^{2,4}_0 = 1$.
- Adding edge 5 kills the 0-cycle born from vertex 3. $\mu^{3,5}_0 = 1$.
- Adding edge 6 creates a new 1-cycle consisting of edges 4, 5, and 6.
- Adding the triangle (7) kills the 1-cycle born from edge 6. $\mu^{6,7}_1 = 1$.
- Vertex 1 never gets killed by the explicit addition of a simplex, so we say $\mu^{1,8}_0 = 1$.
- Here are the 0th and 1st persistence diagrams:

```
\[
\begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]
```

```
\[
\begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]
```

- If we want to think in terms of Betti numbers at different stages of the filtration, adding vertices 1 through 3 increases the 0th Betti number by 1: i.e., we keeping adding new components. But we started killing these components with the addition of edges 4 and 5. The lone component survived the rest of the filtration.
- The addition of edge 6 created an empty graph cycle. Immediately after, the triangle killed it by filling it in.