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Graph grammars may be used as natural and powerful syntax-definition formalisms for visual
programming languages. Yet most graph-grammar parsing algorithms presented so far are either
unable to recognize interesting visual languages or tend to be inefficient (with exponential time
complexity) when applied to graphs with a large number of nodes and edges. This paper presents
a context-sensitive graph grammar called reserved graph grammar, which can explicitly and
completely describe the syntax of a wide range of diagrams using labeled graphs. The parsing
algorithm of a reserved graph grammar uses a marking mechanism to avoid ambiguity in parsing
and has polynomial time complexity in most cases. The paper defines a constraint condition
under which a graph defined in a reserved graph grammar can be parsed in polynomial time. An

algorithm for checking the condition is also provided.
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1. INTRODUCTION

An important class of visual programming languages
is the diagrammatic one, which is based on object-
relationship abstractions (e.g. using nodes and edges).
Frequently used diagrammatic visual languages include
entity-relationship database design languages, data-flow
programming languages (e.g. Petri nets), control flow
programming languages, state transition specifications, and
so on.

In the implementation of textual languages, formal
grammars are commonly used to facilitate the language
understanding and the parser creation. When implementing
a diagrammatic visual programming language (in the rest
of the paper, diagrammatic visual programming languages
will simply be referred to as visual languages), this is
not usually the case. Graph grammars with their well-
established theoretical background may be used as natural
and powerful syntax-definition formalisms [1] and the
parsing algorithm based on a graph grammar may be used
to check the syntactical correctness and to interpret the
language semantics.

One obstacle for the application of graph grammars is that
even for the most restricted classes of graph grammars the
membership problem is NP-hard [2]. As a consequence, all
the graph-grammar parsing algorithms proposed so far are
either unable to recognize interesting languages of graphs,

4Author for correspondence.

or tend to be inefficient when applied to graphs with a large
number of nodes and edges.

Another problem is that nearly all known graph-grammar
parsing algorithms [2, 3, 4, 5, 6, 7] deal only with context-
free productions. A context-free grammar requires that
only a single non-terminal is allowed on the left-hand side
of a production [8]. A context-sensitive graph grammar,
on the other hand, allows left-hand and right-hand graphs
of a production to have an arbitrary number of nodes
and edges. Most existing graph-grammar formalisms
for visual languages are context-free. Yet not many
visual languages can be specified by purely context-free
productions. Additional features are required for context-
free graph grammars to handle context-sensitivity; it is
therefore difficult for context-free grammars to specify a
large proportion of visual languages.

Rekers and Schürr [9] proposed layered graph grammars
(LGGs) to specify visual languages. LGGs differ from
most other grammars in two aspects: context sensitivity and
graph formalism. Being context sensitive makes the graph
grammars expressive. The graph formalism in LGGs is
intuitive and thus easier to understand and to use than textual
formalisms for specifying visual languages. However,
although being expressive, the layered graph grammar is
inefficient in its implementation. Its parsing algorithm is
complicated and the parsing complexity generally reaches
exponential time. It is reported that parsing grammars
using the Rekers–Schürr algorithm is extremely hard [10].
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FIGURE 1. A process flow diagram.

The LGG is therefore not suitable for a program with a large
number of nodes and edges.

This paper presents a context-sensitive graph grammar
called reserved graph grammar (RGG), which was mo-
tivated by the development of a general-purpose visual
language generator. Because the targets of the generator are
visual languages, their grammars are better specified using
a graph formalism. As a part of the generator, a visual
editor should be used to create visual programs based on
the grammar specifications and parsing algorithms should
be automatically created according to the grammar.

The RGG is developed based on the layered graph
grammar, by using the layered formalism to allow the
parsing algorithm to determine in finite steps whether a
graph is valid. It uses labeled graphs to support the linking of
newly created graphs into a parsed graph (traditionally called
embedding). The node structure enhanced with additional
visual notations in the RGG simplifies the transformation
specification and also increases the expressiveness.

An RGG is complete and explicit in describing the syntax
of a wide range of diagrams. Compared to the LGG
where the context graph [9] must explicitly appear in the
production, the embedding mechanism in the RGG allows
the grammar representation to avoid most of the context
specifications while being more expressive. This greatly
reduces the expression complexity, and in turn increases the
efficiency of the parsing algorithm.

A general RGG parsing algorithm, however, has
exponential time complexity. This is solved by introducing
a constraint into the RGG. It is not yet clear how this
constraint limits the application scope, but we find that
even the grammar of a complicated control flow diagram
satisfies the constraint. With this constraint, a parsing
algorithm of polynomial time complexity can be developed.
An algorithm for checking whether an RGG satisfies the
constraint is also developed.

(a) normal representation (b) node–edge representation

FIGURE 2. From a diagram to a node–edge representation.
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FIGURE 3. Node structure.

The RGG formalism has been used in the implementation
of a toolset called VisPro, which facilitates the generation of
visual languages using the Lex/Yacc approach [11, 12].

The rest of the paper is organized as follows: Section 2
describes a case study that demonstrates the basic idea
of the RGG. Section 3 provides a formal definition of
the RGG formalism. Section 4 defines a selection-free
condition which allows an RGG to be parsed in polynomial
time. Section 5 describes the application of the RGG
formalism in a visual-language generation system, followed
by the comparison of related work in Section 6. Section 7
concludes the paper.

2. A CASE STUDY

2.1. Process flow diagrams

We use a process flow diagram (PFD) as an example to
illustrate how an RGG works. A PFD has two types of
constructs: structured and non-structured. For example, a
fork–join construct provides a structure in a diagram, while
the send–receive construct does not affect the structure of
a diagram. Many diagrams used in computer science have
such a mixture of constructs, which are difficult to specify
using existing graph grammars except the layered graph
grammar.

In the PFD shown in Figure 1, the fork statement splits one
thread into multiple threads (three in the example). There are
two send statements that send different messages to the same
receive statement. Syntactically, a receive statement can
receive information from any number of send statements,
while a send statement can send to only one receive. A fork
statement can split one thread into any number of threads.

We first translate the diagram in Figure 1 into a graphical
form whose syntax is suitable for the RGG interpretation.
We will call such a graphical form a node–edge diagram.
The translation as shown in Figure 2 is very straightforward;
the arrows may be ignored since the direction is unimportant
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FIGURE 4. The node–edge form of the process flow diagram.

in our graph-grammar representation. A node in the
node–edge representation is a two-level structure. Figure 3
depicts an example node called join. The first level is the
large surrounding rectangle, which is called a super vertex.
The small rectangles embedded in a super vertex are the
second level, called vertices. A vertex can be connected
to one or more edges; an edge is uniquely determined by
two vertices in the involved nodes. A super vertex is also a
vertex that can be connected to other vertices; RGG does
not impose semantic difference between connecting to a
vertex and connecting to a super vertex. The translated
node–edge representation of the process flow diagram is
shown in Figure 4.

In a node–edge diagram, all vertices should be labeled.
For simplicity, we use T (top), B (bottom), L (left), R (right)
to label the vertices according to their positions in a node.

2.2. Graph rewriting rules

A graph rewriting rule, also called a production, has two
graphs which are called left graph and right graph. It
can be applied to another graph (called host graph) in the
form of an L-application or R-application. A production’s
L-application to a host graph is to find in the host graph
a redex of the left graph of the production and replace
the redex with the right graph of the production. An
R-application is a reverse replacement (i.e. from the right

1: T

2:B

send

4:T

 5:B

3:receive
 4:T

 5:B

3:receive

1: T

 2:B

statement

:=

FIGURE 5. A graph rewriting rule.

graph to the left graph). A redex is a sub-graph in the
host graph which is isomorphic to the right graph in an
R-application or to the left graph in an L-application.

In the case of linear textual languages, it is clear how
to replace a non-terminal in a sentence by a corresponding
sequence of (non-)terminals. However, with a visual
language that has two-dimensional relationships among the
language elements, a far more complicated mechanism is
needed to establish relationships between the substitute of
a redex and its adjacent elements.

There are three approaches to embedding a graph into a
host graph [9].
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FIGURE 6. Examples of the R-application.

Implicit embedding. Formalisms such as picture
layout grammars [4] and constraint multiset grammars
[13] do not distinguish between vertices and edges.
Relationships are implicitly defined as constraints over
their attribute values. Attribute assignments within
productions have the implicit side effect that creates
new relationships to unknown context elements. Users
are, therefore, not always aware of the consequences of
attribute assignments, and parsers require considerable
time to extract, from attributes and constraints,
implicitly defined knowledge about the relationships.
Embedding rules. Some graph grammars such as
the NLC graph grammar [2] and the DNECL graph
grammar [14] have separate embedding rules which
allow the redirection of arbitrary sets of relationships
from a redex to its substitute. This approach is easy
to implement. However, the embedding rules are
often difficult to understand, and all known parsing
algorithms for productions with embedding rules are
either inefficient or impose very strict restrictions
on the left- and right-hand sides of the productions.
Furthermore, embedding rules are only able to redirect
or re-label existing relationships. They cannot be used
to define such productions as the one in Figure 5,
which establishes new relations between previously
unconnected vertices.
Context elements. Context elements can be used to
establish the relationships between a newly created
graph and the host graph. This approach is the easiest to
understand, but an unrestricted use of context elements
may complicate the graph rewriting rules. Furthermore,
it is difficult to rewrite elements which may participate
in a statically unknown number of relationships.

The reserved graph grammar combines the approaches of
the embedding rule and the context elements to solve the
embedding problem. By introducing context information,
simple embedding rules can be sufficiently expressive to
handle complicated programs. Moreover, the wildcards
formalism used in the LGG is not needed in the RGG. The
following paragraphs explain our new embedding approach
by showing its application in the graph transformation
process. In order to identify any graph elements which
should be reserved during the transformation process, we
mark each isomorphic vertex in a production graph by
prefixing its label with a unique integer. The purpose of
marking a vertex is to preserve the context.

We impose an embedding rule which states that if a vertex
in the right graph of the production is unmarked and has an
isomorphic vertex v in the redex of the host graph, then
all edges connected to v should be completely inside the
redex. With the above embedding rule which is usually
called the dangling condition [1], each application of a
production can ensure that a graph can be embedded in a
host graph without creating dangling edges. The examples
in Figure 6 illustrate the R-application process, where some
host graphs have isomorphic graphs (enclosed in dashed
boxes) of the right graph of the production in Figure 5. In
Figure 6a(i), the isomorphic graph is a redex. The vertices
corresponding to the isomorphic vertices marked in the right
graph of the production are painted gray. The transformation
deletes the redex while keeping the gray vertices, as shown
in Figure 6a(ii). Then the left graph of the production is
embedded into the host graph, as shown in Figure 6a(iii),
while treating a marked vertex in the left graph the same
as a gray vertex that has the same mark. We can see that
the marking mechanism allows some edges of a vertex to be
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reserved after transformation. For example, in Figure 6a,
two edges from B to T are reserved after transformation.
Note that Figure 6a(ii) serves only as an illustration of
‘reserving’, and is not the result of a transformation.

In our notion of process flow diagrams, a send node is
allowed to connect to only one receive node. We show
how such a restriction can be expressed and maintained in
the RGG. The solution is simple: we leave the send node
unmarked in the production. According to the embedding
rule, the isomorphic graph in Figure 6b is not a redex
because the super vertex in the send node has an edge that is
not inside the isomorphic graph while its isomorphic super
vertex in the right graph is unmarked. Therefore, the graph
in Figure 6b is invalid. On the other hand, we allow a
receive node to receive data from one or more send nodes.
To support this, we mark the super vertex of the receive node
in the production in Figure 5. The graph in Figure 6c is valid
according to the embedding rule. There is a redex (in the
dotted box) in the graph, because the super vertex of receive
has its isomorphic vertex marked in the right graph of the
production, even though it has an edge connected outside
the isomorphic graph. Therefore, the marking mechanism
helps not only in embedding a graph correctly, but also in
simplifying the grammar definition.

2.3. A graph grammar for process flow diagrams

The graph grammar shown in Figure 7 explicitly and
precisely depicts the syntax of the PFD language. It
consists of a set of productions, where a box labeled 〈i〉 is
Production i.

The L-application defines the language of a grammar. The
language is defined by all possible graphs which have only
terminal labels and can be derived using L-applications from
an initial graph (i.e. λ). The R-application is used to parse a
graph. If the graph is eventually transformed into an initial
graph after a series of R-applications, the graph is proved
to belong to the language. In the sequel, we prove that the
R-application can precisely determine the language defined
by the L-application for an RGG.

By applying the R-application of the RGG in Figure 7
repeatedly to a specific diagram, we can determine whether
the diagram is a process flow diagram. The process of
parsing the PFD drawn in Figure 1 is illustrated in Figure 8,
where a label in an oval describes a possible R-application
order (represented by a letter, e.g. c is after a) and the
corresponding production (by a numeral). The notation
d:2 means that the redex of Production 2 is applied after
the R-applications a, b and c have been applied. The
R-applications may be applied in different orders but will
produce the same result.

In Figure 8a, the five sub-graphs in the dotted boxes are
possible redexes, which can be applied with productions 〈6〉,
〈6〉, 〈2〉, 〈2〉 and 〈2〉 to produce the graph in Figure 8b.
Similarly, the graph in Figure 8b can be transformed into
the graph in Figure 8c, and so on. Finally, the graph is
transformed into an initial graph. The original diagram is,
therefore, a valid process flow diagram.

The following section presents a formal definition of the
reserved graph grammar.

3. FORMAL DEFINITION

3.1. Preliminaries

In order to define the reserved graph grammar and its
properties, we will first introduce some basic concepts,
such as graph element, graph, and isomorphism. We then
define the marking mechanism, which allows us to further
define a redex and graph transformations including L- and
R-applications.

DEFINITION 3.1. n := (s, V , l) is a node on a label set
L, where

• V is a set of vertices,
• s ∈ V is a super vertex, and
• l : V → L is an injective mapping from V to L.

A super vertex contains a set of vertices, and is itself a
vertex. A label serves as a type in an RGG. For simplicity,
we will use the notations n.V and n.s to represent the
corresponding parts of a node n; and this convention is
applicable to other definitions.

DEFINITION 3.2. Two nodes n1 and n2 are isomorphic,
denoted as n1 ≈ n2, iff

• they are defined over the same label set, and
• ∃f ((f : n1.V → n2.V is a bijective mapping) ∧ ∀v ∈
n1.V (n1.l(v) = n2.l(f (v))) ∧ n2.s = f (n1.s)).

The definition specifies that two nodes are isomorphic
if they have the same types of vertices (including super
vertices).

DEFINITION 3.3. G := (N,E) is a graph over a label set
L, where

• N is a finite set of nodes over L,
• E ⊆ N.V × N.V , where N.V = ⋃

n∈N n.V is a finite
set of edges.

Each edge connects from a vertex of a node to a vertex of
another node and is defined by that pair of vertices.

Not all graphs are meaningful. Only certain types of
graphs represent meaningful visual sentences. A graph
grammar can be used to define those graphs that are valid
visual sentences. To specify the graph grammar we need to
define the following concepts.

DEFINITION 3.4. A vertex v is said to be marked, denoted
as mark(v) = m, if it is assigned an integer m called mark.

DEFINITION 3.5. G := (N,E,M) is a marked graph
over a label set L, where

• (N,E) is a graph over L, and
• M : V → I is a bijective mapping, where V ⊆ N.V ,

and I is a set of integers.

A marked graph has unique integers in some of its
vertices. Different vertices in a marked graph should have
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FIGURE 7. A reserved graph grammar specifying process flow diagrams.

different marks. We use mark(v) = m to indicate that v is
assigned an integer m, and mark(v) = null to indicate that v
is assigned nothing and is said to be unmarked.

DEFINITION 3.6. Two vertices a and b in two different
graphs are equivalent, denoted as a

.= b, iff mark(a) =
mark(b) and mark(a) �= null.
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FIGURE 8. Graph transformations (parsing) when productions are applied.
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DEFINITION 3.7. Two graphsG1 and G2 are isomorphic,
denoted as G1 ≈ G2, iff ∃f : G1 → G2 is a bijective
mapping such that

• ∀n ∈ G1.N : n ≈ f (n); and
• ∀e = (va, vb) ∈ G1.E : f (e) = (f (va), f (vb)) ∈
G2.E.

To apply a production to a graph (called a host graph),
we need to find a sub-graph in the host graph that matches
the right graph (or left graph) of the production. Such a
matching sub-graph in the host graph is called a redex.

DEFINITION 3.8. A sub-graph X of a graph H is called a
redex of a marked graph G, denoted as X ∈ Redex(H,G),
iff ∃f : G → X is a bijective mapping and under the
mapping

• X ≈ G; and
• ∀v ∈ G.V ((mark(v) = null) ∧ ∀v1 ∈ H(e =
(f (v), v1) ∈ H ∨ e = (v1, f (v)) ∈ H) → e ∈ X).

This definition specifies that a sub-graph X of a graph H

can be a redex of a marked graph, G, if and only if X is
isomorphic to G and every vertex in X that is isomorphic
to an unmarked vertex in G should have edges completely
inside X. The definition of a redex eliminates the possibility
of any dangling edges resulted from a transformation.

A redex is always related to a mapping function and we
will not specify the mapping function if this is clear in the
context.

DEFINITION 3.9. A production p := (L,R) is a pair
of marked graphs over the same label set, where L :=
(NL,EL,M) and R := (NR,ER,M).

A pair of marked graphs in a production has the same
mark set. They are called left graph and right graph
respectively.

When a production is applied to a graph, the graph is said
to be transformed by the application.

DEFINITION 3.10. Let X be a redex of G in H

determined by a bijective mapping f : G → X. If G and
G′ are the left and right graphs in a production, then the
transformation of H to H ′ after replacing X in H by G′ is
defined as follows.

1. Add G′ to H ,
2. ∀v′ ∈ G′.V if ∃v ∈ G.V such that v

.= v′, replace v′
with f (v) (called a reserved node), then delete v′, and

3. delete X from H except the reserved nodes.

The result of H with the above operation is H ′, denoted
as H ′ = Tr(H,G,G′,X). Step 2 ensures that the edges
connecting the vertices which are isomorphic to the marked
vertices in G are reserved.

Based on the above definition of transformation, the
L-application and R-application can be defined as follows.

DEFINITION 3.11. An L-application of a production
p := (L,R) to a graph H is a transformation H ′ =
Tr(H,L,R,X), where X ∈ Redex(H,L), denoted as
H �→X H ′.

DEFINITION 3.12. An R-application of a productionp :=
(L,R) to a host graph H is a transformation H ′ =
Tr(H,R,L,X), where X ∈ (Redex(H,R)), denoted as
H →X H ′.

3.2. Reserved graph grammar and its properties

We now define the reserved graph grammar and some of its
properties.

DEFINITION 3.13. A reserved graph grammar gg is a
tuple (A, P, T ,N), where A is an initial graph, P a set of
graph-grammar productions, T a set of terminal labels with
el ∈ T (we define all edges to have the same label el), and
N a set of non-terminal labels. For ∀p := (L,R) ∈ P and
∀l ∈ T ∪ N:

1. R is non-empty;
2. L and R are over the same label set T ∪ N;
3. l ∈ Li where Li ⊂ {L0, . . . , Ln} is a global layer set

and L0 ∩ . . . ∩ Ln = ∅; and
4. L < R with respect to the following order of graphs:

G < G′ ⇔ ∃i : |G|i < |G′|i ∧ ∀j < i : |G|j = |G′|j
with |G|k defined as |{x | x ∈ G ∧ layer(x) = k}|.

The last condition guarantees that a diagram can be parsed
in finite steps with the grammar [9].

For simplicity, given an RGG gg := (A, P, T ,N), we
use the notation X ∈ Redex(H) to denote ∃p := (L,R) ∈
P ∧ ∃X : (X ∈ Redex(H,R) ∨ X ∈ Redex(H,L)), when
this is clear in the context.

We denote the sequence of intermediate derivations
H �→X1 H1, H1 �→X2 H2, . . . , Hn−1 �→Xn Hn as H �→X1

H1 �→X2 . . . �→Xn Hn; or simply H �→X1...Xn Hn. We use
H �→∗ Hn to denote H �→X1...Xn Hn, where n may be 0
in which case H = Hn and H �→ H . This notation is also
applicable to the R-application →.

DEFINITION 3.14. Let gg := (A, P, T ,N) be an RGG,
its language L is defined by L(gg) = {G | A �→∗ G, where
G contains only elements with terminal labels}.

We now prove that the R-application can determine
whether a diagram is a language defined by a reserved graph
grammar.

LEMMA 3.1. Let gg := (A, P, T ,N) be an RGG. ∃X1 :
H �→X1 H1 ⇒ ∃X2 : H1 →X2 H .

Proof. Let X1 be a redex determined by a production p :=
(L,R). According to the definitions of the RGG and the
transformation process, if ∃X1 : H �→X1 H1, then H1 has a
redex X2, which is transformed from X1 and is determined
by R. Hence we have ∃X2 : H1 →X2 H ′. But according
to the transformation process, we have H ′ ≈ H . So ∃X2 :
H1 →X2 H .

LEMMA 3.2. Let gg := (A, P, T ,N) be an RGG. ∃X :
H →X H1 ⇒ ∃X′ : H1 �→X′

H .

Proof. Similar to Lemma 3.1.
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LEMMA 3.3. Let gg := (A, P, T ,N) be a graph
grammar, if A �→∗ G then G →∗ A.

Proof.

A �→∗ G ⇒ A �→X1 G1 �→X2 G2 �→ . . . �→Xn G

⇒ G →Xn′
Gn−1, . . . ,→X1′

A (Lemma 3.1)

⇒ ∃G →∗ A. ✷

Similarly we have:

LEMMA 3.4. Let gg := (A, P, T ,N) be a graph
grammar, if G →∗ A then A �→∗ G.

THEOREM 3.1. G ∈ L(gg) iff ∃R : G →R A, where R
is a list of redexes.

Proof. It is straightforward from Lemma 3.3 and
Lemma 3.4.

Theorem 3.1 states that R-applications determine exactly
the language defined by L-applications. This theorem
indicates that if one can find a parsing path (i.e. R) which
transforms a graph to the initial graph, the graph is valid.
A recursive algorithm is needed for parsing, which is rather
inefficient for parsing a large graph.

4. GRAPH PARSING

Parsing is a process that attempts to reduce a sentence
according to a grammar. A reduction (R-application) is
performed when a production is applied. Parsing a graph
may be more complicated than parsing a piece of text.

4.1. A parsing algorithm

The process of parsing a graph with a grammar consists of
selecting a production from the grammar and applying an
R-application of the production to the graph; this process
continues until no productions can be applied (called a single
parsing path). If the graph has been transformed into the
initial graph after R-applications, the graph is valid (i.e. the
parsing succeeds); otherwise, the above process is repeated
with different selections (i.e. different parsing paths). If all
the possibilities have been tried without success, the graph
is invalid.

The first stage of any graph parsing algorithm consists
of searching in a graph to find a redex of any production.
When such a redex is found, the question arises whether the
production should be applied or not. The application of one
production may inhibit the application of another production
and it subsequently causes the entire parsing process to fail.
Therefore, every production instance represents a choice
point in the algorithm.

Carrying out the above parsing process is time-consuming
as it needs to attempt the R-applications for all productions.
We have developed a simple parsing algorithm, called
selection-free parsing algorithm (SFPA), which only tries
one parsing path, as shown in Figure 9. SFPA is effective
for an RGG only in the case that, when parsing any graph

Parsing(Graph host){
while(host!=null){

matched=false;
for all p∈P
{

redex=FindRedexForR(host, p);
if(redex!=null){

R-application(host, p, redex);
matched=true;

}
}
if(matched==false){

print("invalid");
exit(0);

}
}

}

FIGURE 9. The selection-free parsing algorithm.

with SFPA, if one parsing path fails, any other parsing paths
will also fail.

More formally, only those RGGs with selection-free
productions can use SFPA, where the selection-free property
for a production set is defined as follows.

DEFINITION 4.1. Graph G is a merger of graph G1 and
graph G2, if

• G1 and G2 are sub-graphs of G,
• ∀v ∈ G.V : v ∈ G1.V ∨ v ∈ G2.V , and
• ∀e ∈ G.E : e ∈ G1.E ∨ e ∈ G2.E.

DEFINITION 4.2. Let G1 and G2 be graphs,
merge(G1,G2) is a set of mergers of G1 and G2.

In the following definition, we will use p.R and p.L

to represent the right graph and the left graph of the
production p respectively.

DEFINITION 4.3. Let P be a set of productions. P is
selection-free, if, for any p1 ∈ P , p2 ∈ P , R1, R2, L1 and
L2 are graphs isomorphic to p1.R, p2.R, p1.L and p2.L

respectively, and

∀G ∈ merge(R1, R2) ∧ R1 ∈ Redex(G, p1.R)

∧ R2 ∈ Redex(G, p2.R),

we have

∃Ga,Gab,Gb,Gba : Ga = Tr(G, p1.R, p1.L,R1) ∧
Gab = Tr(Ga, p2.R, p2.L,R2) ∧
Gb = Tr(G, p2.R, p2.L,R2) ∧
Gba = Tr(Gb, p1.R, p1.L,R1) ∧
Gab ≈ Gba.

The definition specifies that a production set is selection-
free if a graph with two redexes corresponding to two
productions’ right graphs is applied by the two productions
in different orders, the resulting graphs are the same.
According to this definition, an algorithm for checking
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FIGURE 10. Examples of checking the selection-free condition.

whether a reserved graph grammar has a select-free
production set can be developed.

To check whether a production set is selection-free, we
need to check all the possible combinations of any two
productions’ right graphs. If one combination does not
satisfy the definition, the production set is not selection-
free. Figure 10 shows examples of the checking process.
In Figure 10a, two copies (enclosed in dashed boxes) of the
right graph of Production 6 are merged. According to the
embedding rule, different orders of the R-applications to the
redexes (i.e. the copies) result in the same graph. Figure 10b
appears to be merged by the right graphs of Productions 4
and 5, but the embedding rule determines that no redex of
Production 5 exists. So the productions satisfy the selection-
free condition.

The production set of the reserved graph grammar
illustrated in Figure 7 is selection-free under the definition,
so we can use SFPA to parse any diagrams to check if
they are valid process flow diagrams. In the following
subsection, we will prove that a reserved graph grammar
with a selection-free production set can use SFPA to parse
diagrams correctly.

4.2. Selection-free grammars

The selection-free property of an RGG means that for a valid
graph, any selection of an R-application to the graph can
lead to a successful parsing. Obviously, a selection-free
RGG can use the selection-free parsing algorithm to parse
its languages. The selection-free property of a grammar can
be formally defined as:

DEFINITION 4.4. Let gg := (A, P, T ,N) be an RGG.
If ∀(G →∗ Gi →∗ A), for any X ∈ Redex(Gi), ∃G →∗
Gi →X Gi+1 →∗ A), then gg is said to be selection-free.

DEFINITION 4.5. Let gg := (A, P, T ,N) be an RGG.
If for any G →∗ A, Xa ∈ Redex(G) ∧ Xb ∈ (Redex(G) ∧
¬(Xa = Xb)) such that

∃(G →Xa Ga →Xb Gab) ∧ ∃(G →Xb Gb →Xa Gba)

⇒ Gab ≈ Gba,

then gg is said to be order-free.

The order-free property is similar to the finite Church
Rosser property [14] but applicable to context-sensitive
graph grammars in that productions are applied to sub-
graphs rather than to single nodes. For simplicity, if G ≈ G′,
we will use G instead of G′ in the sequel. We now show that
if the production set of an RGG is selection-free, the RGG is
selection-free.

The following lemma implies that a redex of a graph
defined in an order-free graph grammar can be applied with
an R-application and the graph can be reduced to the initial
graph.

LEMMA 4.1. Let a graph grammar gg := (A, P, T ,N)

be order-free, if G →∗ A∧∃X ∈ Redex(G) then ∃i : G →∗
Gi →X Gi+1 →∗ A.

Proof.

• G →∗ A ∧ ∃X ∈ Redex(G) ⇒ ∃G →X0 G1 . . . →Xn

A, where n > 0. We have two cases:
• Case 1: X0 = X ⇒ ∃G →X G1 →∗ A.
• Case 2: X0 �= X ⇒ ∃G →X0 G1 →∗ A ∧ ∃X ∈

Redex(G1) (Definition 4.5).
• This process can continue:

∃G →X0 G1 →X1,...,Xm Gm →∗ A
∧ ∃X ∈ Redex(Gm)

where m ≤ n.
• As n is finite (the property of the layered definition), we

have

∃i ≤ n : G →∗ Gi →X Gi+1 →∗ A. ✷

Lemma 4.2 presented below implies that a redex can be
applied anywhere in the R-application process.

LEMMA 4.2. Let a graph grammar gg := (A, P, T ,N)

be order-free and ∀G0 →∗ A. If ∃X ∈ Redex(G0) ∧
∃G0 →∗ Gn →X Gn+1 then ∃G0 →X G′

1 →∗ Gn+1.
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Redex FindRedexForR(host, p)
{

nodeSequence=findNodeSequence(p.R);
allCandidates=findAllNodeSequences(host, nodeSequence);
for all candidate∈allCandidates
{

redex=match(candidate, host, p);
if(redex!=null)

return redex;
}
return null;

}

FIGURE 11. The algorithm FindRedexForR.

Proof.

G0 →∗ Gn →X Gn+1

⇒ ∃G0 →X0 G1 →X1 G2 → . . . →Xn−1 Gn →X Gn+1

⇒ ∃Gn−1 →Xn−1 Gn →X Gn+1

⇒ ∃Gn−1 →X G′
n →Xn−1 Gn+1 (Definition 4.5)

⇒ ∃Gn−2 →X G′
n−1 →Xn−2 G′

0 →Xn−1 Gn+1

⇒ . . .

⇒ ∃G0 →X G′
1 →X0 G′

2 → . . .

. . . →Xn−2 G′
n →Xn−1 Gn+1

⇒ ∃G0 →X G′
1 →∗ Gn+1. ✷

THEOREM 4.1. If gg := (A, P, T ,N) is order-free, then
gg is selection-free.

Proof.

G →∗ Gi →∗ A ∧ X ∈ Redex(Gi)

⇒ ∃G →∗ Gi →∗ Gj →X Gj+1 →∗ A (Lemma 4.1)

⇒ ∃G →∗ Gi →X Gi+1 →∗ Gj+1 →∗ A (Lemma 4.2)

⇒ ∃G →∗ Gi →X Gi+1 →∗ A. ✷

THEOREM 4.2. Let gg := (A, P, T ,N), if P is selection-
free, then gg is order-free and thus selection-free.

Proof.

• SupposeG →∗ A∧X1 ∈ Redex(G)∧X2 ∈ Redex(G),
we have ∃p1 ∈ P ∧ ∃p2 ∈ P so that X1 ≈ p1.R and
X1 ≈ p1.R.

• Since P is selection-free and (X1 ∪X2) ⊆ G, G can be
transformed by applying X1 and X2 in any order and
the resulting graphs are the same.

• The transformation process derives that ∀G →∗ A if
X1 ∈ Redex(G)∧X2 ∈ Redex(G)∧¬(X1 = X2) then
∃G →X2 G1 →X1 G2 ∧ ∃G →X1 G′

1 →X2 G2.
• Hence gg is order-free.
• According to Theorem 4.1, gg is selection-free. ✷

Theorem 4.2 says that if the production set of an RGG is
selection-free, the RGG is selection-free and can use SFPA
to parse its languages.

4.3. Parsing complexity

To study the time complexity of SFPA, we construct an
algorithm FindRedexForR(G, p) shown in Figure 11,
which is the main part of the SFPA. To explain the algorithm,
we first give some definitions.

DEFINITION 4.6. A node sequence of a graph G is an
ordered list of all the nodes in G.

DEFINITION 4.7. Let L1 = [n11, n12, . . . , n1k] and L2 =
[n21, . . . , n2m] be ordered node lists. L1 is isomorphic to L2
if m = k ∧ n1i ≈ n2i where i ∈ {1, . . . ,m}.

THEOREM 4.3. The algorithm FindRedexForR(G,
p) has O(|G|m) time complexity, where m is the maximum
number of nodes in any right graph of a set of productions.

Proof. The function findNodeSequence(p.R) finds a
node sequence of the right graph of a production p. It lists
all the nodes of p.R in a certain order. For a graph grammar,
the number of nodes in the right graph of a production is
given, so the function takes O(1).

The function findAllNodeSequences(host,
nodeSequence) collects all the possible node
sequences from the host, each of which is isomorphic
to nodeSequence. For a graph G, the number of all
possible node sequences, each having m nodes, is km, where
k is the number of nodes in G. So the time complexity for
the function findAllNodeSequences is O(|G|m).

The function match checks whether a candidate in the
host is a redex of the production p, if so, the candidate
is returned as a redex, otherwise, a null is returned. The
time complexity for the function match(candidate,
host, p) is O(m).

As the number of allCandidates is no more than
|G|m, the maximum time taken is O(|G|m).

THEOREM 4.4. The time complexity of SFPA is
O(|G|m+1), where G is a graph to be parsed by SFPA
and m is the maximum number of nodes of all the right
graphs of productions.

Proof. Suppose that T (k) = (2C)kA0 + (2C)k−1A1 + . . .+
(2C)Ak−1 + Ak is a function and next() is an operation
applicable to T (k), where Ai , C and k are integers, and
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C > 0, k ≥ 0, Ai ≥ 0, 0 ≤ i ≤ k.
Let

T (k).next(i) = (2C)k(A0)+ (2C)k−1(A1)+ . . .

+ (2C)k−i+1(Ai−1)+ (2C)k−i (Ai−1)

+ (2C)k−i−1(Ai+1 + C) + . . .

+ (2C)(Ak−1 + C)+ (Ak + C)

be T (k) after i executions of next() operation, whereAi > 0,
C > 0, k ≥ 0, we have

T (k).next(i) = (2C)kA0 + (2C)k−1A1 + . . .

+ (2C)k−i+1Ai−1 + (2C)k−iAi

+ (2C)k−i−1Ai+1 + . . .

+ Ak−((2C)k−i−(2C)k−i−1C−. . .−(2C)C − C)

= T (k) − (2k−iCk−i − 2k−i−1Ck−i − . . . − 2C2 − C).

As

(2k−iCk−i − 2k−i−1Ck−i − . . . − 2C2 − C)

≥ (2k−iCk−i − 2k−i−1Ck−i − . . .− 2Ck−i − Ck−i )

= Ck−i (2k−i − 2k−i−1 − . . . − 2 − 1)

= Ck−i > 0,

we have T (k) > T (k).next(i). (1)
This means ∃n : n ≤ T (k) such that T (k) will be zero

after n executions of its ‘next’ operation.
Let gg := (A, P, T ,N) be a reserved graph grammar and

G →∗ A.
A graph G can be mapped to

T (k) = (2C)kA0 + (2C)k−1A1 + . . .+ (2C)Ak−1 + Ak,

where Ai = |G|i , k equals the maximum number of layers,
and C is the maximum number of nodes of all the right
graphs of productions. We denote G.T (k) as the T (k) that
is mapped from G.

Suppose G →X G′. According to the definition of
the grammar layer and the transformation rules, we have
G < G′, where ∃i : |G|i < |G′|i ∧ ∀j < i : |G|j = |G′|j
with |G|k defined as |{x|x ∈ G ∧ layer(x) = k}|.

This means that in the layer i, the element number of G′ is
less than the element number of G by |G|i − |G′|i elements.
In a layer larger than i, the number of additional elements
are no more than C. So after the transformation,

G′.T (k) ≤ (2C)k(A0) + (2C)k−1(A1)+ . . .

+ (2C)k−i+1(Ai−1)+ (2C)k−i (Ai − (|G|i − |G′|i ))
+ (2C)k−i−1(Ai+1 + C) + . . . + (2C)(Ak−1 + C)

+ (Ak + C) ≤ G.T (k).next(i).

So we have ∃i : G′.T (k) ≤ G.T (k).next(i).
For any graph G, G.T (k) ≥ 0, so according to (1),

G →∗ A must finish within G.T (k) steps. As

G.T (k) = (2C)kA0 + (2C)k−1A1 + . . . + (2C)Ak−1

+ Ak ≤ (2C)k(A0 + A1 + . . .+ Ak) = (2C)k|G|,

Visual Object
Generator

Control Spec
Generator Generator

Rule Spec

Specification
Visual Object

VPE_N......

Specification
Graph

Rewriting Rules
Editor

VisPro
Framework

......

VPE_1 VPE_2

FIGURE 12. Constructing VPEs with VisPro.

according to Theorem 4.3, the time complexity of the
algorithm SFPA is (2C)k|G|∗O(|G|m) = O(|G|m+1).

We now discuss the space complexity of SFPA. We
implement an index for each element of a graph. The
indices are organized as follows: they are listed in the same
array if they refer to the graph elements that have the same
label. Thus, a graph is a set of arrays, each of which is a
list of elements with the same label. A nodeSequence
(in Figure 11) can be implemented as a set of pointers, each
pointing to an element of an array. The next node sequence
can be found by moving pointers in a proper way, and a
candidate of a redex is the pointer set. In this case, the extra
space is unnecessary except for the pointers. Thus, SFPA
has a linear space complexity.

5. APPLICATION IN A VPL GENERATION
SYSTEM

Reserved graph grammars have been used in a visual
language generation system called VisPro [12]. VisPro
provides a generic VPE and a set of visual programming
tools for constructing domain-oriented VPEs. The
construction process is similar to the textual language
construction process using Lex/Yacc. The process can
be described as customization. The generic VPE can
be customized to any domain VPEs once the domain
specifications are provided through these tools. Figure 12
shows the generation process, which is supported by the
following three tools:

• visual object generator—that is used to specify visual
objects with desired appearances to be used in the target
visual language;

• rule specification generator—that is used to provide
parsing specifications for the target visual language in
the form of graph rewriting rules based on the reserved
graph grammar; and

• control specification generator—that is used to specify
the control commands for each generated visual
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object manipulated in a visual editor, which is to be
automatically generated.

In VisPro, the object-oriented language Java serves
as a lower level specification tool for details that may
not be effectively or accurately specified in these visual
specification tools. This arrangement allows us to precisely
construct effective visual programming environments.

The tools are metavisual programming languages that are
used to specify domain VPEs through direct manipulation.
First, the visual object generator is used to construct visual
objects—it creates the appearance of each visual object, and
attaches to the visual object a specification of its behavior
produced by the control specification generator (see below),
or another visual program as its logical function. The user
then uses the control specification generator to specify the
behaviors of constructed visual objects. The specifications
will define and automatically generate a visual editor for the
target visual language. Finally, with the rule specification
generator, the user can describe the grammar of the visual
language according to the reserved graph grammar. The
rules can be specified as either graphical productions or
textual ones written in Java. Having obtained all the required
specifications, the generic VPE becomes customized to
the desired domain VPE that integrates the target visual
language editor and compiler.

With VisPro, a complete VPL can be specified by a
lexicon definition and a grammar specification. A lexicon
definition describes the VPL’s visual objects and the editor
with which the visual objects can be used to create a
program. A grammar specification (syntax and semantics)
defines whether the program is valid and what it means.
A visual programming environment is created automatically
based on the definition and the specification.

6. RELATED WORK

Growing interest in visual languages has motivated research
in the specification and parsing of multi-dimensional
structures. Several specification methods have been
proposed and proven to be useful in practical applications.
Examples include Web and array grammars [15], positional
grammars [16], relational grammars [7, 17], unification
grammars [18], attributed multiset grammars [4], constraint
multiset grammars [19], and layered graph grammars [9]. In
this section, we discuss some of the related grammars and
compare them with reserved graph grammars.

The relational grammars of Wittenburg [7] are restricted
to relational structures, where relationships of the same type
define partial orders. Ferrucci et al. [17] proposed 1NS-
RG grammars, that are adapted from the Boundary NLC
graph grammars of Rozenberg and Welzl [2]. The right-
hand sides of productions in a 1NS-RG grammar may not
contain non-terminals as neighbors in order to guarantee
local confluence. Parsing can be done in polynomial time
if the generated graphs are all connected and the maximum
number of edges at any single vertex is known in advance.
This latter restriction also applies to Brandenburg’s DNELC
graph grammar [14].

Marriott’s constraint multiset grammars [19] provide
context elements. Introducing ‘not exits’ constraints
prevents any possible overlap between the right-hand
sides of productions, but also makes syntax specifications
deterministic. Golin’s picture layout grammars [4] allow
productions with one non-terminal on the left-hand side and
at most two terminals or non-terminals on the right-hand
side.

Rekers and Schürr have shown that it is difficult for the
aforementioned grammars to generate abstract syntax graphs
for connected ER diagrams [9]. They proposed a context-
sensitive grammar formalism, known as LGGs [9], which
can specify a wide range of visual languages. The graphical
specifications of LGGs are more intuitive and easier to
understand than textual grammars.

6.1. Improvements on the LGG

Figures 13a, b show two productions of the layered graph
grammar for parsing the fork statement, where the
elements B? and T? (wildcards) are used as the context
elements. For instance, B? means begin, fork, or if,
as shown in Figure 13c. After a transformation, say R-
application, the relationships between the new node Stat
and the host graph are determined by the B? and T?, which
are part of the host graph. New nodes can be embedded into
the host graph when they are linked with the matching nodes
labeled with B? and T?. Without the wildcards, the number
of productions required will be multiplied [9].

The productions in Figures 13a, b lead to ambiguity. For
example, if a graph has a redex of the right graph in the
production in Figure 13a, it also has a redex of the right
graph in Figure 13b because the right graph in Figure 13a
is a part of the right graph in Figure 13b. Applications
of the productions in LGGs with different redexes may
produce different results. A complex algorithm is then
needed to ensure that all possible applications of productions
are attempted.

A reserved graph grammar can avoid the ambiguity. As
a result, its parsing algorithm can be simple and efficient.
Therefore, compared with the layered graph grammar [9],
the reserved graph grammar has the following three major
improvements:

• it avoids the use of wildcards;
• it simplifies the specification through an embedding

rule; and
• parsing an unambiguous reserved graph grammar can

be done in polynomial time.

As discussed earlier, our RGGs are based on LGGs,
and improve over LGGs. Apart from the improvements
discussed above, the major differences between the RGG
formalism and the LGG formalism are that the former can
be implemented more efficiently using the presented parsing
algorithm; and that it uses simple embedding rules rather
than context elements (as used in the latter) so that grammar
specifications are simplified. Table 1 compares the discussed
grammars with RGGs.
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FIGURE 13. Productions in a LGG with different embedding mechanisms.

TABLE 1. A comparison of graph grammars discussed.

Grammar Left-hand side Right-hand side Context Embedding rules Additional restrictions Complexity

Relational G Non-terminal Relational structure No Yes Explicit vertex order Exponential
1NS-RG Non-terminal Relational structure No Yes Bounded degree; Exponential

no non-terminal
neighbors

Boundary NLC GG Non-terminal Graph No Yes Bounded degree; Exponential
no non-terminal
neighbors

Constraint multiset G Non-terminal Multiset Yes Implicit Deterministic Polynomial
Picture layout G Non-terminal Max two (non-) 1 terminal Implicit Finite set of Polynomial

terminals attribute values
Layered GG Graph Graph Graph No Layering Exponential
Reserved GG Graph Graph Graph Yes Selection-free Polynomial

The six attributes used to distinguish various grammars
in the table are proposed by Rekers and Schürr [9]. They
serve our purpose well in comparing these grammars. Minas
[20] has recently adapted RGGs to the DiaGen hypergraph
environment [21]. The selection-free constraint imposed
in RGGs is relaxed to allow more types of hypergraphs
to be specified. However, additional information has to
be provided in the form of negative application conditions
(NACs). A production with a matching left-hand side is
not applicable if one of its NACs is satisfied. The addition
of NACs modifies the original grammar and it is unclear
how additional complexity is introduced into the parsing
process.

7. CONCLUSION

This paper has presented the reserved graph grammar
(RGG), which can be used to specify grammars of
diagrammatic visual languages. An RGG is a collection
of graph rewriting rules represented labeled graphs. It is
context-sensitive and its right and left graphs can have an
arbitrary number of nodes and edges. The grammar uses an
enhanced node structure with a marking mechanism in its
graph representation. It is this structure that makes an RGG
effective in specifying a wide range of visual languages
and efficient in parsing a certain class of visual languages.
Although the time complexity of the parsing algorithm
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for a general RGG is exponential, parsing a selection-free
reserved graph grammar can be done in polynomial time.
The paper has presented such a polynomial time parsing
algorithm and proved its time and space complexities. To en-
sure that a reserved graph grammar is unambiguous, we also
proposed a checking criterion and proved its correctness.

There have been some applications of RGGs; for example,
for generating a visual language for modeling distributed
systems [22]. A wide range of applications, such as
interpreting hand-written mathematical notations [23], has
been reported for using layered graph grammars [24], upon
which RGGs improve. We are currently investigating the
application of RGGs to multimedia authoring and Web site
design and maintenance. Another future direction is to
develop a diagram layout mechanism based on geometrical
graph rewriting. In such a rewriting rule (production), the
left graph represents a desired layout while the right graph
represents a logical connection.
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