
A Model Transformation Approach for Design Pattern Evolutions

Jing Dong, Sheng Yang, Kang Zhang
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75083, USA

{jdong,syang,kzhang}@utdallas.edu

Abstract

The evolution of a design pattern typically involves

the addition or removal of a group of modeling
elements, such as classes, attributes, operations, and
relationships. However, the possible evolutions of each
design pattern are often not explicitly documented.
Missing part of the evolution process may result in
inconsistent evolution. In this paper, we define the
evolution processes of design patterns in terms of two-
level transformations, thus making the possible
evolutions of each design pattern explicit. In addition,
we automate the evolution processes as XSLT
transformations that can transform the UML model of a
design pattern application into the evolved UML model
of the pattern. Both the original and evolved UML
models are represented in the XML Metadata
Interchange (XMI) format to facilitate the
transformations. Furthermore, we check the consistency
of the evolution results using the Java Theorem Prover.

KEYWORDS
Design pattern, Model Transformation, XMI, XSLT,
JTP, Design pattern evolution

1. Introduction
Computer-based systems are normally needed to be

amenable to changes due to constant changes of user
requirements, platforms, technologies and
environments. Change is a constant theme of computer-
based design and development. It can be a disaster if a
single change may cause a large number of changes in
the systems. It is important to localize the changes such
that minimum efforts are needed. This requires the
initial designers of a computer-based system to be aware
of potential changes. Thus, the resulting systems are
flexible and agile to future evolution.

One of the important goals of design patterns [9] is
design for change. Design patterns capture expert
design experience by partitioning software designs into
a stable part and changeable part. By separating and
encapsulating both parts, the change impact of a
software design can be minimized. Thus, most of the

design patterns encapsulate future changes that may
only affect limited part of a design pattern. This
evolution process can be achieved by adding or
removing design elements in existing design patterns. In
the document of each design pattern, however, the
evolution information is generally not explicitly
specified. When changes are needed, a designer has to
read between the lines of the document of a design
pattern to figure out the correct ways of changing the
design. More importantly, the evolution process of a
design pattern may involve the addition or removal of
several parts of a design pattern. Misunderstanding of a
design pattern may result in missing parts of the
evolution process. The addition and removal of system
parts should not violate the constraints and properties of
design patterns. Thus, it is important to have, in the
documentation of the design pattern, information about
the evolution of the patterns. The evolution of a
software system at the design level is less costly than it
is at the implementation level.

To raise the level of abstraction, the Model Driven
Architecture (MDA) [17] supports software
development based on models as primary artifacts.
Thus, the level of reuse is raised accordingly since high-
level software models can be reused as well as software
programs (libraries). In this way, models become assets
in MDA. Consequently, technology that supports the
transformation of models is considered as a key enabler
of MDA. Design patterns are usually modeled in the
Unified Modeling Language (UML) [2] which is
considered to be the de facto standard for object-
oriented modeling. The evolution of a pattern may be
considered as a transformation of the design model.

The XML Metadata Interchange (XMI) [27] is an
interchange format for metadata in terms of the Meta
Object Facility (MOF) [17]. XMI specifies how UML
models are mapped into a XML file. By representing a
UML model in the XML format, the UML model can be
manipulated since there are rich collections of XML
related techniques and tools available. The extensible
stylesheet language transformation (XSLT) [28]
provides the transformation from a XML document to
other types of documents (including XML). The use of

Original
UML Model

(XMI Format)

Model element
to be changed
(XMI Format)

Transformation
Rules (XSLT)

Transformed
UML Model

(XMI Format)Transformation Program
(XSLT Processor)

Input

OutputUML Tools

Import

Export

Model
represented

by RDF/OWL

Tr
an

sl
at

e

Consistency
Checking
Facility

XMI2RDF
Converter

Figure 1 The Overall Architecture of the Approach

XMI and XSLT helps to automate model transformation
process and enforces constraints of model implicitly.

To capture the evolution processes of design
patterns, we define two-level evolutions: the primitive
level and the pattern level. The primitive-level
evolutions are the addition or removal of modeling
elements, such as classes and relationships. The pattern-
level evolutions characterize the recurring evolutions of
each design pattern based on the primitive-level
evolutions. Meanwhile, the evolution processes are
implemented based on XMI format to transform the
UML models of design pattern applications. Thus, the
structure of a design pattern may be evolved in some
prescribed ways based on the pattern-level
transformation. The evolution processes of design
patterns are specified as XSLT transformation rules. We
also provide tool support to automate such
transformations. In order to assure the essential
properties of a design pattern still hold after the
evolutions, we use the Java Theorem Prover (JTP)
[8][31] to check the consistency of the designs after the
evolution processes.

The remainder of this paper is organized as follows:
the next section describes an overview of our approach.
Section 3 defines the primitive-level and pattern-level
evolutions. Section 4 presents the design pattern
evolutions as model transformations based on XMI and
XSLT transformation rules. Section 5 discusses the
consistency checking using JTP. The last two sections
cover related work and conclusions.

2. Overview of the approach
Figure 1 depicts the overall architecture of our

approach for automated evolutions of design patterns
based on model transformation and thereafter checking
the system consistency.

A software design with the applications of design
patterns is normally modeled using the UML and drawn
using UML tools, such as IBM Rational Rose [29] or

ArgoUML [17]. Since UML diagrams are typically
saved in proprietary formats of the corresponding UML
tools, a standard XMI format of the UML diagrams has
been defined and the plug-in of these UML tools has
been developed to export UML diagrams into the XMI
format. For example, the plug-in of IBM Rational Rose
is called UniSys which can translate UML diagrams into
XMI format.

In order to automatically evolve design patterns, we
define two-level evolutions (primitive level and pattern
level) as discussed in the next section. We also specify
these two-level evolutions as transformation rules in
XSLT. These transformation rules define which
modeling elements are changed (added or removed) and
where and how these elements are changed.

The transformation program is an XSLT processor
which can automatically transform the UML model of a
design pattern based on the transformation rules. The
input of the XSLT processor is the original UML model
which has been converted into XMI format. It records
all the model elements, such as classes, attributes,
operations, and their relationships in the original UML
model of a design pattern. The XSLT processor has
built-in transformation rules which are written in XSLT.

The transformation rules specify how the model
elements are changed (added or removed) from the
original system design. The XSLT processor takes the
input and performs the following two actions. First, all
model elements to be added into or removed from the
UML model are generated. Second, the generated model
elements are added into or removed from the original
system design at the required positions according to the
built in XSLT transformation rules. The output of the
XSLT processor is the transformed UML model of a
design pattern in XMI format, which can be imported
and transformed into a UML class diagram that can be
displayed by, e.g., IBM Rational Rose.

Table 1 The Primitive-Level Evolutions
Model Elements Parameter List Descriptions
Class className Add or remove a class with name “className” into a pattern
Attribute attributeName, className,

type, accessibility
Add or remove an attribute with name “attributeName”, type of
“type”, accessibility of “accessibility” into the class “className”

Operation operationName, className,
returnType, accessibility,
para1, paraType1…

Add or remove an operation with name “operationName”, type
of “type”, accessibility of “accessibility”, and arguments list
para1 with type “paraType1” into the class “className”

Association className1, className2 Add or remove an association between classes “className1” and
“className2” into a pattern

Generalization child, parent Add or remove a generalization relationship into a pattern, with
subclass “child” and superclass “parent”

Aggregation part, whole Add or remove an aggregation relationship into a pattern, “part”
class is a part of “whole” class

Composition part, whole Add or remove a composition relationship into a pattern, “part”
class is a part of “whole” class

Realization fromName, toName Add or remove a realization relationship from class “fromName”
to class “toName” into a pattern

Dependency fromName, toName Add or remove a dependency relationship from class
“fromName” to class “toName” into a pattern

When a software system is evolved and changed, the
integrity and consistency of the system should be
maintained. Some properties may not hold anymore
after the changes and evolutions. Thus, we need to
check that the evolved system has the same properties as
the original one. In order to check the consistency of the
evolved design, as shown in Figure 1, the evolved
design is first converted into RDF/OWL [32] format
from the XMI format. Therefore, the consistency
checking facility, such as JTP [31], can be used to
perform the system consistency checking.

3. Two-level design pattern evolutions
A design pattern normally encapsulates some

particular ways for future changes. After a design
pattern is applied in a software application, the designer
may change the application design in the particular
ways directed by the design pattern. The evolution
information of each design pattern allows the designers
to change the system design with minimum impact of
other parts of the system. For example, Figure 2 shows
the class diagram of the Mediator pattern [9]. When the
Mediator pattern is applied initially, there may be only
two concrete colleague classes. A change may request
an additional concrete colleague class later as shown in
Figure 3. However, such evolution information of each
design pattern is normally implicit to the description of
the pattern. A designer has to search the document of
the pattern to find the guidance on evolution.
Misunderstanding and mistakes of changing the design
patterns may compromise the benefits of using these
patterns and have huge impact on the system designs.

In this section, we describe a classification of design
pattern evolutions in terms of two-level transformations:
the primitive-level evolution and the pattern-level
evolution.

3.1 Primitive-Level Evolutions
The primitive-level evolution describes the basic

transformations that can be performed during the
evolution process of a design pattern. These basic
transformations include the addition or removal of a
modeling element, such as class, operation, attribute,
association, generalization, aggregation, composition,
realization, and dependency. These basic
transformations become the building blocks of the
pattern-level evolution.

We identify nine modeling elements that can be
added or deleted as the basic transformations in the
pattern evolution process. The general format of adding
a modeling element is Add (ME (PL)). The model
elements (ME) and the parameter list (PL) are shown in
Table 1. For example, adding a class named “Leaf” can
be specified: Add (Class (Leaf)). Similarly, the removal
of a modeling element can be specified: Delete (ME
(PL)). The replacement of a model element with another
is conducted by first removing the modeling element
and then adding a new modeling element. It can be
defined: Delete (ME1 (PL1)) + Add (ME2 (PL2)).

3.2 Pattern-Level Evolutions
The pattern-level evolution characterizes the

recurring evolution processes which occur in many
design patterns. It is described in terms of a sequence of

the basic primitive-level evolutions. Each design pattern
may perform some of the pattern-level evolutions,
which can be added in the document of the pattern.
Thus, the designer may choose a potential pattern-level
evolution and apply the corresponding transformations
when changes are required.

In this section, we characterize five pattern-level
evolutions that are recurring in different design patterns.
Note that we do not claim this to be a complete list of all
possible pattern-level evolutions. Nevertheless, new
pattern-level evolutions can be easily added into the list
specified by the primitive-level evolutions.

The first pattern-level evolution is called
independent change which is a simple addition or
removal of one independent class and the corresponding
relationships between this class and the classes in the
original pattern. This class is independent in the sense
that the addition or removal of the class does not cause
any effects on the existing classes of the design. This
kind of pattern-level evolution can be expressed in the
primitive level evolutions as follows1:

Add (Class (className)) +
Add (Relationship (className, existingClassName))

where className is the name of the class which is
added into the pattern. Relationship includes
association, generalization, aggregation, composition,
realization, and dependency. The existingClassName is
the name of the class from the original pattern. There
may be multiple relationships added into the pattern
with the addition of a class.

This kind of evolution appears in several design
patterns as, for example, in the Mediator and Facade
patterns. Figure 2 is the class diagram of the Mediator
pattern describing a possible application containing two
ConcreteColleague classes. A potential evolution of this
pattern application is to add a new ConcreteColleague
class, which can be defined as the following
transformations based on the primitive-level evolutions:

Add (Class (ConcreteColleague)) +
Add (Generalization (ConcreteColleague, Colleague)) +
Add (Dependency (ConcreteMediator, ConcreteColleague))

where a new ConcreteColleague class is added with two
new relationships: generalization and dependency. The
generalization relationship is with the Colleague class.
The dependency relationship is on the
ConcreteMediator class. The result of this evolution is
shown in Figure 3.

1 Since the addition and removal have the same format and

the only difference is the transformation names (Add and
Delete), we omit the evolutions of removing modeling
elements. We also omit the specifications of the next four
kinds of evolutions. We refer to [7] for interested readers.

ColleagueMediator

ConcreteColleague1

ConcreteMediator
ConcreteColleague2

Figure 2 Mediator Pattern with Two Concrete Colleagues

ColleagueMediator

ConcreteColleague1

ConcreteColleague2ConcreteMediator

ConcreteColleague3

Figure 3 Mediator Pattern with Three Concrete Colleagues

The second pattern-level evolution is called
packaged change which is the addition or removal of
one independent class and the corresponding
relationships between this class and the classes in the
original pattern. In addition, certain attributes and/or
operations of this class are added and removed
accordingly. For example, Figure 4 is the class diagram
of the Observer pattern describing a possible application
containing one ConcreteSubject and two
ConcreteObserver classes. A potential packaged
evolution of this pattern application is to add a new
ConcreteObserver class (ConcreteObserver3) with its
attributes (s1 and s2) as shown in Figure 5.

ConcreteSubject
s1
s2

ConcreteObserver1
s1
s2

ConcreteObserver2
s1
s2

ObserverSubject

Figure 4 Observer Pattern with Two Concrete Observers

ConcreteSubject
s1
s2

ConcreteObserver1
s1
s2

ConcreteObserver2
s1
s2

Subject Observer

ConcreteObserver3
s1
s2

Figure 5 Observer Pattern with Three Concrete Observers

ConcreteSubject
s1
s2
s3

ConcreteObserver1
s1
s2
s3

ConcreteObserver2
s1
s2
s3

ObserverSubject

Figure 6 Observer Pattern with Three Attributes

The third kind of pattern-level evolution is called
class group change which is the addition or removal of
one attribute/operation in several different classes
consistently. In this case, a certain set of classes, instead
of a single class, are affected by the addition or removal
of the attribute or operation. One potential class group
evolution of the Observer example in Figure 4 is to add
one attribute called s3 as a new data to be observed by

the observers. Thus, this attribute needs to be added in
all ConcreteSubject and ConcreteObserver classes,
which is shown in Figure 6.

The fourth kind of pattern-level evolution is called
correlated classes change which is the addition or
removal of a group of correlated classes. When certain
classes are added or removed, some other classes have
to be added or removed accordingly. These
correspondence relations are important since missing
transformations may cause inconsistency. In addition,
the corresponding relationships between this group of
classes and other classes are added or removed. The
attributes and operations of the classes of this group are
also added or removed. The addition or removal of this
group of classes may not affect the internal of other
classes in the original design pattern applications. For
example, Figure 7 shows an application of the Abstract
Factory pattern with two kinds of products
(AbstractProductA and AbstractProductB). Each kind of
products has two concrete products:
ProductA1/ProductB1 and ProductA2/ProductB2,
respectively. Thus, there are two concrete factories:
ConcreteFactory1 and ConcreteFactory2. A potential
correlated classes evolution can be the addition of a new
kind of concrete products (ProductA3 and ProductB3).
This requires the addition of a new concrete factory
(ConcreteFactory3) to create the corresponding newly
added concrete products. This new concrete factory
class also has the same operations (createProductA and
createProductB) as the other two concrete factory
classes as shown in Figure 8.

ConcreteFactory1
createProductA()
createProductB()

ProductA1 ProductA2

AbstractProductA

AbstractFactory

ConcreteFactory2
createProductA()
createProductB()

AbstractProductB

ProductB1 ProductB2

Figure 7 Abstract Factory Pattern with Two Kinds of

Products Created by Two Concrete Factories

AbstractProductA

ConcreteFactory1
createProductA()
createProductB()

ProductA1 ProductA2

AbstractFactory

ConcreteFactory2
createProductA()
createProductB()

AbstractProductB

ProductB1 ProductB2

ConcreteFactory3
createProductA()
createProductB()

ProductA3 ProductB3

Figure 8 Abstract Factory Pattern with Three Kinds of

Concrete Products Created by Three Concrete Factories

ConcreteFactory1
createProductA()
createProductB()
createProductC()

ProductA1 ProductA2

AbstractProductA

AbstractFactory

ConcreteFactory2
createProductA()
createProductB()
createProductC()

AbstractProductB

ProductB1 ProductB2

AbstractProductC

ProductC1 ProductC2

Figure 9 Abstract Factory Pattern with Three Kinds of

Products Created by Two Concrete Factories

The fifth kind of pattern-level evolution is called

correlated attributes/operations change which is the
addition or removal of a group of classes. This change
also requires the addition or removal of some attributes
or operations in the classes of the original pattern
applications. For the same example shown in Figure 7, a
potential correlated attributes/operations evolution can
be the addition of a new kind of product
(AbstractProductC with ProductC1 and ProductC2).
This requires the addition of the createProductC
operation in all concrete factory classes
(ConcreteFactory1 and ConcreteFactory2). The
corresponding generalization and realization
relationships are also added as shown in Figure 9.

All five kinds of pattern-level evolutions are
summarized in Table 2.

Table 2 Summary of Pattern Level Evolution
Evolution Names Description
1 Independent Addition or removal of one independent class and the corresponding relationships

between this class and the classes in the original pattern.
2 Packaged Addition or removal of one independent class with attributes and/or operations and the

corresponding relationships between this class and the classes in the original pattern.
3 Class group Addition or removal of one attribute/operation in several different classes consistently.
4 Correlated classes Addition or removal of a group of correlated classes.
5 Correlated

attributes/operations
Addition or removal of a group of classes and addition or removal of some attributes or
operations in the classes of the original pattern applications.

Table 3 The Evolutions of Design Patterns
Design Pattern Name Pattern-Level Evolutions
Abstract Factory 4,5
Builder 4,5
Factory Method 4
Prototype 2
Singleton N/A
Adapter 4,5
Bridge 2
Composite 2
Decorator 2,3
Façade 1
Flyweight 2
Proxy 4
Chain of Responsibility 2
Command 4
Interpreter 2
Iterator 4
Mediator 1
Memento 3
Observer 2,3
State 2
Strategy 2
Template Method 2,3
Visitor 2,5

3.3 Categorization of Pattern Evolutions
We studied the types of pattern evolutions of the

design patterns listed in [9]. The result is shown in
Table 3. For each design pattern, all possible evolution
types of the design pattern are listed in the “Pattern-
Level Evolutions” column. Consider the Abstract
Factory pattern, for instance, one possible evolution is
shown in Figure 8, which is classified as the fourth type
of pattern-level evolution (correlated classes in Table 2).
In this type of evolution, the addition of a new set of
concrete products (ProductA3 and ProductB3) results in
the addition of ConcreteFactory3 class. The other
possible evolution is the fifth type (correlated
attributes/operations) of pattern-level evolution as, for

example, depicted in Figure 9. The addition of a new set
of concrete products (ProductC1 and ProductC2) results
in the addition of AbstractProductC class and the
addition of operation (createProductC()) in the existing
classes, ConcreteFactory1 and ConcreteFactory2. Thus,
the Abstract Factory pattern may have the fourth and
fifth types of possible pattern-level evolutions. Since the
application of the Singleton pattern is not typically
intended to evolve, it is labeled “N/A”.

4. Automating the Pattern Evolution by
Model Transformation

In the previous section, we introduce two levels of
evolutions: primitive level and pattern level. We also
explicitly describe the evolution processes of several
design patterns in terms of the two-level evolutions. In
order to automate the evolution process, we use the
XSLT processor to transform from one UML model of a
design pattern into the evolved UML model of the
design pattern. More specifically, we translate the UML
model of a design pattern into the XMI format and
describe our two-level evolutions as XSLT
transformation rules. Using an XSLT processor, design
pattern evolutions can be automated by transforming
from the original UML model of a design pattern to the
destination UML model of the pattern.

Although there are several model transformation
languages available currently, such as MDR (MetaData
Repository from Sun [22]) and EMF (Eclipse Modeling
Framework from IBM [30]), we choose XSLT to be our
modeling transformation language due to the following
reasons. First, current modeling languages are mostly
based on MOF QVT, which is not yet finally
standardized. Each modeling transformation language
interprets the QVT in a different way. Second, since we
are dealing with the primitive-level transformation,
which is the basis of higher level transformations, i.e.,
pattern-level transformations, it is intuitive to use some
basic type of model transformation language such as
XSLT. Thus, we can define the semantic meaning of
these primitive-level pattern transformations.

Table 4 The Primitive-Level Evolutions in XMI

Evolutions Subtags of <XMI.Add> and <XMI.Delete>
class <UML:Class name = “…” />
attribute <UML:Attribute attributeName = “…” className = “...” />
operation <UML:Operation operationName = “…” className = “...” />
association <UML:Association associationEnd1 = “…”associationEnd2 = “...” />
generalization <UML:Generalization child = “…” parent = “...” />
aggregation <UML:Aggregation wholeName = “…” partName = “...” />
composition <UML:Composition wholeName = “…” partName = “...” />
realization <UML:Realization fromName = “…” toName = “...” />
dependency <UML:Dependency fromName = “…” toName = “...” />

<?xml version="1.0"?>
<xslt:transform version="1.0"
 xmlns:xslt="http://www.w3.org/1999/XSL/Transform"
 xmlns:m="http://utdallas.edu/~syang/PatternEvolution "
 exclude-result-prefixes="m"
 xmlns:UML='href://org.omg/UML/2.0'>

<xslt:include href="addClass.xslt" />
<xslt:include href="addAttribute.xslt" />
<xslt:include href="addAttribute.xslt" />
<xslt:include href="addGeneraliztion.xslt" />
</xslt:transform>

<?xml version="1.0"?>
<PatternEvolution xmlns="http://utdallas.edu/~syang/PatternEvolution ">
<addClass xmlns="http://utdallas.edu/~syang/addClass">
 <file1>Observer.xml</file1>
 <file2>New_Class.xml</file2>
</addClass>
<addAttribute xmlns="http://utdallas.edu/~syang/addAttribute">
 <file1>Observer.xml</file1>
 <file2>New_Attribute1.xml</file2>
</addAttribute>
<addAttribute xmlns="http://utdallas.edu/~syang/addAttribute">
 <file1>Observer.xml</file1>
 <file2>New_Attribute2.xml</file2>
</addAttribute>
<addGeneralization xmlns="http://utdallas.edu/~syang/addGeneralization">
 <file1>Observer.xml</file1>
 <file2>New_Generalization.xml</file2>
</addGeneralization>
</PatternEvolution>

<XMI.Add>
 <UML:Class name=”ConcreteObserver3” />
</XMI.Add>

New_Class.xml

<XMI.Add>
 <UML:Attribute attributeName=”s1”
 className=”ConcreteObserver3” />
</XMI.Add>

New_Attribute1.xml

<XMI.Add>
 <UML:Attribute attributeName=”s2”
 className=”ConcreteObserver3” />
</XMI.Add>

New_Attribute2.xml

<XMI.Add>
 <UML:Generalization child=”ConcreteObserver3”
 parent=”Observer” />
</XMI.Add>

New_Generalization.xml

A) Primitive-Level Evolutions B) Pattern-Level Evolution C) XSLT Transformation Rule
Figure 10 Pattern-Level Evolution of the Observer Pattern in XSLT

4.1 Primitive-Level Evolutions in XSLT
In this section, we describe the representations of the

primitive-level evolution processes based on XSLT
transformation rules. In particular, every primitive-level
evolution shown in Table 1 can be represented in XMI
by using XMI tags. More specifically, the addition or
removal of a modeling element can be implement in
XMI by the tags <XMI.Add> Subtags </XMI.Add> and
<XMI.Delete> Subtags </XMI.Delete>, respectively.
Table 4 shows the subtags corresponding to the
primitive-level evolutions in Table 1. For instance, the
first primitive-level evolution Add(Class(className))
can be implemented in XMI as follows:

<XMI.Add>
 <UML:Class name = “…” />
</XMI.Add>

Therefore, suppose the new class name is
“ConcreteObserver3”. The first primitive-level
evolution is implemented in the XML file
“New_Class.xml” in Figure 10(A) that also shows some
other primitive-level evolutions, such as the additions of
two attributes and one generalization relationship.

In our approach, every primitive-level evolution has
a corresponding XSLT transformation rule which can
add/remove the corresponding modeling element to the
original UML model in XMI format. Thus, the pattern-
level evolution is a sequence of primitive-level
evolutions as, for example, defined in Figure 10(B),
where the <addClass> tag describes the addition of a
class by merging the original UML model (<file1>) and
the new class (<file2>). Similarly, the <addAttribute>
and <addGeneralization> tags describe the additions of
an attribute and a generalization relationship,
respectively.

4. Pattern-Level Evolutions in XSLT
The pattern-level evolutions are represented in XMI

similarly by grouping the XMI specifications of the

corresponding primitive-level evolutions. For example,
the second kind of pattern-level evolution (packaged
evolution) can be implemented in XMI as shown in
Figure 10 (B), where a new class named
“ConcreteObserver3” is added into the original
application of the Observer pattern. The two attributes:
s1 and s2 of the ConcreteObserver3 class are also
added. In addition, the generalization relationship
between the ConcreteObserver3 and Observer classes
are added with the ConcreteObserver3 class as a child
and the Observer class as a parent. Every model element
to be added is expressed in a separate XML file, e.g.,
the “ConcreteObserver3” class is defined in the file
named “New_Class.xml”, which corresponds to the
primitive-level evolution of “add a class” defined in
Table 4.

For each pattern-level evolution, there are a group
of XSLT transformation rules associated, which can
add/remove the model elements corresponding to this
pattern-level evolution into/from the original UML
model in XMI format. Figure 10(C), for instance, shows
the XSLT transformation rules of the packaged
evolution for the Observer pattern, which adds four
model elements, a class, two attributes, and a
generalization relationship, into the original application
of the Observer pattern as shown in Figure 4. The
evolution result is shown in Figure 5. The
“addClass.xslt” file describes the transformation rules
on how to add the new class (New_Class.xml) into the
original Observer pattern application (Observer.xml). It
locates these two XML files by looking for the <file1>
and <file2> tags in the <addClass> tag from the pattern-
level evolutions as, e.g., described in Figure 10(B).
Similarly, the “addAttribute.xslt” and
“addGeneralization.xslt” files describe the
transformation rules for the additions of the attributes
and generalization, respectively. These XSLT files can
be reused in any corresponding transformation requests.

For brevity, we omit the detailed contents of these
XSLT files.

5. System Consistency Check
After a system design evolves, we need to ensure

that the evolved design persists the same structural
properties as the original system (assuming that the
original system design has proper structural properties).
There are two possible ways that the structural
properties of the system are affected due to the system
evolutions. First, the structure properties of design
patterns applied in the system design no longer hold
after the system evolution. When a new concrete
product is added into the Abstract Factory pattern
application, for example, the corresponding Concrete
Factory class should also be added into the pattern
application. Otherwise the structure properties of the
Abstract Factory pattern no longer hold. Our approach
can avoid this kind of problem by defining standard
pattern-level evolutions for each design pattern. When
the pattern application is evolution, the user may choose
a particular pattern-level evolution of the design pattern
and apply our XSLT transformations which include a
group of tasks. For the Abstract Factory pattern
example, the addition of a concrete product is grouped
with the addition of the corresponding concrete factory
such that the user may not miss either of them.
Second, the evolution of a design may introduce the
structural inconsistencies into the system even though
the structural properties of a certain pattern still hold.
For example, the introduction of a group of classes and
generalization relationships into a design may result in a
circular generalization in the design, i.e., class A is a
subclass of class B which is a subclass of class C which
is a subclass of A. Our transformation rules do not
prevent this kind of inconsistencies. Thus, we need to
perform system inconsistency check after the system
evolution.

We use the Java Theorem Prover (JTP) [8][31], a
knowledge based reasoning system, to perform
consistency checking. In JTP, a system design model is
first represented as a knowledge base in the Resource
Description Framework (RDF) [32] and Resource
Description Framework Schema (RDFS) format. The
system properties are then expressed in JTP in term of
queries. These system properties can be proved or
disproved using the JTP reasoner.

In order to use JTP to prove system properties, we
need to convert the XMI file corresponding to the
system design into RDF/RDFS format. In RDF/RDFS, a
class is defined in <rdfs:Class> tag with rdf:ID as its
attribute. The value of the attribute of <rdfs:Class>
defines the class name. The generalization relationship
is defined in <rdfs:subClassOf> tag. The association

relationship is considered as a property of the class. For
instance, Figure 11 shows a partial knowledge base of
the Observer pattern in RDF/RDFS format. Lines 1 and
2 define classes Subject and Observer, respectively.
Lines 3 to 5 define class ConcreteSubject, which is a
subclass of Subject. Lines 6 through 9 define an
association between classes Subject and Observer.

1 <rdfs:Class rdf:ID="Subject"/>
2 <rdfs:Class rdf:ID="Observer"/>
3 <rdfs:Class rdf:ID="ConcreteSubject">
4 <rdfs:subClassOf rdf:resource="#Subject"/>
5 </rdfs:Class>
6 <rdf:Property rdf:ID="{Subject-Observer}_Subject-to-Observer">
7 <rdfs:domain rdf:resource="#Subject"/>
8 <rdfs:range rdf:resource="#Observer"/>
9 </rdf:Property>

Figure 11 Representing Design Pattern in RDF/RDFS

The properties of the system are expressed as
queries in JTP, which are represented by a triple. More
complicated queries may have logical operators, such as
“and”, “or”, “not”. Figure 12 shows an example of the
query in JTP, which tests whether there is circular
inheritance in the design, i.e., the class ConcreteSubject
is a subclass of the class Subject which is also a
subclass of the class ConcreteSubject.

(and (|http://www.w3.org/2000/01/rdf-schema#|::|subClassOf| |file:/F:/syang/JTP/
observer.xml#|::|ConcreteSubject| |file:/F:/syang/JTP/observer.xml#|::|Subject|)
(|http://www.w3.org/2000/01/rdf-schema#|::|subClassOf| |file:/F:/syang/JTP/
observer.xml#|::|Subject| |file:/F:/syang/JTP/observer.xml#|::|ConcreteSubject|))

Figure 12 A Query in RDF/RDFS

The proofs of the properties of a system can be
done by invoking the “ask” command in JTP which
asserts the query based on the knowledge base of the
system design. The result of the query shows either
success or failure. Figure 13 shows the proof of the
query shown in Figure 12. The query is failed according
to the system, which means that there is no circular
inheritance in the system design.

6. Related Work
The evolution processes of design patterns have been

studied in [1][6], where Prolog [4] is used to capture the
structural evolution processes of design patterns. The
structural aspect of a design pattern is described in terms
of Prolog facts. Thus, the evolution of a design pattern
application can be achieved by the addition or removal
of new or old Prolog facts. The evolution processes are
defined as Prolog rules. In this paper, we describe the
evolution process as model transformations based on
XMI and XSLT in terms of two-level evolutions.

Design pattern evolutions in software development
processes are also discussed in [13], where software
development processes are considered as the evolutions
of analysis and design patterns. The evolution rules are
specified in Java-like operations to change the structure
of patterns. Although some primitive-level evolution

Figure 13 Property Proving in JTP

rules are introduced, there is no discussion on pattern-
level evolution rules. In addition, our approach
automates the evolutions based on model
transformations by XSLT.

Noda et al. [16] consider design patterns as a
concern that is separated from the application core
concern. Thus, an application class may assume a role in
a design pattern by weaving the design pattern concern
into the application class using Hyper/J [21]. Due to the
separation of concerns, an application class may assume
different roles in different design patterns. The change
of roles that an application class plays i.e., the change of
design patterns, becomes a relative simple task. The
main goal of their evolution of design pattern is to the
replacement of one pattern by another. In contrast, our
design pattern evolution refers to the internal changes of
a design pattern application. In addition, the practical
application of their approach is left as a mystery.

Improving software system quality by applying
design patterns in existing systems has been discussed
in [3]. When the user selects a design pattern to be
applied in a chosen location of a system, automated
application is supported by applying transformations
corresponding to the minipatterns. The main goal of
their software evolution is to apply design patterns in
existing systems, whereas our evolution goal is to
change the design patterns that have already applied in a
system.

A generic XMI-based transformation infrastructure
of UML models has been presented in [14]. This allows
the user to select a predefined generic XML-based
transformation and configure its parameters. Unlike this
work, we concentrate on the XMI-based transformations
for design pattern evolution.

The tool support for UML model evolution is
provided in [12], which is also based on XMI. The
design and development of the tool applies several
design patterns. In contrast, we focus on the evolution
of design patterns, instead of the evolution of UML
models.

Experiments have been conducted in [5] to show that
XMI can be used to transform the UML models into
other modeling languages, such as SQL. The
implementation of the XMI-based transformation uses
XSLT. We base on these experiments and use XSLT to
implement the transformations.

Kalnins et al. [10][11] proposed a graphical
procedural transformation language MOLA. The model
transformation defined by MOLA is a sequence of
graphical statements linked by arrows. MOLA is more
suitable to the transformation between two models, such
as transformation from UML diagram to RDBMS
schema. Other model transformation languages, such as
QVT-Merge[25], ATL[18], MTF[24], Tefkat[26], and
Fujaba Story diagrams (SDM)[20], which are either
textual or graphical languages, address the
transformation from one model to another. Muller et
al. [15] also proposed a model transformation language
(Kermeta) to better describe the behavioral aspect of
model transformation. In contrast, our purpose is to
describe the pattern evolution and automate this process.
Thus, it is better to use some low lever transformation
language such as XSLT to achieve the goal.

7. Conclusions
Since the evolution information of a design pattern is

generally implicit in the descriptions of the pattern, a
designer has to dig into the pattern descriptions to
understand the particular ways of evolutions
encapsulated in design patterns. There are several
problems when the evolution information is implicit:
first, it is hard for the designer to take advantage of the
benefits of using a design pattern when changes are
needed. Second, the evolution of a design pattern
generally involves several classes and relationships.
Missing one part may cause inconsistencies and errors
in the design which are difficult to find and correct.
Third, the evolution processes are not reusable if not
documented. As discussed previously, many of the
evolution processes recur in different patterns.

In this paper, we characterize two-level
transformations: the primitive level and the pattern
level and explicitly describe design pattern evolutions
using these two-level transformations. We also
implement the transformation based on XMI using a
XSLT processor. The evolutions of each design pattern
are defined as XSLT transformation rules. In addition,
we use JTP to check the constraints of evolutions of
each design pattern after evolutions.

We will investigate the model transformation
techniques based on Query, View, Transformation
(QVT) that is a forthcoming OMG standard allowing
users to query, establish and maintain views, and
transform MOF models. Many groups have submitted
their proposals and they are still competing. There are
also model transformation tools available, such as
Model Transformation Framework from IBM [30] of
which we can take advantage. When the QVT is
standardized by OMG, we will apply the QVT
techniques for the transformation of design patterns.
Moreover, a case study to illustrate our approach is in
our forthcoming work.

Acknowledgement
The authors would like to thank the anonymous

reviewers for the helpful comments.

References
[1] P. Alencar, D. Cowan, J. Dong, and C. Lucena, A

Pattern-Based Approach to Structural Design
Composition, Proceedings of the IEEE 23rd Annual
International Computer Software & Applications
Conference, pp160-165, Phoenix USA, October 1999.

[2] G. Booch, J. Rumbaugh, I. Jacobson. The Unified
Modeling Language User Guide, Addison-Wesley, 1999.

[3] M. Ó Cinnéide and P. Nixon. Automated Software
Evolution Towards Design Patterns, Proceedings of the
International Workshop on the Principles of Software
Evolution, pp162-165, Vienna, Austria, September, 2001.

[4] W. F. Clocksin and C.S. Mellish. Programming in Prolog.
Berlin: Springer-Verlag, 1987.

[5] B. Demoth, H. Hussmann, and S. Obermaier.
“Experiments with XML-based Transformations of
Software Models”, Workshop on Transformations in
UML (ETAPS 2001 Satellite Event), Genova, Apr. 2001.

[6] J. Dong, P. Alencar, and D. Cowan, Ensuring Structure
and Behavior Correctness in Design Composition,
Proceedings of the 7th Annual IEEE International
Conference and Workshop on Engineering of Computer
Based Systems(ECBS), pp279-287, Edinburgh UK, 2000.

[7] J. Dong, S. Yang and D. T. Huynh, Evolving Design
Patterns Based on Model Transformation, Proceedings of
the Ninth IASTED International Conference on Software
Engineering and Applications (SEA), pp 344-350, USA,
Nov. 2005.

[8] R. Fikes, J. Jenkins, and G. Frank, JTP: A System
Architecture and Component Library for Hybrid
Reasoning. Proceedings of the Seventh World
Multiconference on Systemics, Cybernetics, and
Informatics. Orlando, Florida, USA. July 27 - 30, 2003.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[10] A. Kalnins, J. Barzdins, E. Celms. Model Transformation
Language MOLA, Proceedings of MDAFA 2004 (Model-
Driven Architecture: Foundations and Applications
2004), pp. 14-28, Linkoeping, Sweden, June 2004

[11] A. Kalnins, J. Barzdins, E. Celms. Model Transformation
Language MOLA: Extended Patterns. 6th International
Baltic Conference DB@IS 2004, IOS Press, FAIA vol.
118, 2005, pp. 169-184

[12] F. Keienburg and A. Rausch, Using XML/XMI for tool
Supported Evolution of UML Models, Proceeding of
International Conference Hawaii International
Conference on System Science, Maui, Hawaii, Jan. 2001.

[13] T. Kobayashi and M. Saeki. Software Development
Based on Software Pattern Evolution, Proceedings of the
Sixth Asia-Pacific Software Engineering Conference
(APSEC), pp 18-25, Takamatsu, Japan, 1999.

[14] J. Kovse and T. Harder, Generic XMI-Based UML
Model Transformations, Proceedings of the International
Conference on Object-Oriented Information Systems, pp.
192-198, Montpellier, Sept. 2002, Springer-Verlag.

[15] P.-A. Muller, F. Fleurey, D. Vojtisek, Z. Drey, D. Pollet,
F. Fondement, P. Studer, J.M Jezequel, On Executable
Meta_Languages Applied to Model Transformations,
Proceedings of INRIA Workshop of Model
Transformations In Practice, Jamaica, October 2005

[16] Natsuko Noda, Tomoji Kishi. Design pattern concerns for
software evolution, Proceedings of the 4th International
Workshop on Principles of Software Evolution, pp 158-
161, Vienna, Austria, 2001.

[17] ArgoUML, http://argouml.tigris.org/
[18] ATL http://www.sciences.univ-nantes.fr/lina/atl/
[19] The Attributed Graph Grammar System (AGG)

http://tfs.cs.tu-berlin.de/agg/
[20] Fujaba User Documentation http://wwwcs.uni-

paderborn.de/cs/fujaba/documents/user/manuals/FujabaD
oc.pdf

[21] Hyper/J, http://www.alphaworks.ibm.com/tech/hyperj
[22] MetaData Repository, http://mdr.netbeans.org/
[23] Model Driven Architecture. http://www.omg.org/mda/
[24] MTF http://www.alphaworks.ibm.com/tech/mtf
[25] QVT-Merge, http://www.omg.org/docs/ad/05-03-02.pdf
[26] Tefkat http://www.dstc.edu.au/Research/Projects

/Pegamento/tefkat/
[27] W3C, Extensible Markup Language (XML),

http://www.w3.org/
[28] W3C, XSL Transformations (XSLT), http://www.w3.org/
[29] Rational Rose website. http://www.rational.com/
[30] IBM, http://www-128.ibm.com/developerworks/rational/

library/05/503_sebas/
[31] JTP, http://www.ksl.stanford.edu/software/JTP/
[32] RDF, http://www.w3.org/RDF/

