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Abstract 
 
The evolution of a design pattern typically involves 

the addition or removal of a group of modeling 
elements, such as classes, attributes, operations, and 
relationships. However, the possible evolutions of each 
design pattern are often not explicitly documented. 
Missing part of the evolution process may result in 
inconsistent evolution. In this paper, we define the 
evolution processes of design patterns in terms of two-
level transformations, thus making the possible 
evolutions of each design pattern explicit. In addition, 
we automate the evolution processes as XSLT 
transformations that can transform the UML model of a 
design pattern application into the evolved UML model 
of the pattern. Both the original and evolved UML 
models are represented in the XML Metadata 
Interchange (XMI) format to facilitate the 
transformations. Furthermore, we check the consistency 
of the evolution results using the Java Theorem Prover. 
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1. Introduction 
Computer-based systems are normally needed to be 

amenable to changes due to constant changes of user 
requirements, platforms, technologies and 
environments. Change is a constant theme of computer-
based design and development. It can be a disaster if a 
single change may cause a large number of changes in 
the systems. It is important to localize the changes such 
that minimum efforts are needed. This requires the 
initial designers of a computer-based system to be aware 
of potential changes. Thus, the resulting systems are 
flexible and agile to future evolution. 

One of the important goals of design patterns [9] is 
design for change. Design patterns capture expert 
design experience by partitioning software designs into 
a stable part and changeable part. By separating and 
encapsulating both parts, the change impact of a 
software design can be minimized. Thus, most of the 

design patterns encapsulate future changes that may 
only affect limited part of a design pattern. This 
evolution process can be achieved by adding or 
removing design elements in existing design patterns. In 
the document of each design pattern, however, the 
evolution information is generally not explicitly 
specified. When changes are needed, a designer has to 
read between the lines of the document of a design 
pattern to figure out the correct ways of changing the 
design. More importantly, the evolution process of a 
design pattern may involve the addition or removal of 
several parts of a design pattern. Misunderstanding of a 
design pattern may result in missing parts of the 
evolution process. The addition and removal of system 
parts should not violate the constraints and properties of 
design patterns. Thus, it is important to have, in the 
documentation of the design pattern, information about 
the evolution of the patterns. The evolution of a 
software system at the design level is less costly than it 
is at the implementation level. 

To raise the level of abstraction, the Model Driven 
Architecture (MDA) [17] supports software 
development based on models as primary artifacts. 
Thus, the level of reuse is raised accordingly since high-
level software models can be reused as well as software 
programs (libraries). In this way, models become assets 
in MDA. Consequently, technology that supports the 
transformation of models is considered as a key enabler 
of MDA. Design patterns are usually modeled in the 
Unified Modeling Language (UML) [2] which is 
considered to be the de facto standard for object-
oriented modeling. The evolution of a pattern may be 
considered as a transformation of the design model. 

The XML Metadata Interchange (XMI) [27] is an 
interchange format for metadata in terms of the Meta 
Object Facility (MOF) [17]. XMI specifies how UML 
models are mapped into a XML file. By representing a 
UML model in the XML format, the UML model can be 
manipulated since there are rich collections of XML 
related techniques and tools available. The extensible 
stylesheet language transformation (XSLT) [28] 
provides the transformation from a XML document to 
other types of documents (including XML). The use of 
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Figure 1 The Overall Architecture of the Approach 

XMI and XSLT helps to automate model transformation 
process and enforces constraints of model implicitly. 

To capture the evolution processes of design 
patterns, we define two-level evolutions: the primitive 
level and the pattern level. The primitive-level 
evolutions are the addition or removal of modeling 
elements, such as classes and relationships. The pattern-
level evolutions characterize the recurring evolutions of 
each design pattern based on the primitive-level 
evolutions. Meanwhile, the evolution processes are 
implemented based on XMI format to transform the 
UML models of design pattern applications. Thus, the 
structure of a design pattern may be evolved in some 
prescribed ways based on the pattern-level 
transformation. The evolution processes of design 
patterns are specified as XSLT transformation rules. We 
also provide tool support to automate such 
transformations. In order to assure the essential 
properties of a design pattern still hold after the 
evolutions, we use the Java Theorem Prover (JTP) 
[8][31] to check the consistency of the designs after the 
evolution processes.  

The remainder of this paper is organized as follows: 
the next section describes an overview of our approach. 
Section 3 defines the primitive-level and pattern-level 
evolutions. Section 4 presents the design pattern 
evolutions as model transformations based on XMI and 
XSLT transformation rules. Section 5 discusses the 
consistency checking using JTP. The last two sections 
cover related work and conclusions. 

2. Overview of the approach 
Figure 1 depicts the overall architecture of our 

approach for automated evolutions of design patterns 
based on model transformation and thereafter checking 
the system consistency.  

A software design with the applications of design 
patterns is normally modeled using the UML and drawn 
using UML tools, such as IBM Rational Rose [29] or 

ArgoUML [17]. Since UML diagrams are typically 
saved in proprietary formats of the corresponding UML 
tools, a standard XMI format of the UML diagrams has 
been defined and the plug-in of these UML tools has 
been developed to export UML diagrams into the XMI 
format. For example, the plug-in of IBM Rational Rose 
is called UniSys which can translate UML diagrams into 
XMI format.  

In order to automatically evolve design patterns, we 
define two-level evolutions (primitive level and pattern 
level) as discussed in the next section. We also specify 
these two-level evolutions as transformation rules in 
XSLT. These transformation rules define which 
modeling elements are changed (added or removed) and 
where and how these elements are changed.  

The transformation program is an XSLT processor 
which can automatically transform the UML model of a 
design pattern based on the transformation rules. The 
input of the XSLT processor is the original UML model 
which has been converted into XMI format. It records 
all the model elements, such as classes, attributes, 
operations, and their relationships in the original UML 
model of a design pattern. The XSLT processor has 
built-in transformation rules which are written in XSLT. 

The transformation rules specify how the model 
elements are changed (added or removed) from the 
original system design. The XSLT processor takes the 
input and performs the following two actions. First, all 
model elements to be added into or removed from the 
UML model are generated. Second, the generated model 
elements are added into or removed from the original 
system design at the required positions according to the 
built in XSLT transformation rules. The output of the 
XSLT processor is the transformed UML model of a 
design pattern in XMI format, which can be imported 
and transformed into a UML class diagram that can be 
displayed by, e.g., IBM Rational Rose.  

 



Table 1 The Primitive-Level Evolutions 
Model Elements  Parameter List Descriptions 
Class className Add or remove a class with name “className” into a pattern 
Attribute attributeName, className, 

type, accessibility 
Add or remove an attribute with name “attributeName”, type of 
“type”, accessibility of “accessibility” into the class “className” 

Operation operationName, className, 
returnType, accessibility, 
para1, paraType1… 

Add or remove an operation with name “operationName”, type 
of “type”, accessibility of “accessibility”, and arguments list 
para1 with type “paraType1” into the class “className” 

Association className1, className2 Add or remove an association between classes “className1” and 
“className2” into a pattern 

Generalization child, parent Add or remove a generalization relationship into a pattern, with 
subclass “child” and superclass “parent” 

Aggregation part, whole Add or remove an aggregation relationship into a pattern, “part” 
class is a part of “whole” class 

Composition part, whole Add or remove a composition relationship into a pattern, “part” 
class is a part of “whole” class 

Realization fromName, toName Add or remove a realization relationship from class “fromName” 
to class “toName” into a pattern 

Dependency fromName, toName Add or remove a dependency relationship from class 
“fromName” to class “toName” into a pattern 

When a software system is evolved and changed, the 
integrity and consistency of the system should be 
maintained. Some properties may not hold anymore 
after the changes and evolutions. Thus, we need to 
check that the evolved system has the same properties as 
the original one. In order to check the consistency of the 
evolved design, as shown in Figure 1, the evolved 
design is first converted into RDF/OWL [32] format 
from the XMI format. Therefore, the consistency 
checking facility, such as JTP [31], can be used to 
perform the system consistency checking.  

3. Two-level design pattern evolutions 
A design pattern normally encapsulates some 

particular ways for future changes. After a design 
pattern is applied in a software application, the designer 
may change the application design in the particular 
ways directed by the design pattern. The evolution 
information of each design pattern allows the designers 
to change the system design with minimum impact of 
other parts of the system. For example, Figure 2 shows 
the class diagram of the Mediator pattern [9]. When the 
Mediator pattern is applied initially, there may be only 
two concrete colleague classes. A change may request 
an additional concrete colleague class later as shown in 
Figure 3. However, such evolution information of each 
design pattern is normally implicit to the description of 
the pattern. A designer has to search the document of 
the pattern to find the guidance on evolution. 
Misunderstanding and mistakes of changing the design 
patterns may compromise the benefits of using these 
patterns and have huge impact on the system designs.  

In this section, we describe a classification of design 
pattern evolutions in terms of two-level transformations: 
the primitive-level evolution and the pattern-level 
evolution.  

3.1 Primitive-Level Evolutions 
The primitive-level evolution describes the basic 

transformations that can be performed during the 
evolution process of a design pattern. These basic 
transformations include the addition or removal of a 
modeling element, such as class, operation, attribute, 
association, generalization, aggregation, composition, 
realization, and dependency. These basic 
transformations become the building blocks of the 
pattern-level evolution. 

We identify nine modeling elements that can be 
added or deleted as the basic transformations in the 
pattern evolution process. The general format of adding 
a modeling element is Add (ME (PL)). The model 
elements (ME) and the parameter list (PL) are shown in 
Table 1. For example, adding a class named “Leaf” can 
be specified: Add (Class (Leaf)). Similarly, the removal 
of a modeling element can be specified: Delete (ME 
(PL)). The replacement of a model element with another 
is conducted by first removing the modeling element 
and then adding a new modeling element. It can be 
defined: Delete (ME1 (PL1)) + Add (ME2 (PL2)). 

3.2 Pattern-Level Evolutions 
The pattern-level evolution characterizes the 

recurring evolution processes which occur in many 
design patterns. It is described in terms of a sequence of 



the basic primitive-level evolutions. Each design pattern 
may perform some of the pattern-level evolutions, 
which can be added in the document of the pattern. 
Thus, the designer may choose a potential pattern-level 
evolution and apply the corresponding transformations 
when changes are required. 

In this section, we characterize five pattern-level 
evolutions that are recurring in different design patterns. 
Note that we do not claim this to be a complete list of all 
possible pattern-level evolutions. Nevertheless, new 
pattern-level evolutions can be easily added into the list 
specified by the primitive-level evolutions. 

The first pattern-level evolution is called 
independent change which is a simple addition or 
removal of one independent class and the corresponding 
relationships between this class and the classes in the 
original pattern. This class is independent in the sense 
that the addition or removal of the class does not cause 
any effects on the existing classes of the design. This 
kind of pattern-level evolution can be expressed in the 
primitive level evolutions as follows1:  

Add ( Class (className)) + 
Add ( Relationship (className, existingClassName))  

where className is the name of the class which is 
added into the pattern. Relationship includes 
association, generalization, aggregation, composition, 
realization, and dependency. The existingClassName is 
the name of the class from the original pattern. There 
may be multiple relationships added into the pattern 
with the addition of a class. 

This kind of evolution appears in several design 
patterns as, for example, in the Mediator and Facade 
patterns. Figure 2 is the class diagram of the Mediator 
pattern describing a possible application containing two 
ConcreteColleague classes. A potential evolution of this 
pattern application is to add a new ConcreteColleague 
class, which can be defined as the following 
transformations based on the primitive-level evolutions:  

Add ( Class (ConcreteColleague)) + 
Add ( Generalization (ConcreteColleague, Colleague)) +
Add ( Dependency (ConcreteMediator, ConcreteColleague))  

where a new ConcreteColleague class is added with two 
new relationships: generalization and dependency. The 
generalization relationship is with the Colleague class. 
The dependency relationship is on the 
ConcreteMediator class. The result of this evolution is 
shown in Figure 3. 

                                                 
1 Since the addition and removal have the same format and 

the only difference is the transformation names (Add and 
Delete), we omit the evolutions of removing modeling 
elements. We also omit the specifications of the next four 
kinds of evolutions. We refer to [7] for interested readers.  
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Figure 2 Mediator Pattern with Two Concrete Colleagues 
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Figure 3 Mediator Pattern with Three Concrete Colleagues 

The second pattern-level evolution is called 
packaged change which is the addition or removal of 
one independent class and the corresponding 
relationships between this class and the classes in the 
original pattern. In addition, certain attributes and/or 
operations of this class are added and removed 
accordingly. For example, Figure 4 is the class diagram 
of the Observer pattern describing a possible application 
containing one ConcreteSubject and two 
ConcreteObserver classes. A potential packaged 
evolution of this pattern application is to add a new 
ConcreteObserver class (ConcreteObserver3) with its 
attributes (s1 and s2) as shown in Figure 5. 
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Figure 4 Observer Pattern with Two Concrete Observers 
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Figure 5 Observer Pattern with Three Concrete Observers 
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Figure 6 Observer Pattern with Three Attributes 

The third kind of pattern-level evolution is called 
class group change which is the addition or removal of 
one attribute/operation in several different classes 
consistently. In this case, a certain set of classes, instead 
of a single class, are affected by the addition or removal 
of the attribute or operation. One potential class group 
evolution of the Observer example in Figure 4 is to add 
one attribute called s3 as a new data to be observed by 



the observers. Thus, this attribute needs to be added in 
all ConcreteSubject and ConcreteObserver classes, 
which is shown in Figure 6.  

The fourth kind of pattern-level evolution is called 
correlated classes change which is the addition or 
removal of a group of correlated classes. When certain 
classes are added or removed, some other classes have 
to be added or removed accordingly. These 
correspondence relations are important since missing 
transformations may cause inconsistency. In addition, 
the corresponding relationships between this group of 
classes and other classes are added or removed. The 
attributes and operations of the classes of this group are 
also added or removed. The addition or removal of this 
group of classes may not affect the internal of other 
classes in the original design pattern applications. For 
example, Figure 7 shows an application of the Abstract 
Factory pattern with two kinds of products 
(AbstractProductA and AbstractProductB). Each kind of 
products has two concrete products: 
ProductA1/ProductB1 and ProductA2/ProductB2, 
respectively. Thus, there are two concrete factories: 
ConcreteFactory1 and ConcreteFactory2. A potential 
correlated classes evolution can be the addition of a new 
kind of concrete products (ProductA3 and ProductB3). 
This requires the addition of a new concrete factory 
(ConcreteFactory3) to create the corresponding newly 
added concrete products. This new concrete factory 
class also has the same operations (createProductA and 
createProductB) as the other two concrete factory 
classes as shown in Figure 8.  
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Figure 7 Abstract Factory Pattern with Two Kinds of 

Products Created by Two Concrete Factories 
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Figure 8 Abstract Factory Pattern with Three Kinds of 

Concrete Products Created by Three Concrete Factories 
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Figure 9 Abstract Factory Pattern with Three Kinds of 

Products Created by Two Concrete Factories 

 
The fifth kind of pattern-level evolution is called 

correlated attributes/operations change which is the 
addition or removal of a group of classes. This change 
also requires the addition or removal of some attributes 
or operations in the classes of the original pattern 
applications. For the same example shown in Figure 7, a 
potential correlated attributes/operations evolution can 
be the addition of a new kind of product 
(AbstractProductC with ProductC1 and ProductC2). 
This requires the addition of the createProductC 
operation in all concrete factory classes 
(ConcreteFactory1 and ConcreteFactory2). The 
corresponding generalization and realization 
relationships are also added as shown in Figure 9.  

All five kinds of pattern-level evolutions are 
summarized in Table 2.  

Table 2 Summary of Pattern Level Evolution 
# Evolution Names Description 
1 Independent Addition or removal of one independent class and the corresponding relationships 

between this class and the classes in the original pattern. 
2 Packaged Addition or removal of one independent class with attributes and/or operations and the 

corresponding relationships between this class and the classes in the original pattern. 
3 Class group Addition or removal of one attribute/operation in several different classes consistently. 
4 Correlated classes Addition or removal of a group of correlated classes. 
5 Correlated 

attributes/operations 
Addition or removal of a group of classes and addition or removal of some attributes or 
operations in the classes of the original pattern applications. 



Table 3 The Evolutions of Design Patterns 
Design Pattern Name Pattern-Level Evolutions 
Abstract Factory 4,5 
Builder 4,5 
Factory Method 4 
Prototype 2 
Singleton N/A 
Adapter 4,5 
Bridge 2 
Composite 2 
Decorator 2,3 
Façade 1 
Flyweight 2 
Proxy 4 
Chain of Responsibility 2 
Command 4 
Interpreter 2 
Iterator 4 
Mediator 1 
Memento 3 
Observer 2,3 
State 2 
Strategy 2 
Template Method 2,3 
Visitor 2,5 

3.3 Categorization of Pattern Evolutions 
We studied the types of pattern evolutions of the 

design patterns listed in [9]. The result is shown in 
Table 3. For each design pattern, all possible evolution 
types of the design pattern are listed in the “Pattern-
Level Evolutions” column. Consider the Abstract 
Factory pattern, for instance, one possible evolution is 
shown in Figure 8, which is classified as the fourth type 
of pattern-level evolution (correlated classes in Table 2). 
In this type of evolution, the addition of a new set of 
concrete products (ProductA3 and ProductB3) results in 
the addition of ConcreteFactory3 class. The other 
possible evolution is the fifth type (correlated 
attributes/operations) of pattern-level evolution as, for 

example, depicted in Figure 9. The addition of a new set 
of concrete products (ProductC1 and ProductC2) results 
in the addition of AbstractProductC class and the 
addition of operation (createProductC()) in the existing 
classes, ConcreteFactory1 and ConcreteFactory2. Thus, 
the Abstract Factory pattern may have the fourth and 
fifth types of possible pattern-level evolutions. Since the 
application of the Singleton pattern is not typically 
intended to evolve, it is labeled “N/A”. 

4. Automating the Pattern Evolution by 
Model Transformation 

In the previous section, we introduce two levels of 
evolutions: primitive level and pattern level. We also 
explicitly describe the evolution processes of several 
design patterns in terms of the two-level evolutions. In 
order to automate the evolution process, we use the 
XSLT processor to transform from one UML model of a 
design pattern into the evolved UML model of the 
design pattern. More specifically, we translate the UML 
model of a design pattern into the XMI format and 
describe our two-level evolutions as XSLT 
transformation rules. Using an XSLT processor, design 
pattern evolutions can be automated by transforming 
from the original UML model of a design pattern to the 
destination UML model of the pattern.   

Although there are several model transformation 
languages available currently, such as MDR (MetaData 
Repository from Sun [22]) and EMF (Eclipse Modeling 
Framework from IBM [30]), we choose XSLT to be our 
modeling transformation language due to the following 
reasons. First, current modeling languages are mostly 
based on MOF QVT, which is not yet finally 
standardized. Each modeling transformation language 
interprets the QVT in a different way. Second, since we 
are dealing with the primitive-level transformation, 
which is the basis of higher level transformations, i.e., 
pattern-level transformations, it is intuitive to use some 
basic type of model transformation language such as 
XSLT. Thus, we can define the semantic meaning of 
these primitive-level pattern transformations.

 
Table 4 The Primitive-Level Evolutions in XMI 

Evolutions Subtags of <XMI.Add> and <XMI.Delete> 
class <UML:Class name = “…” /> 
attribute <UML:Attribute attributeName = “…” className = “...”  /> 
operation <UML:Operation operationName = “…” className = “...”  /> 
association <UML:Association associationEnd1 = “…”associationEnd2 = “...”  /> 
generalization <UML:Generalization child = “…” parent = “...”  /> 
aggregation <UML:Aggregation wholeName = “…” partName = “...”  /> 
composition <UML:Composition wholeName = “…” partName = “...”  /> 
realization <UML:Realization fromName = “…” toName = “...”  /> 
dependency <UML:Dependency fromName = “…” toName = “...”  /> 



<?xml version="1.0"?>
<xslt:transform version="1.0"
   xmlns:xslt="http://www.w3.org/1999/XSL/Transform"
   xmlns:m="http://utdallas.edu/~syang/PatternEvolution "
   exclude-result-prefixes="m"
   xmlns:UML='href://org.omg/UML/2.0'>

<xslt:include href="addClass.xslt" />
<xslt:include href="addAttribute.xslt" />
<xslt:include href="addAttribute.xslt" />
<xslt:include href="addGeneraliztion.xslt" />
</xslt:transform>

<?xml version="1.0"?>
<PatternEvolution xmlns="http://utdallas.edu/~syang/PatternEvolution ">
<addClass xmlns="http://utdallas.edu/~syang/addClass">
   <file1>Observer.xml</file1>
   <file2>New_Class.xml</file2>
</addClass>
<addAttribute xmlns="http://utdallas.edu/~syang/addAttribute">
   <file1>Observer.xml</file1>
   <file2>New_Attribute1.xml</file2>
</addAttribute>
<addAttribute xmlns="http://utdallas.edu/~syang/addAttribute">
   <file1>Observer.xml</file1>
   <file2>New_Attribute2.xml</file2>
</addAttribute>
<addGeneralization xmlns="http://utdallas.edu/~syang/addGeneralization">
   <file1>Observer.xml</file1>
   <file2>New_Generalization.xml</file2>
</addGeneralization>
</PatternEvolution>

<XMI.Add>
   <UML:Class name=”ConcreteObserver3” />
</XMI.Add>

New_Class.xml

<XMI.Add>
   <UML:Attribute attributeName=”s1”
    className=”ConcreteObserver3” />
</XMI.Add>

New_Attribute1.xml

<XMI.Add>
   <UML:Attribute attributeName=”s2”
   className=”ConcreteObserver3” />
</XMI.Add>

New_Attribute2.xml

<XMI.Add>
   <UML:Generalization child=”ConcreteObserver3”
   parent=”Observer” />
</XMI.Add>

New_Generalization.xml

A) Primitive-Level Evolutions B) Pattern-Level Evolution C) XSLT Transformation Rule  
Figure 10 Pattern-Level Evolution of the Observer Pattern in XSLT 

4.1 Primitive-Level Evolutions in XSLT 
In this section, we describe the representations of the 

primitive-level evolution processes based on XSLT 
transformation rules. In particular, every primitive-level 
evolution shown in Table 1 can be represented in XMI 
by using XMI tags. More specifically, the addition or 
removal of a modeling element can be implement in 
XMI by the tags <XMI.Add> Subtags </XMI.Add> and 
<XMI.Delete> Subtags </XMI.Delete>, respectively. 
Table 4 shows the subtags corresponding to the 
primitive-level evolutions in Table 1. For instance, the 
first primitive-level evolution Add(Class(className)) 
can be implemented in XMI as follows: 

<XMI.Add> 
 <UML:Class name = “…” /> 
</XMI.Add> 

Therefore, suppose the new class name is 
“ConcreteObserver3”. The first primitive-level 
evolution is implemented in the XML file 
“New_Class.xml” in Figure 10(A) that also shows some 
other primitive-level evolutions, such as the additions of 
two attributes and one generalization relationship. 

In our approach, every primitive-level evolution has 
a corresponding XSLT transformation rule which can 
add/remove the corresponding modeling element to the 
original UML model in XMI format. Thus, the pattern-
level evolution is a sequence of primitive-level 
evolutions as, for example, defined in Figure 10(B), 
where the <addClass> tag describes the addition of a 
class by merging the original UML model (<file1>) and 
the new class (<file2>). Similarly, the <addAttribute> 
and <addGeneralization> tags describe the additions of 
an attribute and a generalization relationship, 
respectively. 

4. Pattern-Level Evolutions in XSLT 
The pattern-level evolutions are represented in XMI 

similarly by grouping the XMI specifications of the 

corresponding primitive-level evolutions. For example, 
the second kind of pattern-level evolution (packaged 
evolution) can be implemented in XMI as shown in 
Figure 10 (B), where a new class named 
“ConcreteObserver3” is added into the original 
application of the Observer pattern. The two attributes: 
s1 and s2 of the ConcreteObserver3 class are also 
added. In addition, the generalization relationship 
between the ConcreteObserver3 and Observer classes 
are added with the ConcreteObserver3 class as a child 
and the Observer class as a parent. Every model element 
to be added is expressed in a separate XML file, e.g., 
the “ConcreteObserver3” class is defined in the file 
named “New_Class.xml”, which corresponds to the 
primitive-level evolution of “add a class” defined in 
Table 4. 

For each pattern-level evolution, there are a group 
of XSLT transformation rules associated, which can 
add/remove the model elements corresponding to this 
pattern-level evolution into/from the original UML 
model in XMI format. Figure 10(C), for instance, shows 
the XSLT transformation rules of the packaged 
evolution for the Observer pattern, which adds four 
model elements, a class, two attributes, and a 
generalization relationship, into the original application 
of the Observer pattern as shown in Figure 4. The 
evolution result is shown in Figure 5. The 
“addClass.xslt” file describes the transformation rules 
on how to add the new class (New_Class.xml) into the 
original Observer pattern application (Observer.xml). It 
locates these two XML files by looking for the <file1> 
and <file2> tags in the <addClass> tag from the pattern-
level evolutions as, e.g., described in Figure 10(B). 
Similarly, the “addAttribute.xslt” and 
“addGeneralization.xslt” files describe the 
transformation rules for the additions of the attributes 
and generalization, respectively. These XSLT files can 
be reused in any corresponding transformation requests. 



For brevity, we omit the detailed contents of these 
XSLT files. 

5. System Consistency Check 
After a system design evolves, we need to ensure 

that the evolved design persists the same structural 
properties as the original system (assuming that the 
original system design has proper structural properties). 
There are two possible ways that the structural 
properties of the system are affected due to the system 
evolutions. First, the structure properties of design 
patterns applied in the system design no longer hold 
after the system evolution. When a new concrete 
product is added into the Abstract Factory pattern 
application, for example, the corresponding Concrete 
Factory class should also be added into the pattern 
application. Otherwise the structure properties of the 
Abstract Factory pattern no longer hold. Our approach 
can avoid this kind of problem by defining standard 
pattern-level evolutions for each design pattern. When 
the pattern application is evolution, the user may choose 
a particular pattern-level evolution of the design pattern 
and apply our XSLT transformations which include a 
group of tasks. For the Abstract Factory pattern 
example, the addition of a concrete product is grouped 
with the addition of the corresponding concrete factory 
such that the user may not miss either of them.  
Second, the evolution of a design may introduce the 
structural inconsistencies into the system even though 
the structural properties of a certain pattern still hold. 
For example, the introduction of a group of classes and 
generalization relationships into a design may result in a 
circular generalization in the design, i.e., class A is a 
subclass of class B which is a subclass of class C which 
is a subclass of A. Our transformation rules do not 
prevent this kind of inconsistencies. Thus, we need to 
perform system inconsistency check after the system 
evolution.  

We use the Java Theorem Prover (JTP) [8][31], a 
knowledge based reasoning system, to perform 
consistency checking. In JTP, a system design model is 
first represented as a knowledge base in the Resource 
Description Framework (RDF) [32] and Resource 
Description Framework Schema (RDFS) format. The 
system properties are then expressed in JTP in term of 
queries. These system properties can be proved or 
disproved using the JTP reasoner.  

In order to use JTP to prove system properties, we 
need to convert the XMI file corresponding to the 
system design into RDF/RDFS format. In RDF/RDFS, a 
class is defined in <rdfs:Class> tag with rdf:ID as its 
attribute. The value of the attribute of <rdfs:Class> 
defines the class name. The generalization relationship 
is defined in <rdfs:subClassOf> tag. The association 

relationship is considered as a property of the class. For 
instance, Figure 11 shows a partial knowledge base of 
the Observer pattern in RDF/RDFS format. Lines 1 and 
2 define classes Subject and Observer, respectively. 
Lines 3 to 5 define class ConcreteSubject, which is a 
subclass of Subject. Lines 6 through 9 define an 
association between classes Subject and Observer. 

1   <rdfs:Class rdf:ID="Subject"/>
2   <rdfs:Class rdf:ID="Observer"/>
3   <rdfs:Class rdf:ID="ConcreteSubject">
4      <rdfs:subClassOf rdf:resource="#Subject"/>
5   </rdfs:Class>
6   <rdf:Property rdf:ID="{Subject-Observer}_Subject-to-Observer">
7      <rdfs:domain rdf:resource="#Subject"/>
8      <rdfs:range rdf:resource="#Observer"/>
9   </rdf:Property>

 
Figure 11 Representing Design Pattern in RDF/RDFS 

The properties of the system are expressed as 
queries in JTP, which are represented by a triple. More 
complicated queries may have logical operators, such as 
“and”, “or”, “not”. Figure 12 shows an example of the 
query in JTP, which tests whether there is circular 
inheritance in the design, i.e., the class ConcreteSubject 
is a subclass of the class Subject which is also a 
subclass of the class ConcreteSubject.  

(and (|http://www.w3.org/2000/01/rdf-schema#|::|subClassOf| |file:/F:/syang/JTP/
observer.xml#|::|ConcreteSubject| |file:/F:/syang/JTP/observer.xml#|::|Subject|)
(|http://www.w3.org/2000/01/rdf-schema#|::|subClassOf| |file:/F:/syang/JTP/
observer.xml#|::|Subject| |file:/F:/syang/JTP/observer.xml#|::|ConcreteSubject|) )

 
Figure 12 A Query in RDF/RDFS 

The proofs of the properties of a system can be 
done by invoking the “ask” command in JTP which 
asserts the query based on the knowledge base of the 
system design. The result of the query shows either 
success or failure. Figure 13 shows the proof of the 
query shown in Figure 12. The query is failed according 
to the system, which means that there is no circular 
inheritance in the system design. 

6. Related Work 
The evolution processes of design patterns have been 

studied in [1][6], where Prolog [4] is used to capture the 
structural evolution processes of design patterns. The 
structural aspect of a design pattern is described in terms 
of Prolog facts. Thus, the evolution of a design pattern 
application can be achieved by the addition or removal 
of new or old Prolog facts. The evolution processes are 
defined as Prolog rules. In this paper, we describe the 
evolution process as model transformations based on 
XMI and XSLT in terms of two-level evolutions. 

Design pattern evolutions in software development 
processes are also discussed in [13], where software 
development processes are considered as the evolutions 
of analysis and design patterns. The evolution rules are 
specified in Java-like operations to change the structure 
of patterns. Although some primitive-level evolution 



 
Figure 13 Property Proving in JTP 

 
rules are introduced, there is no discussion on pattern-
level evolution rules. In addition, our approach 
automates the evolutions based on model 
transformations by XSLT. 

Noda et al. [16] consider design patterns as a 
concern that is separated from the application core 
concern. Thus, an application class may assume a role in 
a design pattern by weaving the design pattern concern 
into the application class using Hyper/J [21]. Due to the 
separation of concerns, an application class may assume 
different roles in different design patterns. The change 
of roles that an application class plays i.e., the change of 
design patterns, becomes a relative simple task. The 
main goal of their evolution of design pattern is to the 
replacement of one pattern by another. In contrast, our 
design pattern evolution refers to the internal changes of 
a design pattern application. In addition, the practical 
application of their approach is left as a mystery.  

Improving software system quality by applying 
design patterns in existing systems has been discussed 
in [3]. When the user selects a design pattern to be 
applied in a chosen location of a system, automated 
application is supported by applying transformations 
corresponding to the minipatterns. The main goal of 
their software evolution is to apply design patterns in 
existing systems, whereas our evolution goal is to 
change the design patterns that have already applied in a 
system. 

A generic XMI-based transformation infrastructure 
of UML models has been presented in [14]. This allows 
the user to select a predefined generic XML-based 
transformation and configure its parameters. Unlike this 
work, we concentrate on the XMI-based transformations 
for design pattern evolution. 

The tool support for UML model evolution is 
provided in [12], which is also based on XMI. The 
design and development of the tool applies several 
design patterns. In contrast, we focus on the evolution 
of design patterns, instead of the evolution of UML 
models.  

Experiments have been conducted in [5] to show that 
XMI can be used to transform the UML models into 
other modeling languages, such as SQL. The 
implementation of the XMI-based transformation uses 
XSLT. We base on these experiments and use XSLT to 
implement the transformations. 

Kalnins et al. [10][11] proposed a graphical 
procedural transformation language MOLA. The model 
transformation defined by MOLA is a sequence of 
graphical statements linked by arrows. MOLA is more 
suitable to the transformation between two models, such 
as transformation from UML diagram to RDBMS 
schema. Other model transformation languages, such as 
QVT-Merge[25], ATL[18], MTF[24], Tefkat[26], and 
Fujaba Story diagrams (SDM)[20], which are either 
textual or graphical languages, address the 
transformation from one model to another.  Muller et 
al. [15] also proposed a model transformation language 
(Kermeta) to better describe the behavioral aspect of 
model transformation. In contrast, our purpose is to 
describe the pattern evolution and automate this process. 
Thus, it is better to use some low lever transformation 
language such as XSLT to achieve the goal. 

7. Conclusions 
Since the evolution information of a design pattern is 

generally implicit in the descriptions of the pattern, a 
designer has to dig into the pattern descriptions to 
understand the particular ways of evolutions 
encapsulated in design patterns. There are several 
problems when the evolution information is implicit: 
first, it is hard for the designer to take advantage of the 
benefits of using a design pattern when changes are 
needed. Second, the evolution of a design pattern 
generally involves several classes and relationships. 
Missing one part may cause inconsistencies and errors 
in the design which are difficult to find and correct. 
Third, the evolution processes are not reusable if not 
documented. As discussed previously, many of the 
evolution processes recur in different patterns.  



In this paper, we characterize two-level 
transformations: the primitive level and the pattern 
level and explicitly describe design pattern evolutions 
using these two-level transformations. We also 
implement the transformation based on XMI using a 
XSLT processor. The evolutions of each design pattern 
are defined as XSLT transformation rules. In addition, 
we use JTP to check the constraints of evolutions of 
each design pattern after evolutions.  

We will investigate the model transformation 
techniques based on Query, View, Transformation 
(QVT) that is a forthcoming OMG standard allowing 
users to query, establish and maintain views, and 
transform MOF models. Many groups have submitted 
their proposals and they are still competing. There are 
also model transformation tools available, such as 
Model Transformation Framework from IBM [30] of 
which we can take advantage. When the QVT is 
standardized by OMG, we will apply the QVT 
techniques for the transformation of design patterns. 
Moreover, a case study to illustrate our approach is in 
our forthcoming work. 
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