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ABSTRACT 
Cluster analysis is a common approach to pattern discovery in 
spatial databases. While many clustering techniques have been 
developed, it is still challenging to discover implicit patterns 
accurately when the data set contains two kinds of noise or 
outliers: 1) domain-specific noise; 2) noise similar to true data on 
size, shape, or density. This paper presents a two-step strategy to 
solve the problem effectively: firstly, groups of data points are 
separated into different layers according to their sizes and 
densities; then a layered visualization is provided to the user to 
separate noise and true data intuitively. Such a strategy not only 
produces user-desired results but also separates noise and true data 
accurately. After noise removal, a hierarchical clustering is 
performed on remaining data to discover natural clusters. The 
experimental studies on both benchmark data sets and real images 
show very encouraging results.  
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1. INTRODUCTION 
As a primary approach to spatial pattern discovery, cluster 
analysis has attracted considerable interest in recent years. While 
many clustering methods have been proposed to discover patterns 
of various shapes, densities, and sizes, the problem of noise 
removal, however, has not been fully addressed due to two facts 
observed in many spatial databases: first, noise could be domain-
specific. Noise in one case may not be noise in another. Second, 
noise or outliers may be close to the true data in their positions, or 
have similar density or size, which makes traditional separation 
methods fail. Noise that satisfies either situation described above 
is referred to as being ambiguous in this paper. Figure 1 shows a 
benchmark data set used by CHAMELEON [8], where the thick 
horizontal line crossing “GEORGE” is ambiguous: it should be 
regarded as noise in area of letter recognition; but it could also be 
true data representing a style or decoration, depending on different 
applications. General definition of noise based on density or size 
cannot be applied in such a case. Besides, since the thick line not 
only overlaps the true data but also has a similar density, it poses a 
challenging problem for existing noise removing methods. 

 
Figure 1. A benchmark data set that contains ambiguous noise.

This paper presents a novel approach to the discovery of implicit 
patterns in spatial data with ambiguous noise. The proposed 
approach, called CLEAN (CLustering by Eliminating Ambiguous 
Noise), removes noise before performing cluster analysis on the 
remaining noise-free data. We design such a procedure because: 
a) The presence of noise disturbs the clustering process, increases 
the complexity of clustering and error rate, b) many applications 
require a clustering algorithm to be capable of separating noise 
from true data, and c) noise removal can be a standalone means 
for cleaning any raw spatial data.  
 
As illustrated in Figure 2, CLEAN consists of three stages:  
1) Graph construction. The given data set is modeled with a k-
mutual neighborhood graph. 
 
2) Noise removal. This stage involves a two-step mechanism to 
guarantee effective handling of ambiguous noise: firstly, a fast 
graph partitioning method, k-core algorithm [12], is used to 
decompose the k-mutual neighborhood graph into small groups of 
data points, which are sorted into different layers according to 
their sizes and densities. Then a visualization of the data with the 
multi-layer structure is provided to the user. There are two modes 
provided to the user in the visualization: in basic mode, the user 
can select only one layer, which is called the boundary layer, to 
separate true data and noise. The layers above the boundary are 
regarded as true data and the layers below are regarded as noise; 
in advanced mode, the user can mark any layer as noise or true 
data through visual inspection and the remaining data will be the 
combination of the layers marked true. Basic mode can be run 
without user intervention: for data sets with similar properties, a 
learning approach is proposed to detect the boundary layer 
automatically. 
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3) Cluster analysis. After noise removal, a hierarchical clustering 
is performed on the remaining data to discover clusters of 
different shapes, sizes, and densities. In this stage, a compression 
[11] is applied on the remaining data to accelerate the hierarchical 
merging process. 

 



 

In summary, this paper’s contributions include: 
 Applying k-core algorithm to produce a layered structure of 

data points to remove noise more effectively than existing noise-
handling approaches. The effective noise removal method reduces 
the complexity of the later steps significantly, and makes the 
hierarchical combination, the third step in Figure 2, error free. 
Besides, many clustering algorithms work well when the data set 
is “clean” while their performances degrade if the data set 
contains heavy noise. An effective noise removal method would 
enhance the effectiveness of such algorithms. 

 A 3-D visualization of the layered structure of the data to 
allow user participation in handling ambiguous noise. The 
visualization avoids the parameter tuning of the k-core algorithm, 
and can also be used to assist similar clustering methods on 
parameter selection.  

 A hierarchical clustering framework, which is able to 
discover clusters of arbitrary shapes, densities, and sizes 
efficiently. CLEAN is the key component of FAÇADE [10] and 
publicly available at our website: http://viscomp.utdallas.edu/ 
FACADE, where one can run the CLEAN program with different 
input data sets and see the results intuitively. 
 
The rest of this paper is organized as follows. The related work is 
discussed in Section 2. Section 3 introduces the data modeling 
method used in CLEAN. The k-core algorithm for noise removal 
is explained in Section 4. Section 5 describes our hierarchical 
clustering framework. Section 6 reports experimental results and 
presents a comparison between CLEAN and several 
representative clustering methods. Section 7 concludes the paper. 
 
2. RELATED WORK 
According to Han et al. [5], spatial clustering methods can be 
classified into four categories: partitioning method, hierarchical 
method, density-based method, and grid-based method. Since our 
main interest lies in noise removal for accurate pattern discovery 
with cluster analysis, this section focuses on the noise removing 
techniques used in existing clustering methods. From the 
perspective of noise handling, clustering methods can be 
classified into two categories: one category does not handle noise 
until clustering finishes. Most partitioning methods such as k-
means [9] and many hierarchical methods belong to this category. 
The usual way to remove noise for the methods of this category is 
to judge the sizes of the produced clusters. If the size of a cluster 
is below a predefined threshold, it will be regarded as noise and 
removed from the final result. For example, RandomWalk [6] 
omits the small clusters whose sizes are below half of the average. 
Removing noise after clustering is a typical chicken and egg 
problem: to remove noise effectively requires an accurate 
clustering while the clustering methods usually suffer from the 
presence of noise. Besides, it is not easy to fix the threshold for 
different data sets. This category also includes some methods that 
do not remove noise from the final result. CHAMELEON [8] 

produces final clustering results containing all noise points, some 
of which are in separate clusters and others are mixed up with true 
data. 
  
The other category aims at removing noise during the clustering 
process. Density-based approaches such as DBSCAN [4] and 
OPTICS [1] construct sophisticated similarity models with 
distance between data points and use two predefined thresholds, 
Eps and MinPts, to distinguish noise from true data. Although 
distance-based measurement can remove “salt and pepper” noise 
effectively, they may treat a sparse cluster as noise wrongly. SNN 
[3] is proposed to solve the problem by constructing a shared 
nearest neighbor graph on the given data set, where the degree of 
a node is decided by the number of its nearest neighbors instead of 
the distance between them. Thus both the sparse and the dense 
clusters can be discovered within the graph. The degree-based 
noise removing method used in SNN will be compared with 
CLEAN in Section 6.2. 

Figure 2. The three stages of CLEAN. 

 
Unlike the aforementioned approaches, CLEAN removes noise 
before the clustering begins. The noise removing process is 
standalone and can be applied to other algorithms. The noise 
removing method used in CLEAN, referred to as core-based noise 
removal, is not size-based or distance-based. Thus the sparse 
clusters will not be ignored. Through data visualization, CLEAN 
allows users to participate in the process of noise removal to 
detect ambiguous noise, which leads to an accurate pattern 
discovery. The following section will introduce the first step of 
CLEAN: using graph to model the spatial data set. 
 
3. MODELING DATA WITH k-MUTUAL 

NEIGHBORHOOD GRAPH 
Like many other hierarchical clustering algorithms, CLEAN starts 
with a graph representation of the given data. As noted by Harel 
and Koren [6], many clustering methods use sparse graph1 model, 
which contains only a small subset of the edges of the complete 
graph, mostly those corresponding to higher similarity values. 
Limiting the number of the edges has two advantages: first, it 
reduces the time and space complexity. Second, the structure of a 
sparse graph reflects spatial proximity and expresses data 
distribution. 
 
The commonly used sparse graph structures include: the k-nearest 
neighborhood graph, the k-mutual neighborhood graph, and the 
Delaunay Triangulation [7]. While the Delaunay Triangulation 
does not suit CLEAN, the first two structures will be discussed in 
this paper. 
  
Generally, each vertex of the k-nearest neighborhood graph 
represents a data item. For each pair of data items, if either of 
them is among the k-most similar data items of the other, there 
exists an edge between the two corresponding vertices. In a spatial 
database, data items are points on a metric/dimensional space ℜd 
and the similarity of two data points is usually measured by the 
distance between them. The time needed to construct a k-nearest 
graph for n data points depends on the dimensionality of the 

                                                                 
1 A rough definition of sparse graphs is that the number of the edges in a 
sparse graph is much less than the square of the number of the vertices in 
it, i.e., |E|<<|V|2, for a graph G (V, E), where |V| is the number of vertices, 
|E| is the number of edges. 

 



underlying data set. Basically, it needs O(nlogn) time for low-
dimensional data sets and O(n2) for high-dimensional data sets. 
 
Compared with a k-nearest neighborhood graph, for the same data 
set and k, a k-mutual neighborhood graph contains fewer edges. 
For each pair of data items, only if both of them are among the k-
most similar data items of each other, can there be an edge 
between the two corresponding vertices. The computation 
efficiency of the k-mutual neighborhood graph is the same as that 
of the k-nearest neighborhood graph. Figure 3 shows a 4-nearest 
neighborhood graph and a 4-mutual neighborhood graph of a 
spatial data set.  
 

enerally, the advantages of representing data using k-nearest or 

. HANDLING NOISE 
into different layers, a graph-

.1 The k-core Algorithm 
eidman [12]: let G = (V, E) 

 to determine the core 

• A core is not necessarily a connected subgraph. 

The algorithm for determining the core hierarchy is simple: from a 

                                                                

G
k-mutual graph include: first, data points that are far apart are 
completely disconnected from the graph. Second, the constructed 
graph is able to represent the natural density dynamically. In a 
dense region, the neighborhood radius of a data point is 
determined narrowly, and in a sparse region, the neighborhood 
radius becomes wide. Third, the number of graph edges is linear 
to the number of vertices. The first two advantages decide the 
graph structure can be used to distinguish noise and true data. 
 
4
Aiming at distributing data points 
theoretic decomposition is based on the structural information, 
i.e., the connections of the graph nodes, as described in this 
section.  
 
4
The notion of a core is introduced by S
be a graph. V is the set of vertices and E is the set of edges. A sub-
graph Hk= (W, E | W) induced by the set W is a k-core or a core of 
order k iff ∀ v in W: degree (v) ≥ k and Hk is the maximum sub-
graph with this property. The core of maximum order is also 
called the main core. The cores have the following properties: 
• They are nested: ∀ i<j  Hj ⊆ Hi. 
• There exists an efficient algorithm

hierarchy. 

 

given graph G=(V, E), recursively delete all vertices of degrees 
less than k and lines incident with them, the remaining graph is 
the k-core. Known as the k-core algorithm, it costs only O(m) 
time, where m is the number of edges for the given graph [12]. To 
avoid confusion, we will hereafter use kc as the k used in k-core 
algorithm and km as the k used in k-mutual graph. For a k-mutual 
graph with n vertices and m edges, we have m ≤ km n/2 if n is the 

number of vertices2, so applying k-core algorithm to a k-mutual 
graph requires only linear time.  
 
Batagelj et al. [2] use k-core algorithm as an efficient approach to 
the decomposition of large graphs and have verified its efficiency 
and effectiveness on graph partitioning. We propose to use core 
decomposition as an effective noise removing method for spatial 
data clustering. After obtaining the core hierarchy, noise removal 
becomes a simple process: remove the cores of orders smaller 
than kc as noise and keep the cores of orders larger than or equal 
to kc as true data. 
  
It is not hard to justify why core decomposition suits spatial 
clustering. According to the definition of a core, each vertex of a 
core of kc must have a degree greater than or equal to kc even after 
all other cores with orders smaller than kc have been removed, i.e., 
removing the cores of smaller orders will not decrease or affect 
the quality of the cores of bigger orders. While the connectivity of 
a k-mutual graph reveals the density distribution, such definition 
matches the natural rule that removing noise should not decrease 
or affect the density of true data. It is reasonable to assume the 
cores of small orders as noise and those of bigger orders as true 
data. The experiments on four benchmark spatial data sets of 
CHAMELEON [8], as illustrated in Figure 4, have verified our 
hypothesis: the core decomposition can produce surprisingly 
“clean” results. 

                (a)                             (b)                               (c) 
Figure 3. (a) A spatial data set; (b) its 4-nearest neighborhood 

graph; (c) its 4-mutual neighborhood graph. 

 

         (a)                                  (b) 
Figure 4. (a) The original data sets; (b) The resulting data sets 

after applying core decomposition. 

 
2 Given a data set, the corresponding k-nearest graph G=(V, E) and the k-
mutual graph G’=(V’, E’), we have |V|=|V’|, |E’|≤ |E|≤ k|V|, and 
|E|+|E’|=k|V|, so |E’|≤ k|V’|/2. 

 



So far there have been two parameters that would affect the result 
of noise removal: km and kc. Our experiments reveal an important 

henomenon: for a wide range of km., there exists a corresponding 
k  
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 a visualization of the data with multi-
yers where each layer represents the data points belong to the 

/she 

 it easily. There are two modes provided to the user 

a learning approach. 
iven a dataset D, suppose the corresponding k-mutual graph is 

, S1 = 
–H , S  = H – H , and S  is the main core, as illustrated in 

ll Sk a proper 
re since it includes the data points that are of the same 

n total. 

p
c so that the pair (km, kc) removes noise effectively. For the four

benchmark data sets shown in Figure 4, we let km be some values 
from 10 to 300, then choose kc manually (kc is chosen to remov
most noise before losing true data) for each km. and check ho
much noise can be removed. As shown in Figure 5, when km is
between 40 and 150, more than 90% noise can be removed befor
losing any true data; when km is between 20 and 200, more tha
70% noise can be removed. Further experiments show that if th
loss of an insignificant part of true data is allowed, the valid rang
of km can be much wider. 

While km can be chosen more freely, it is difficult to automatically 
and correctly select the correspondingly kc without domain 
knowledge. This is because of the lack of a universal noise 
definition. While kc can be regarded as a threshold to indicate 
when to stop the noise removing process, without defining noise 
properly, it is impossible to decide which data point is noise and 
should be removed. Unfortunately, noise is usually a domain-
specific concept. Noise in one case may not be noise in another. 
Since generally defining what is a noise is beyond the scope of 
this paper and involving domain knowledge becomes inevitable to 
recognize ambiguous noise, here we provide two alternatives: let 
the user specify kc through
la
same core. Thus the user can specify how much noise he
wants to remove by choosing which layer represents kc. Compared 
with the similar parameters like the Eps and MinPts used in 
DBSCAN [4] and SNN [3] and their selections, such a 
visualization used in CLEAN can determine the parameter more 
intuitively and conveniently. The other approach is to define 
approximately the density-based noise, which can help to produce 
a default kc as a suggestion to a non-expert user for automatic 
noise removal. The two approaches will be addressed in Section 
4.2 and 4.3, respectively. 
 
4.2 Choosing kc through Data Visualization 
Figure 6 is the 3-D visualization of the layered structure of the 
data after applying the k-core algorithm. Each data point is 
assigned a core id, which is used as the third coordinate. Points of 
different cores are represented with different gray levels in Figure 
6. Thus the data set is separated into many layers and each layer 
contains the data points of the same core. While different cores 
mean different densities or sizes, the data set is “segmented” into 

many small groups. Users can judge which groups are noise easily 
through visual inspection. As shown in Figure 6, the thick line 
crossing “GEORGE” has been separated into a layer far from true 
data and the 3-D visualization helps the user select the correct kc 
to remove
through the visualization. The basic mode accepts a user input 
about the boundary layer, i.e., kc, and then the layers above kc will 
be regarded as true data and kept while other layers will be 
removed as noise. In advanced mode, the system can accept a set 
of user inputs to specify which layers are true data or noise. Thus 
the noise removal becomes a customizable process. For example, 
in Figure 6, the user can keep the thick line by setting its layer as 
true, or the user can even remove the right foot of the letter “R” if 
he/she thinks the correct letter should be “GEOPGE”. The 
visualization provides a full support for user participation in noise 
removal. 

4.3 Separating Noise from True Data 
Automatically 
The above sections have shown the ability of core decomposition 
in separating the true data from noise. One may wonder if this 
process can be completed automatically, i.e., use computation to 
decide which cores should be removed and which should be kept 
as true data. This section will provide an approximate definition 
of density-based noise. Based on this noise definition and several 
justified observations, we can compute the boundary layer 
between noise and true data, i.e., kc through 
G
G=(V, E), |V|=n and |E|=m. Apply the k-core algorithm to G, and 
obtain the set of cores, denoted by H0, H1, ..., Hx-1, Hx, where Hi 
represents the core of order i. Let Sx = Hx, Sx-1 = Hx-1 – Hx ,…
H1 2 0 0 1 x
Figure 7. For the convenience of presentation, we ca
co
connectivity level while Hk includes both Sk and all other data 
points that have a greater connectivity. The size of Sk, denoted by 
|Sk|, is the number of data points of Sk. We have |S0|+|S1|+…+|Sx| 
= n and there are x+1 proper cores i
 

Figure 5. The ratio of noise removed for different km. 

Figure 6. The visualization of the core hierarchy. 

 



Being the main core, Sx must be the densest part of the graph G 
and contain at least x+1 data points. The following observation 
can be regarded as our basic assumption and starting point. 
 
Observation 0: The data points of Sx are true data.  
 
Observation 0 has been verified in all of our experiments. It is a 

be regarded as true 
ata without domain specification. 

consider noise 

g verified by our experiments: 

lem into finding the kc so that all the proper 
ed as noise. 

Suppose core Ht being true data (Starting from t=x, i.e., 
Observation 0), we check if St-1 is true data or noise. According to 
Definition 4.1, we first judge if St-1 is closely related to Ht, if so, 
St-1 is a true core; otherwise, we continue to check if St-1 is large 

 this algorithm tive 
, relative siz ince 

the k-mutual graph uses connection to represent similarity, the 
closen  St-1 can be measured using the number 
of edg een them: cording to the definition of core, each 
vertex Ht, 
so the t-1 t-1  
Ei de number of edges in Si and E_interi the number of 
edges d Si. The closeness between Si and Hi+1 and 
the re  the x pairs of core and proper core are 
defined
Defin and Relative Closeness) 
The c i /(i|Si|) and the 
relativ  proper core is defined 

as: RC
reasonable assumption since if a large and the densest part of a 
graph were not true data, no other part should 
d
  
Observation 0 defines the first part of true data. Then we are able 

 provide an approximate definition of density-based noise:  to
 
Definition 4.1 (Density-based Noise):  
Density-based Noise is neither: 1) closely related to true data; nor 
2) of big size and dense. 
 
The definition of density-based noise can be explained intuitively: 
if a set of data points is closely related to the true ones, they 
should not be separated from the true points; and if a large set of 
data points is dense, without domain specification, they cannot be 
oise either. From this point on, the paper will n

being determined by density. 
 
There are two important observations that follow the definition of 

oise, both beinn
 
Observation 1: Let p ∈ Si and q ∈ Sj denote two arbitrary data 
points in two proper cores, if p is noise and q is true data, then i≠j. 
 
This observation implies that noise and true data do not co-exist in 
a proper core, which can be justified as follows: since the data 
points in a proper core have similar density, if some points in it 
are true data, it is unreasonable to regard others as noise. Thus 
noise and the true data must be in different proper cores. For the 
convenience of presentation, we will simply classify proper cores 
into noise cores and true data cores. In-depth observation on the 
indices of cores further reveals the location of noise: all noise 
cores have smaller indices than the true data cores. 
 
Observation 2: ∀ i, j, if Si is noise and Sj is true data, then i<j. 
Observation 2 can be easily justified using Observation 1 and 
Definition 4.1. 
 
Definition 4.1 and the three observations simplify the automatic 
noise-removing prob
cores with orders smaller than kc will be remov

and dense enough, if so, St-1 is a true core; otherwise, St-1 is a noise 
core and we can output t as kc according to Observation 2. Figure 
8 depicts . In Figure 8, RC, RS, and RD are rela
closeness e, and relative density, respectively. S

ess between Ht and
 aces betw

 of St-1 has at most t-1 edges connected to the vertices of 
 maximum edge number between Ht and S  is |S |(t-1). Let
note the 
 between Hi+1 an
lative closeness of

 as follows: 
loseness ition 4.2 (C

loseness between Si and Hi+1 is: Ci=E_inter
e closeness f core and of the x pairs o

= c

x

i )P|/x
i

|C(∑
−

=

here Pc is a threshold on closeness. 

y, we

=0

s

ty and Relative Density) 

em 4.1. Algorithm Find-kc identifies the boundary of noise 
res and true cores. 

Proof. According to Definitions 4.1, 4.2, 4.3, 4.4, Observations 0, 
1, 2, and the induction of algorithm Find-kc, all the cores with 

1
, w

0

Similarl  can define the relative size and the relative density 
for the x+1 proper cores. 
 
Definition 4.3 (Relative Size) 
The relative size for x+1 proper cores is defined 

as:RS= s

x

i )P)|/(x|S(∑ + 1 , where P  is a threshold on size. 
i

 
Definition 4.4 (Densi
The density of Si is: Di= |Ei|/|Si| and the relative density of the 
x+1 proper cores is defined as: 
RD= (MAX(Di) - MIN(Di))Pd + MIN(Di), 0≤ i≤ x, where Pd is a 
threshold on density. 
 
Pc, Ps, and Pd are obtained through an independent learning 
algorithm from training data sets of similar sizes and types of 
noise. Definitions 4.1, 4.2, 4.3, and 4.4 help the learning algorithm 
differentiate the noise from the true data effectively. Section 6.3 
will evaluate the automatic detection of the boundary layer. In 
conclusion, we have Theorem 4.1: 
 
Theor
co

   Figure 7. An example sketch map of cores.

Algori
begin 

      else  
            if (|Si|>RS) and (|Di |>RD) 

 continue; 

thm Find-kc

   For each proper core Si, compute |Si|, |Ci|, |Di|, and 
RS, RC, RD for the x+1 proper cores; 
   i=x; 
   While (i≥0)  
        if (|Ci|>RC) 

     continue; 
  

    else     return i; 
   i=i-1; 
end 

Figure 8. The algorithm for finding kc

 



orders smaller than kc, i.e., the output of Find-kc, are density-based 

erent natural clusters may 

ters of different shapes, densities, and 

o work effectively. This section will 
resent a hierarchical clustering process that can discover 

arbitrarily shaped clusters efficiently. 
 
5.1 Compression and Sub-Graph Construction 
before Clustering  
We apply GraphZip [11] to compress the remaining data to 
improve the efficiency of hierarchical combination. Each dat
point in the compressed data set present  data point

noise while other cores are true data.                                             � 
 
Although the k-core algorithm removes noise effectively, it cannot 
discover the boundaries of natural clusters. A natural cluster may 
have regions of different densities, and thus consist of cores of 

ifferent orders. On the other hand, diffd
have similar densities, and thus share one core. The following 
sections will introduce how to discover, from the result of k-core 
algorithm, the natural clus
sizes. 
 
5. HIEARCHICAL CLUSTERING 
As shown in Figure 4, the data set after applying the k-core 
algorithm is nearly noise-free, which provides an opportunity for 

any clustering approaches tm
p

a 
s re s a group of

in the original data set. Figure 9 demonstrates the effect of 
GraphZip: the number of data points is greatly reduced while the 
spatial pattern is preserved.  
 

 
   (a)               (b) 

Figure 9. The data set (a) before (b) after applying GraphZip. 

After compression, the next step is to prepare the initial groups for 
hierarchical combination. In CLEAN, the data points represented 
by a single data point after compression form an initial group. The 
chief requirement on preparing initial groups is that the points of 
different natural clusters should not be in the same initial group.  
Figure 9 shows that this requirement is satisfied. Thus we can 
begin hierarchical merging. 
 
5.2 Merging Criterion 
The basic idea of hierarchical merging is as follows: we 
continuously choose the most appropriate pair, from the initial 
groups, to merge until reaching one cluster. At each hierarchical 
level a value M is computed for each pair of groups, denoted by 
M(i,j) for groups i and j. The hierarchical process merges the pair 
of groups that ma a l unt

roups have been merged, and there is a combination criterion to 

ormula (1) favors the number of connections between two 
likely the 

. According to the definition of 
s in an 
ula (1) 

lusters only after all of their sub-clusters 

(a) are 

s 
 

e 
y 

selec

Figure 11. Noise removal with (a) SNN; (b) CLEAN
                                                                

ximizes M at each hierarchic l leve il all the 
g
specify how to compute M. As the hierarchical process continues, 
the number of groups decreases by 1 at each hierarchical level. In 
CLEAN, the value M is computed based on the k-mutual graph 
constructed on the original graph in the first step. Each data point 
of the initial groups has its corresponding vertex in the k-mutual 
graph. Suppose the k–mutual graph is G=(V, E) and S1, S2, …, St 
are sets of vertices corresponding to t initial groups, we denote the 

number of edges between Si and Sj as E(i, j), and the size of Si is 
defined as the number of vertices in Si, denoted by |Si|. The 
combination criterion is defined as follows: 

M(i,j)=E(i,j)2/MIN(|Si|,|Sj|)          (1) 
 
F
groups over their sizes. The more connections, the more 
two groups will be merged. On the other hand, if the connection is 
the same for two pairs of groups, formula (1) will merge the pair 
containing the smallest group first. Formula (1) favors adding 
points to a big group as long as the number of the points being 
added is small enough. Thus formula (1) can add small groups of 

oints to the clusters continuouslyp
formula (1), small groups will be merged into big group
order according to the number of connections. Using form
will merge two natural c
have been merged.  
 
6. PEROFORMANCE EVALUATION 
The first part of this section will compare CLEAN with 
CHAMELEON [8], a well-know graph-based hierarchical spatial 
clustering algorithm. Then we will apply the automatic version of 
CLEAN to some real images on INTERNET and evaluate the 
automatic version of CLEAN. 
 
6.1 Comparison with CHAMELEON on 
Cluster Quality 
The final clustering results of the four data sets in Figure 4 
illustrated in Figure 10. Each produced cluster has its own gray 
level. Figure 10(a) shows the clustering results of CHAMELEON3 
while Figure 10 (b) is the results of CLEAN. Since 
CHAMELEON experimentally outperformed previous systems on 
cluster quality, this section compares the experimental results of 
CLEAN with CHAMELEON only. Although the results in Figure 
10(b) appear very similar to those in Figure 10 (a), CLEAN run
much faster than CHAMELEON, requires less user-supplied
parameters, and most importantly, is able to remove noise. 

 
6.2 Comparison with Degree-based Noise 
Removal 
Degree-based noise removal is proposed in SNN [3]. We 
download the source code of SNN from [13] and compare its 
noise removal result with CLEAN, as shown in Figure 11. Figur
11 shows that the ambiguous noise is not completely removed b
SNN. Besides, with the support of the visualization, the parameter 

tion of CLEAN is much easier than that of SNN. 

 
3 The second data set has not been used in CHAMELEON paper so no 
result shows. 

 



Figure. 10. The clustering results of (a) CHAMELEON; (b) CLEAN; 
 

 
Figure 12. (a) The original images; (b) the clustering results using CLEAN 

 
6.3 Clustering Real Images 
This section will evaluate the automatic version of CLEAN, i.e., 
using the learning approach to decide the boundary layer 
automatically instead of user intervention. Figure 12. (a) shows 
two security images used by Yahoo to prevent automatic form 
filling in application of email address. Yahoo requires the user to 
recognize the letters by visual inspection and fill them into the 
application form so that programs for auto-filling fail. This means 
such images may be difficult to be recognized by computer 
programs. We collect a series of such images from Yahoo website 
and all of them have similar properties on size and noise ratio, so 
it is especially suitable for CLEAN to learn the Pc, Ps, and Pd by 
training, as described in Section 4.3. After training, the values of 
Pc, Ps, and Pd are fixed at 0.2, 0.5, and 0.9, respectively, and we 
fix the km at 20 due to the images have similar sizes. Figure 12 (b) 
demonstrates the results after performing trained CLEAN on two 
testing data sets. Each letter is clearly shown and could be 
recognized by a matching algorithm followed. The experiment 
evaluates the ability of CLEAN on discovering patterns in similar 
data sets automatically. 
 
Now let us analyze the time complexity of CLEAN. The first step 
of CLEAN is to model the given data set with a k-mutual graph, 
which needs O(nlogn) time for 2-D data sets; Step 2 is core 
decomposition, both k-core algorithm and Find-kc algorithm can 
be completed in O(n) time since the number of edges of a k-
mutual graph is linear to the number of vertices; In Step 3, 
GraphZip requires O(nlogn) time to compress n data points into 

n  [11], then the hierarchical merging of the n  initial groups 
costs O(n) time. In summary, all steps can be completed in 

space to compute and store the corresponding graph of the whole 
data set.   
 

O(nlogn) time. On the space complexity, CLEAN requires O(n) 

able 1 compares CLEAN with three representative clustering 

 
7. CONCLUSION 

ovel hierarchical graph-theoretic 

for accurate noise removal. 

T
algorithms with typical measurements. Among the three 
representatives, RandomWalk [6] and CHAMELEON are typical 
graph-theoretic hierarchical approaches, and SNN is the latest 
published progress. Table 1 shows that CLEAN substantially 
outperforms the three representative algorithms on at least one of 
three aspects: scalability, parameter minimization, and noise 
handling. 

This paper has described a n
clustering approach, CLEAN, which can remove ambiguous noise 
and discover clusters of different shapes, densities, and sizes 
accurately. The paper has shown two important results: firstly, the 
data points can be separated into different layers using the k-core 
algorithm. The data set can be partitioned into many small groups 
with different densities or sizes. Thus noise and true data are 
clearly separated. Secondly, the visualization of the data with a 
layered structure allows a customizable noise removal. Users can 
“assemble” the remaining data according to domain requirements. 
Future work will focus on three issues: the detection of the 
terminating point of the hierarchical merging process, i.e., to 
estimate the number of clusters of the given data set; the 
application of CLEAN on image segmentation and pattern 
recognition, two common applications of spatial clustering 
algorithms; the effectiveness of combining k-core algorithm and 
the corresponding visualization with existing clustering methods 

 



8. REFERENCES 
[1] Ankerst, M., Breunig, M., Kriegel, H. P., and Sander, J. 

tify the Clustering 
 of 

s, Proc. Graph Drawing’1999, 

t sizes, shapes, and densities in noisy, high 

ers in large spatial 

. 

ing 
 7th Int’l Conf. Knowledge Discovery and 

 
 and three representative clustering approaches 

 
 

st to noise 

(1999). OPTICS: Ordering Points To Iden
Structure. Proc. 1999 ACM-SIGMOD Conf. on Management
Data (SIGMOD’99), pp. 49-60. 

[2] Batagelj, V., Mrvar, A., and Zaversnik, M. (2000). Partitioning 
approaches to clustering in graph
LNCS, pp. 90-97. 

[3] Ertoz, L., Steinbach, M., and Kumar, V. (2003), Finding 
clusters of differen
dimensional data, In Proc. of SIAM DM’03. 

[4] Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). A 
density-based algorithm for discovering clust
databases with noise, Proc. 2nd Int. Conf. on Knowledge 
Discovery and Data Mining (KDD-96), AAAI Press, pp. 226-231

[5] Han, J., Kamber, M., and Tung, A. K. H. (2001). Spatial 
clustering methods in data mining: A survey, H. Miller and J. Han 
(eds.), Geographic Data Mining and Knowledge Discovery, 
Taylor and Francis. 

[6] Harel, D. and Koren, Y. (2001). Clustering spatial data us
random walks, Proc.
Data Mining (KDD-2001), ACM Press, New York, pp. 281-286. 

Table 1. The comparison between CLEAN

[7] Jain, A. K., and Dubes, R. C. (1988). Algorithms for 
Clustering Data, Prentice-Hall advanced reference series. 
Prentice-Hall, Inc., Upper Saddle River, NJ. 

[8] Karypis, G., Han, E., and Kumar, V. (1999). CHAMELEON, 
A hierarchical clustering algorithm using dynamic modeling, 
IEEE Computer, Vol.32, pp. 68-75. 

[9] McQueen, J. (1967). Some methods for classification and 
analysis of multivariate observations, Proc. of the Fifth Berkeley 
Symposium on Mathematical Statistics and Probability, pp. 281-
297. 

[10] Qian, Y., Zhang, G., and Zhang, K. (2004) FACADE: A Fast 
and Effective Approach to the Discovery of Dense Clusters in 
Noisy Spatial Data, In Proc. ACM SIGMOD 2004 Conference, 
Paris, France, 13-18 June 2004, ACM Press. (Demo Abstract) 

[11] Qian, Y. and Zhang, K. (2004) GraphZip: a fast and 
automatic compression method for spatial data clustering. In Proc. 
of the 2004 ACM Symposium on Applied Computing (SAC’04), 
pp. 571-575. 

[12] Seidman, S. B. (1983). Network structure and minimum 
degree. Social Networks, 5, pp. 269-287. 

[13] http://www.cs.umn.edu/~ertoz/snn/ 

 

Minimal input parameters Robu
 points and m initial 

clusters of 

Parame
rameter 

values? 
Robu

e 
Removed? 

Running Time (for n data 
Finding 

groups) 
different 
shapes? 

ters used 
How to set pa

st? 
Nois

CHAMELEON nm+nlogn+ *logm m*m Yes MinSize, α, k Fixed/Trial and error Yes No 

Random Walk nlogn Yes 
CE, NS, and 

w  eight thresholds
Fixed/Trial and error Yes Yes 

SNN n*n Yes k, MinPts, Eps Fixed/Trial and error Yes Yes 
CLEAN nlogn Yes Learned/Visualized Yes Yes Km, Kc 

 


	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORK
	3. MODELING DATA WITH k-MUTUAL NEIGHBORHOOD GRAPH
	4. HANDLING NOISE
	4.1 The k-core Algorithm
	4.2 Choosing kc through Data Visualization
	4.3 Separating Noise from True Data Automatically

	5. HIEARCHICAL CLUSTERING
	5.1 Compression and Sub-Graph Construction before Clustering
	5.2 Merging Criterion

	6. PEROFORMANCE EVALUATION
	6.1 Comparison with CHAMELEON on Cluster Quality
	6.2 Comparison with Degree-based Noise Removal
	6.3 Clustering Real Images

	7. CONCLUSION
	8. REFERENCES

