
Discovering Spatial Patterns Accurately with Effective
Noise Removal

Yu Qian Kang Zhang
Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75083-0688, USA

{yxq012100, kzhang}@utdallas.edu

ABSTRACT
Cluster analysis is a common approach to pattern discovery in
spatial databases. While many clustering techniques have been
developed, it is still challenging to discover implicit patterns
accurately when the data set contains two kinds of noise or
outliers: 1) domain-specific noise; 2) noise similar to true data on
size, shape, or density. This paper presents a two-step strategy to
solve the problem effectively: firstly, groups of data points are
separated into different layers according to their sizes and
densities; then a layered visualization is provided to the user to
separate noise and true data intuitively. Such a strategy not only
produces user-desired results but also separates noise and true data
accurately. After noise removal, a hierarchical clustering is
performed on remaining data to discover natural clusters. The
experimental studies on both benchmark data sets and real images
show very encouraging results.

Keywords
Data Mining, Clustering, Noise Removal, Pattern Discovery

1. INTRODUCTION
As a primary approach to spatial pattern discovery, cluster
analysis has attracted considerable interest in recent years. While
many clustering methods have been proposed to discover patterns
of various shapes, densities, and sizes, the problem of noise
removal, however, has not been fully addressed due to two facts
observed in many spatial databases: first, noise could be domain-
specific. Noise in one case may not be noise in another. Second,
noise or outliers may be close to the true data in their positions, or
have similar density or size, which makes traditional separation
methods fail. Noise that satisfies either situation described above
is referred to as being ambiguous in this paper. Figure 1 shows a
benchmark data set used by CHAMELEON [8], where the thick
horizontal line crossing “GEORGE” is ambiguous: it should be
regarded as noise in area of letter recognition; but it could also be
true data representing a style or decoration, depending on different
applications. General definition of noise based on density or size
cannot be applied in such a case. Besides, since the thick line not
only overlaps the true data but also has a similar density, it poses a
challenging problem for existing noise removing methods.

Figure 1. A benchmark data set that contains ambiguous noise.

This paper presents a novel approach to the discovery of implicit
patterns in spatial data with ambiguous noise. The proposed
approach, called CLEAN (CLustering by Eliminating Ambiguous
Noise), removes noise before performing cluster analysis on the
remaining noise-free data. We design such a procedure because:
a) The presence of noise disturbs the clustering process, increases
the complexity of clustering and error rate, b) many applications
require a clustering algorithm to be capable of separating noise
from true data, and c) noise removal can be a standalone means
for cleaning any raw spatial data.

As illustrated in Figure 2, CLEAN consists of three stages:
1) Graph construction. The given data set is modeled with a k-
mutual neighborhood graph.

2) Noise removal. This stage involves a two-step mechanism to
guarantee effective handling of ambiguous noise: firstly, a fast
graph partitioning method, k-core algorithm [12], is used to
decompose the k-mutual neighborhood graph into small groups of
data points, which are sorted into different layers according to
their sizes and densities. Then a visualization of the data with the
multi-layer structure is provided to the user. There are two modes
provided to the user in the visualization: in basic mode, the user
can select only one layer, which is called the boundary layer, to
separate true data and noise. The layers above the boundary are
regarded as true data and the layers below are regarded as noise;
in advanced mode, the user can mark any layer as noise or true
data through visual inspection and the remaining data will be the
combination of the layers marked true. Basic mode can be run
without user intervention: for data sets with similar properties, a
learning approach is proposed to detect the boundary layer
automatically.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DMKD’04, June 13, 2004, Paris, France.
Copyright 2004 ACM ISBN 1-58113-908-X/04/06…$5.00.

3) Cluster analysis. After noise removal, a hierarchical clustering
is performed on the remaining data to discover clusters of
different shapes, sizes, and densities. In this stage, a compression
[11] is applied on the remaining data to accelerate the hierarchical
merging process.

In summary, this paper’s contributions include:
 Applying k-core algorithm to produce a layered structure of

data points to remove noise more effectively than existing noise-
handling approaches. The effective noise removal method reduces
the complexity of the later steps significantly, and makes the
hierarchical combination, the third step in Figure 2, error free.
Besides, many clustering algorithms work well when the data set
is “clean” while their performances degrade if the data set
contains heavy noise. An effective noise removal method would
enhance the effectiveness of such algorithms.

 A 3-D visualization of the layered structure of the data to
allow user participation in handling ambiguous noise. The
visualization avoids the parameter tuning of the k-core algorithm,
and can also be used to assist similar clustering methods on
parameter selection.

 A hierarchical clustering framework, which is able to
discover clusters of arbitrary shapes, densities, and sizes
efficiently. CLEAN is the key component of FAÇADE [10] and
publicly available at our website: http://viscomp.utdallas.edu/
FACADE, where one can run the CLEAN program with different
input data sets and see the results intuitively.

The rest of this paper is organized as follows. The related work is
discussed in Section 2. Section 3 introduces the data modeling
method used in CLEAN. The k-core algorithm for noise removal
is explained in Section 4. Section 5 describes our hierarchical
clustering framework. Section 6 reports experimental results and
presents a comparison between CLEAN and several
representative clustering methods. Section 7 concludes the paper.

2. RELATED WORK
According to Han et al. [5], spatial clustering methods can be
classified into four categories: partitioning method, hierarchical
method, density-based method, and grid-based method. Since our
main interest lies in noise removal for accurate pattern discovery
with cluster analysis, this section focuses on the noise removing
techniques used in existing clustering methods. From the
perspective of noise handling, clustering methods can be
classified into two categories: one category does not handle noise
until clustering finishes. Most partitioning methods such as k-
means [9] and many hierarchical methods belong to this category.
The usual way to remove noise for the methods of this category is
to judge the sizes of the produced clusters. If the size of a cluster
is below a predefined threshold, it will be regarded as noise and
removed from the final result. For example, RandomWalk [6]
omits the small clusters whose sizes are below half of the average.
Removing noise after clustering is a typical chicken and egg
problem: to remove noise effectively requires an accurate
clustering while the clustering methods usually suffer from the
presence of noise. Besides, it is not easy to fix the threshold for
different data sets. This category also includes some methods that
do not remove noise from the final result. CHAMELEON [8]

produces final clustering results containing all noise points, some
of which are in separate clusters and others are mixed up with true
data.

The other category aims at removing noise during the clustering
process. Density-based approaches such as DBSCAN [4] and
OPTICS [1] construct sophisticated similarity models with
distance between data points and use two predefined thresholds,
Eps and MinPts, to distinguish noise from true data. Although
distance-based measurement can remove “salt and pepper” noise
effectively, they may treat a sparse cluster as noise wrongly. SNN
[3] is proposed to solve the problem by constructing a shared
nearest neighbor graph on the given data set, where the degree of
a node is decided by the number of its nearest neighbors instead of
the distance between them. Thus both the sparse and the dense
clusters can be discovered within the graph. The degree-based
noise removing method used in SNN will be compared with
CLEAN in Section 6.2.

Figure 2. The three stages of CLEAN.

Unlike the aforementioned approaches, CLEAN removes noise
before the clustering begins. The noise removing process is
standalone and can be applied to other algorithms. The noise
removing method used in CLEAN, referred to as core-based noise
removal, is not size-based or distance-based. Thus the sparse
clusters will not be ignored. Through data visualization, CLEAN
allows users to participate in the process of noise removal to
detect ambiguous noise, which leads to an accurate pattern
discovery. The following section will introduce the first step of
CLEAN: using graph to model the spatial data set.

3. MODELING DATA WITH k-MUTUAL

NEIGHBORHOOD GRAPH
Like many other hierarchical clustering algorithms, CLEAN starts
with a graph representation of the given data. As noted by Harel
and Koren [6], many clustering methods use sparse graph1 model,
which contains only a small subset of the edges of the complete
graph, mostly those corresponding to higher similarity values.
Limiting the number of the edges has two advantages: first, it
reduces the time and space complexity. Second, the structure of a
sparse graph reflects spatial proximity and expresses data
distribution.

The commonly used sparse graph structures include: the k-nearest
neighborhood graph, the k-mutual neighborhood graph, and the
Delaunay Triangulation [7]. While the Delaunay Triangulation
does not suit CLEAN, the first two structures will be discussed in
this paper.

Generally, each vertex of the k-nearest neighborhood graph
represents a data item. For each pair of data items, if either of
them is among the k-most similar data items of the other, there
exists an edge between the two corresponding vertices. In a spatial
database, data items are points on a metric/dimensional space ℜd
and the similarity of two data points is usually measured by the
distance between them. The time needed to construct a k-nearest
graph for n data points depends on the dimensionality of the

1 A rough definition of sparse graphs is that the number of the edges in a
sparse graph is much less than the square of the number of the vertices in
it, i.e., |E|<<|V|2, for a graph G (V, E), where |V| is the number of vertices,
|E| is the number of edges.

underlying data set. Basically, it needs O(nlogn) time for low-
dimensional data sets and O(n2) for high-dimensional data sets.

Compared with a k-nearest neighborhood graph, for the same data
set and k, a k-mutual neighborhood graph contains fewer edges.
For each pair of data items, only if both of them are among the k-
most similar data items of each other, can there be an edge
between the two corresponding vertices. The computation
efficiency of the k-mutual neighborhood graph is the same as that
of the k-nearest neighborhood graph. Figure 3 shows a 4-nearest
neighborhood graph and a 4-mutual neighborhood graph of a
spatial data set.

enerally, the advantages of representing data using k-nearest or

. HANDLING NOISE
into different layers, a graph-

.1 The k-core Algorithm
eidman [12]: let G = (V, E)

 to determine the core

• A core is not necessarily a connected subgraph.

The algorithm for determining the core hierarchy is simple: from a

G
k-mutual graph include: first, data points that are far apart are
completely disconnected from the graph. Second, the constructed
graph is able to represent the natural density dynamically. In a
dense region, the neighborhood radius of a data point is
determined narrowly, and in a sparse region, the neighborhood
radius becomes wide. Third, the number of graph edges is linear
to the number of vertices. The first two advantages decide the
graph structure can be used to distinguish noise and true data.

4
Aiming at distributing data points
theoretic decomposition is based on the structural information,
i.e., the connections of the graph nodes, as described in this
section.

4
The notion of a core is introduced by S
be a graph. V is the set of vertices and E is the set of edges. A sub-
graph Hk= (W, E | W) induced by the set W is a k-core or a core of
order k iff ∀ v in W: degree (v) ≥ k and Hk is the maximum sub-
graph with this property. The core of maximum order is also
called the main core. The cores have the following properties:
• They are nested: ∀ i<j Hj ⊆ Hi.
• There exists an efficient algorithm

hierarchy.

given graph G=(V, E), recursively delete all vertices of degrees
less than k and lines incident with them, the remaining graph is
the k-core. Known as the k-core algorithm, it costs only O(m)
time, where m is the number of edges for the given graph [12]. To
avoid confusion, we will hereafter use kc as the k used in k-core
algorithm and km as the k used in k-mutual graph. For a k-mutual
graph with n vertices and m edges, we have m ≤ km n/2 if n is the

number of vertices2, so applying k-core algorithm to a k-mutual
graph requires only linear time.

Batagelj et al. [2] use k-core algorithm as an efficient approach to
the decomposition of large graphs and have verified its efficiency
and effectiveness on graph partitioning. We propose to use core
decomposition as an effective noise removing method for spatial
data clustering. After obtaining the core hierarchy, noise removal
becomes a simple process: remove the cores of orders smaller
than kc as noise and keep the cores of orders larger than or equal
to kc as true data.

It is not hard to justify why core decomposition suits spatial
clustering. According to the definition of a core, each vertex of a
core of kc must have a degree greater than or equal to kc even after
all other cores with orders smaller than kc have been removed, i.e.,
removing the cores of smaller orders will not decrease or affect
the quality of the cores of bigger orders. While the connectivity of
a k-mutual graph reveals the density distribution, such definition
matches the natural rule that removing noise should not decrease
or affect the density of true data. It is reasonable to assume the
cores of small orders as noise and those of bigger orders as true
data. The experiments on four benchmark spatial data sets of
CHAMELEON [8], as illustrated in Figure 4, have verified our
hypothesis: the core decomposition can produce surprisingly
“clean” results.

 (a) (b) (c)
Figure 3. (a) A spatial data set; (b) its 4-nearest neighborhood

graph; (c) its 4-mutual neighborhood graph.

 (a) (b)
Figure 4. (a) The original data sets; (b) The resulting data sets

after applying core decomposition.

2 Given a data set, the corresponding k-nearest graph G=(V, E) and the k-
mutual graph G’=(V’, E’), we have |V|=|V’|, |E’|≤ |E|≤ k|V|, and
|E|+|E’|=k|V|, so |E’|≤ k|V’|/2.

So far there have been two parameters that would affect the result
of noise removal: km and kc. Our experiments reveal an important

henomenon: for a wide range of km., there exists a corresponding
k

e
w

e
n
e
e

 a visualization of the data with multi-
yers where each layer represents the data points belong to the

/she

 it easily. There are two modes provided to the user

a learning approach.
iven a dataset D, suppose the corresponding k-mutual graph is

, S1 =
–H , S = H – H , and S is the main core, as illustrated in

ll Sk a proper
re since it includes the data points that are of the same

n total.

p
c so that the pair (km, kc) removes noise effectively. For the four

benchmark data sets shown in Figure 4, we let km be some values
from 10 to 300, then choose kc manually (kc is chosen to remov
most noise before losing true data) for each km. and check ho
much noise can be removed. As shown in Figure 5, when km is
between 40 and 150, more than 90% noise can be removed befor
losing any true data; when km is between 20 and 200, more tha
70% noise can be removed. Further experiments show that if th
loss of an insignificant part of true data is allowed, the valid rang
of km can be much wider.

While km can be chosen more freely, it is difficult to automatically
and correctly select the correspondingly kc without domain
knowledge. This is because of the lack of a universal noise
definition. While kc can be regarded as a threshold to indicate
when to stop the noise removing process, without defining noise
properly, it is impossible to decide which data point is noise and
should be removed. Unfortunately, noise is usually a domain-
specific concept. Noise in one case may not be noise in another.
Since generally defining what is a noise is beyond the scope of
this paper and involving domain knowledge becomes inevitable to
recognize ambiguous noise, here we provide two alternatives: let
the user specify kc through
la
same core. Thus the user can specify how much noise he
wants to remove by choosing which layer represents kc. Compared
with the similar parameters like the Eps and MinPts used in
DBSCAN [4] and SNN [3] and their selections, such a
visualization used in CLEAN can determine the parameter more
intuitively and conveniently. The other approach is to define
approximately the density-based noise, which can help to produce
a default kc as a suggestion to a non-expert user for automatic
noise removal. The two approaches will be addressed in Section
4.2 and 4.3, respectively.

4.2 Choosing kc through Data Visualization
Figure 6 is the 3-D visualization of the layered structure of the
data after applying the k-core algorithm. Each data point is
assigned a core id, which is used as the third coordinate. Points of
different cores are represented with different gray levels in Figure
6. Thus the data set is separated into many layers and each layer
contains the data points of the same core. While different cores
mean different densities or sizes, the data set is “segmented” into

many small groups. Users can judge which groups are noise easily
through visual inspection. As shown in Figure 6, the thick line
crossing “GEORGE” has been separated into a layer far from true
data and the 3-D visualization helps the user select the correct kc
to remove
through the visualization. The basic mode accepts a user input
about the boundary layer, i.e., kc, and then the layers above kc will
be regarded as true data and kept while other layers will be
removed as noise. In advanced mode, the system can accept a set
of user inputs to specify which layers are true data or noise. Thus
the noise removal becomes a customizable process. For example,
in Figure 6, the user can keep the thick line by setting its layer as
true, or the user can even remove the right foot of the letter “R” if
he/she thinks the correct letter should be “GEOPGE”. The
visualization provides a full support for user participation in noise
removal.

4.3 Separating Noise from True Data
Automatically
The above sections have shown the ability of core decomposition
in separating the true data from noise. One may wonder if this
process can be completed automatically, i.e., use computation to
decide which cores should be removed and which should be kept
as true data. This section will provide an approximate definition
of density-based noise. Based on this noise definition and several
justified observations, we can compute the boundary layer
between noise and true data, i.e., kc through
G
G=(V, E), |V|=n and |E|=m. Apply the k-core algorithm to G, and
obtain the set of cores, denoted by H0, H1, ..., Hx-1, Hx, where Hi
represents the core of order i. Let Sx = Hx, Sx-1 = Hx-1 – Hx ,…
H1 2 0 0 1 x
Figure 7. For the convenience of presentation, we ca
co
connectivity level while Hk includes both Sk and all other data
points that have a greater connectivity. The size of Sk, denoted by
|Sk|, is the number of data points of Sk. We have |S0|+|S1|+…+|Sx|
= n and there are x+1 proper cores i

Figure 5. The ratio of noise removed for different km.

Figure 6. The visualization of the core hierarchy.

Being the main core, Sx must be the densest part of the graph G
and contain at least x+1 data points. The following observation
can be regarded as our basic assumption and starting point.

Observation 0: The data points of Sx are true data.

Observation 0 has been verified in all of our experiments. It is a

be regarded as true
ata without domain specification.

consider noise

g verified by our experiments:

lem into finding the kc so that all the proper
ed as noise.

Suppose core Ht being true data (Starting from t=x, i.e.,
Observation 0), we check if St-1 is true data or noise. According to
Definition 4.1, we first judge if St-1 is closely related to Ht, if so,
St-1 is a true core; otherwise, we continue to check if St-1 is large

 this algorithm tive
, relative siz ince

the k-mutual graph uses connection to represent similarity, the
closen St-1 can be measured using the number
of edg een them: cording to the definition of core, each
vertex Ht,
so the t-1 t-1
Ei de number of edges in Si and E_interi the number of
edges d Si. The closeness between Si and Hi+1 and
the re the x pairs of core and proper core are
defined
Defin and Relative Closeness)
The c i /(i|Si|) and the
relativ proper core is defined

as: RC
reasonable assumption since if a large and the densest part of a
graph were not true data, no other part should
d

Observation 0 defines the first part of true data. Then we are able

 provide an approximate definition of density-based noise: to

Definition 4.1 (Density-based Noise):
Density-based Noise is neither: 1) closely related to true data; nor
2) of big size and dense.

The definition of density-based noise can be explained intuitively:
if a set of data points is closely related to the true ones, they
should not be separated from the true points; and if a large set of
data points is dense, without domain specification, they cannot be
oise either. From this point on, the paper will n

being determined by density.

There are two important observations that follow the definition of

oise, both beinn

Observation 1: Let p ∈ Si and q ∈ Sj denote two arbitrary data
points in two proper cores, if p is noise and q is true data, then i≠j.

This observation implies that noise and true data do not co-exist in
a proper core, which can be justified as follows: since the data
points in a proper core have similar density, if some points in it
are true data, it is unreasonable to regard others as noise. Thus
noise and the true data must be in different proper cores. For the
convenience of presentation, we will simply classify proper cores
into noise cores and true data cores. In-depth observation on the
indices of cores further reveals the location of noise: all noise
cores have smaller indices than the true data cores.

Observation 2: ∀ i, j, if Si is noise and Sj is true data, then i<j.
Observation 2 can be easily justified using Observation 1 and
Definition 4.1.

Definition 4.1 and the three observations simplify the automatic
noise-removing prob
cores with orders smaller than kc will be remov

and dense enough, if so, St-1 is a true core; otherwise, St-1 is a noise
core and we can output t as kc according to Observation 2. Figure
8 depicts . In Figure 8, RC, RS, and RD are rela
closeness e, and relative density, respectively. S

ess between Ht and
 aces betw

 of St-1 has at most t-1 edges connected to the vertices of
 maximum edge number between Ht and S is |S |(t-1). Let
note the
 between Hi+1 an
lative closeness of

 as follows:
loseness ition 4.2 (C

loseness between Si and Hi+1 is: Ci=E_inter
e closeness f core and of the x pairs o

= c

x

i)P|/x
i

|C(∑
−

=

here Pc is a threshold on closeness.

y, we

=0

s

ty and Relative Density)

em 4.1. Algorithm Find-kc identifies the boundary of noise
res and true cores.

Proof. According to Definitions 4.1, 4.2, 4.3, 4.4, Observations 0,
1, 2, and the induction of algorithm Find-kc, all the cores with

1
, w

0

Similarl can define the relative size and the relative density
for the x+1 proper cores.

Definition 4.3 (Relative Size)
The relative size for x+1 proper cores is defined

as:RS= s

x

i)P)|/(x|S(∑ + 1 , where P is a threshold on size.
i

Definition 4.4 (Densi
The density of Si is: Di= |Ei|/|Si| and the relative density of the
x+1 proper cores is defined as:
RD= (MAX(Di) - MIN(Di))Pd + MIN(Di), 0≤ i≤ x, where Pd is a
threshold on density.

Pc, Ps, and Pd are obtained through an independent learning
algorithm from training data sets of similar sizes and types of
noise. Definitions 4.1, 4.2, 4.3, and 4.4 help the learning algorithm
differentiate the noise from the true data effectively. Section 6.3
will evaluate the automatic detection of the boundary layer. In
conclusion, we have Theorem 4.1:

Theor
co

 Figure 7. An example sketch map of cores.

Algori
begin

 else
 if (|Si|>RS) and (|Di |>RD)

 continue;

thm Find-kc

 For each proper core Si, compute |Si|, |Ci|, |Di|, and
RS, RC, RD for the x+1 proper cores;
 i=x;
 While (i≥0)
 if (|Ci|>RC)

 continue;

 else return i;
 i=i-1;
end

Figure 8. The algorithm for finding kc

orders smaller than kc, i.e., the output of Find-kc, are density-based

erent natural clusters may

ters of different shapes, densities, and

o work effectively. This section will
resent a hierarchical clustering process that can discover

arbitrarily shaped clusters efficiently.

5.1 Compression and Sub-Graph Construction
before Clustering
We apply GraphZip [11] to compress the remaining data to
improve the efficiency of hierarchical combination. Each dat
point in the compressed data set present data point

noise while other cores are true data. �

Although the k-core algorithm removes noise effectively, it cannot
discover the boundaries of natural clusters. A natural cluster may
have regions of different densities, and thus consist of cores of

ifferent orders. On the other hand, diffd
have similar densities, and thus share one core. The following
sections will introduce how to discover, from the result of k-core
algorithm, the natural clus
sizes.

5. HIEARCHICAL CLUSTERING
As shown in Figure 4, the data set after applying the k-core
algorithm is nearly noise-free, which provides an opportunity for

any clustering approaches tm
p

a
s re s a group of

in the original data set. Figure 9 demonstrates the effect of
GraphZip: the number of data points is greatly reduced while the
spatial pattern is preserved.

 (a) (b)

Figure 9. The data set (a) before (b) after applying GraphZip.

After compression, the next step is to prepare the initial groups for
hierarchical combination. In CLEAN, the data points represented
by a single data point after compression form an initial group. The
chief requirement on preparing initial groups is that the points of
different natural clusters should not be in the same initial group.
Figure 9 shows that this requirement is satisfied. Thus we can
begin hierarchical merging.

5.2 Merging Criterion
The basic idea of hierarchical merging is as follows: we
continuously choose the most appropriate pair, from the initial
groups, to merge until reaching one cluster. At each hierarchical
level a value M is computed for each pair of groups, denoted by
M(i,j) for groups i and j. The hierarchical process merges the pair
of groups that ma a l unt

roups have been merged, and there is a combination criterion to

ormula (1) favors the number of connections between two
likely the

. According to the definition of
s in an
ula (1)

lusters only after all of their sub-clusters

(a) are

s

e
y

selec

Figure 11. Noise removal with (a) SNN; (b) CLEAN

ximizes M at each hierarchic l leve il all the
g
specify how to compute M. As the hierarchical process continues,
the number of groups decreases by 1 at each hierarchical level. In
CLEAN, the value M is computed based on the k-mutual graph
constructed on the original graph in the first step. Each data point
of the initial groups has its corresponding vertex in the k-mutual
graph. Suppose the k–mutual graph is G=(V, E) and S1, S2, …, St
are sets of vertices corresponding to t initial groups, we denote the

number of edges between Si and Sj as E(i, j), and the size of Si is
defined as the number of vertices in Si, denoted by |Si|. The
combination criterion is defined as follows:

M(i,j)=E(i,j)2/MIN(|Si|,|Sj|) (1)

F
groups over their sizes. The more connections, the more
two groups will be merged. On the other hand, if the connection is
the same for two pairs of groups, formula (1) will merge the pair
containing the smallest group first. Formula (1) favors adding
points to a big group as long as the number of the points being
added is small enough. Thus formula (1) can add small groups of

oints to the clusters continuouslyp
formula (1), small groups will be merged into big group
order according to the number of connections. Using form
will merge two natural c
have been merged.

6. PEROFORMANCE EVALUATION
The first part of this section will compare CLEAN with
CHAMELEON [8], a well-know graph-based hierarchical spatial
clustering algorithm. Then we will apply the automatic version of
CLEAN to some real images on INTERNET and evaluate the
automatic version of CLEAN.

6.1 Comparison with CHAMELEON on
Cluster Quality
The final clustering results of the four data sets in Figure 4
illustrated in Figure 10. Each produced cluster has its own gray
level. Figure 10(a) shows the clustering results of CHAMELEON3
while Figure 10 (b) is the results of CLEAN. Since
CHAMELEON experimentally outperformed previous systems on
cluster quality, this section compares the experimental results of
CLEAN with CHAMELEON only. Although the results in Figure
10(b) appear very similar to those in Figure 10 (a), CLEAN run
much faster than CHAMELEON, requires less user-supplied
parameters, and most importantly, is able to remove noise.

6.2 Comparison with Degree-based Noise
Removal
Degree-based noise removal is proposed in SNN [3]. We
download the source code of SNN from [13] and compare its
noise removal result with CLEAN, as shown in Figure 11. Figur
11 shows that the ambiguous noise is not completely removed b
SNN. Besides, with the support of the visualization, the parameter

tion of CLEAN is much easier than that of SNN.

3 The second data set has not been used in CHAMELEON paper so no
result shows.

Figure. 10. The clustering results of (a) CHAMELEON; (b) CLEAN;

Figure 12. (a) The original images; (b) the clustering results using CLEAN

6.3 Clustering Real Images
This section will evaluate the automatic version of CLEAN, i.e.,
using the learning approach to decide the boundary layer
automatically instead of user intervention. Figure 12. (a) shows
two security images used by Yahoo to prevent automatic form
filling in application of email address. Yahoo requires the user to
recognize the letters by visual inspection and fill them into the
application form so that programs for auto-filling fail. This means
such images may be difficult to be recognized by computer
programs. We collect a series of such images from Yahoo website
and all of them have similar properties on size and noise ratio, so
it is especially suitable for CLEAN to learn the Pc, Ps, and Pd by
training, as described in Section 4.3. After training, the values of
Pc, Ps, and Pd are fixed at 0.2, 0.5, and 0.9, respectively, and we
fix the km at 20 due to the images have similar sizes. Figure 12 (b)
demonstrates the results after performing trained CLEAN on two
testing data sets. Each letter is clearly shown and could be
recognized by a matching algorithm followed. The experiment
evaluates the ability of CLEAN on discovering patterns in similar
data sets automatically.

Now let us analyze the time complexity of CLEAN. The first step
of CLEAN is to model the given data set with a k-mutual graph,
which needs O(nlogn) time for 2-D data sets; Step 2 is core
decomposition, both k-core algorithm and Find-kc algorithm can
be completed in O(n) time since the number of edges of a k-
mutual graph is linear to the number of vertices; In Step 3,
GraphZip requires O(nlogn) time to compress n data points into

n [11], then the hierarchical merging of the n initial groups
costs O(n) time. In summary, all steps can be completed in

space to compute and store the corresponding graph of the whole
data set.

O(nlogn) time. On the space complexity, CLEAN requires O(n)

able 1 compares CLEAN with three representative clustering

7. CONCLUSION

ovel hierarchical graph-theoretic

for accurate noise removal.

T
algorithms with typical measurements. Among the three
representatives, RandomWalk [6] and CHAMELEON are typical
graph-theoretic hierarchical approaches, and SNN is the latest
published progress. Table 1 shows that CLEAN substantially
outperforms the three representative algorithms on at least one of
three aspects: scalability, parameter minimization, and noise
handling.

This paper has described a n
clustering approach, CLEAN, which can remove ambiguous noise
and discover clusters of different shapes, densities, and sizes
accurately. The paper has shown two important results: firstly, the
data points can be separated into different layers using the k-core
algorithm. The data set can be partitioned into many small groups
with different densities or sizes. Thus noise and true data are
clearly separated. Secondly, the visualization of the data with a
layered structure allows a customizable noise removal. Users can
“assemble” the remaining data according to domain requirements.
Future work will focus on three issues: the detection of the
terminating point of the hierarchical merging process, i.e., to
estimate the number of clusters of the given data set; the
application of CLEAN on image segmentation and pattern
recognition, two common applications of spatial clustering
algorithms; the effectiveness of combining k-core algorithm and
the corresponding visualization with existing clustering methods

8. REFERENCES
[1] Ankerst, M., Breunig, M., Kriegel, H. P., and Sander, J.

tify the Clustering
 of

s, Proc. Graph Drawing’1999,

t sizes, shapes, and densities in noisy, high

ers in large spatial

.

ing
 7th Int’l Conf. Knowledge Discovery and

 and three representative clustering approaches

st to noise

(1999). OPTICS: Ordering Points To Iden
Structure. Proc. 1999 ACM-SIGMOD Conf. on Management
Data (SIGMOD’99), pp. 49-60.

[2] Batagelj, V., Mrvar, A., and Zaversnik, M. (2000). Partitioning
approaches to clustering in graph
LNCS, pp. 90-97.

[3] Ertoz, L., Steinbach, M., and Kumar, V. (2003), Finding
clusters of differen
dimensional data, In Proc. of SIAM DM’03.

[4] Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). A
density-based algorithm for discovering clust
databases with noise, Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining (KDD-96), AAAI Press, pp. 226-231

[5] Han, J., Kamber, M., and Tung, A. K. H. (2001). Spatial
clustering methods in data mining: A survey, H. Miller and J. Han
(eds.), Geographic Data Mining and Knowledge Discovery,
Taylor and Francis.

[6] Harel, D. and Koren, Y. (2001). Clustering spatial data us
random walks, Proc.
Data Mining (KDD-2001), ACM Press, New York, pp. 281-286.

Table 1. The comparison between CLEAN

[7] Jain, A. K., and Dubes, R. C. (1988). Algorithms for
Clustering Data, Prentice-Hall advanced reference series.
Prentice-Hall, Inc., Upper Saddle River, NJ.

[8] Karypis, G., Han, E., and Kumar, V. (1999). CHAMELEON,
A hierarchical clustering algorithm using dynamic modeling,
IEEE Computer, Vol.32, pp. 68-75.

[9] McQueen, J. (1967). Some methods for classification and
analysis of multivariate observations, Proc. of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, pp. 281-
297.

[10] Qian, Y., Zhang, G., and Zhang, K. (2004) FACADE: A Fast
and Effective Approach to the Discovery of Dense Clusters in
Noisy Spatial Data, In Proc. ACM SIGMOD 2004 Conference,
Paris, France, 13-18 June 2004, ACM Press. (Demo Abstract)

[11] Qian, Y. and Zhang, K. (2004) GraphZip: a fast and
automatic compression method for spatial data clustering. In Proc.
of the 2004 ACM Symposium on Applied Computing (SAC’04),
pp. 571-575.

[12] Seidman, S. B. (1983). Network structure and minimum
degree. Social Networks, 5, pp. 269-287.

[13] http://www.cs.umn.edu/~ertoz/snn/

Minimal input parameters Robu
 points and m initial

clusters of

Parame
rameter

values?
Robu

e
Removed?

Running Time (for n data
Finding

groups)
different
shapes?

ters used
How to set pa

st?
Nois

CHAMELEON nm+nlogn+ *logm m*m Yes MinSize, α, k Fixed/Trial and error Yes No

Random Walk nlogn Yes
CE, NS, and

w eight thresholds
Fixed/Trial and error Yes Yes

SNN n*n Yes k, MinPts, Eps Fixed/Trial and error Yes Yes
CLEAN nlogn Yes Learned/Visualized Yes Yes Km, Kc

	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORK
	3. MODELING DATA WITH k-MUTUAL NEIGHBORHOOD GRAPH
	4. HANDLING NOISE
	4.1 The k-core Algorithm
	4.2 Choosing kc through Data Visualization
	4.3 Separating Noise from True Data Automatically

	5. HIEARCHICAL CLUSTERING
	5.1 Compression and Sub-Graph Construction before Clustering
	5.2 Merging Criterion

	6. PEROFORMANCE EVALUATION
	6.1 Comparison with CHAMELEON on Cluster Quality
	6.2 Comparison with Degree-based Noise Removal
	6.3 Clustering Real Images

	7. CONCLUSION
	8. REFERENCES

