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Abstract

Noise removal is perhaps one of the most fundamental and challenging tasks for extracting useful information from a

spatial data set. One of the challenges is that there is no general agreement on the definition of noise that can be universally

applied to all different domains. This paper proposes a novel technique called Visualization-Informed Noise Elimination

(VINE) to support a customized noise removal through incorporation of domain knowledge. The VINE technique consists

of three steps of consecutive operations. First, a k-mutual neighbor graph is derived from a spatial data set to model the

spatial proximity among data points. Next, a fast partitioning method is employed to reassemble graph nodes into groups.

Last, a 3-dimensional (3D) visualization model is created to provide a layered view of the partitioned data, which allows an

informed identification and elimination of noise by tailoring to the requirements of a specific domain. The flexibility and

customizability provided by this novel technique ensures an effective differentiation of noise from valid data and

demonstrates various advantages over traditional methods with improved results. When adapted in post-classification

smoothing of high-spatial-resolution remotely sensed images, this approach was able to discover and reassign noise (such

as shadows often seen in high-spatial-resolution images) to its proper target class. By incorporating domain knowledge and

making use of spatial contextual information, the VINE technique could produce results significantly superior to existing

approaches such as majority filter and size-based noise removal.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent years have witnessed an increased avail-
ability of enormous amounts of spatial data,
acquired by remote sensing satellites, medical
equipments, various digital cameras, etc. The
widespread accessibility to spatial data is leading

to growing research interest in extracting and
discovering interesting and useful but implicit
characteristics and patterns that may exist in
the data (Han and Kamber, 2000). For applica-
tions that involve pattern discovery from spatial
data, data cleaning is usually one of the most
fundamental and challenging tasks. For example,
data cleaning through noise removal is very critical
to the achievement of an accurate feature classifica-
tion from high-spatial-resolution remotely sensed
images.
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The motivation of this paper can be simply
illustrated with a benchmark data set used by
CHAMELEON (Karypis et al., 1999). As shown
in Fig. 1, the benchmark contains six English letters
crossed by a horizontal line. To accomplish effective
data cleaning, a question must be answered first: is
the horizontal line noise or valid data? For pure
letter recognition, the line is usually regarded as
noise, which may be caused by a fold in the paper.
It, however, could also be considered as part of
valid data, for example, representing a ‘‘strike out’’
style or a decoration, in a different application.
Noise is therefore domain-specific and its definition
varies in different applications. Many methods have
been proposed to remove noise, but few of them
were specifically designed to handle domain-specific
noise. The fact that the horizontal line not only
overlaps the six letters but also has a similar density
to them poses a challenge for existing noise-
removing approaches to segregate it from the
letters. A comparable situation can be observed in
remotely sensed images, where shadows of high-rise
buildings and tall trees may have similar spectral
characteristics to dark objects (such as water body),
making them extremely difficult to be removed
using traditional approaches of noise removal.

Noises like these are often referred to as being
ambiguous (Qian and Zhang, 2004), and their
effective segregation from valid data requires
domain knowledge. In this paper, we proposed a
core-based Visualization-Informed Noise Elimina-
tion (VINE) technique that is specifically designed
to address this issue so that knowledge of domain
experts can be incorporated into the data cleaning
process with the support of a visualization tool.
The development of such a technique allows
knowledge-guided noise removal informed and
supported by the visualization tool, which works

reciprocally with the noise differentiation and
elimination process. Reciprocally in the sense that
the data are first reorganized into different cores for
visualization purposes, the visualization of the
reorganized data then makes it possible to examine
the characteristics of noise and valid data that
function as feedback in reconfiguring the removing
method with domain-specific parameters (Fig. 2). It
is worth to mention that VINE is part of an effort
that aimed to construct a spatial data clustering
system named FAC- ADE (Qian et al., 2004). To
demonstrate the effectiveness and efficiency of the
proposed technique, we tested the above benchmark
spatial data set and two high-spatial-resolution
remotely sensed images, and compared the results
with those obtained using traditional noise-remov-
ing approaches.

2. Background and related work

The difficulty in removing ambiguous noise lies in
the lack of a universally accepted definition of noise.
To define noise, it is a common practice to first
identify certain criteria that can be quantified with a
threshold by which noise can be segregated from
valid data. Frequently used criteria include distance
between data points, size of data groups, and
number of surrounding points (i.e., degrees of nodes
in a constructed nearest-neighbor graph of the
original data). Accordingly, existing noise-removing
methods can also be classified into three categories:
distance based, size based, and degree based.
Popular distance-based methods include DBSCAN
(Ester et al., 1996), OPTICS (Ankerst et al., 1999),
and DENCLUE (Hinneburg and Keim, 1998).
Distance-based approaches can discover points
distributed sparsely as noise, but they cannot
identify noise having density similar to valid data
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Fig. 1. A benchmark data set containing ambiguous noise.
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points. Conversely, they can mistakenly mark
sparsely distributed valid data points as noise. In
addition, thresholds for distance between data
points are usually difficult to set without prior
knowledge of the data set. Size-based approaches,
such as those employed in BIRCH (Zhang et al.,
1996) and RandomWalk (Harel and Koren, 2001),
must rely on a certain clustering method to first
segment data points into groups, but the clustering
method itself usually suffers from the presence of
noise, thus resulting in a typical chicken and egg
dilemma. Besides, the threshold for cluster size is
similarly difficult to determine without numerous
experiments. Existing degree-based noise-removing
methods, such as the one used in SNN (Ertoz et al.,
2003), are usually based on the construction of a
nearest or mutual neighbor graph. They often also
require the specification of a parameter to construct
the graph and a threshold for degrees of corre-
sponding vertices, falling short of effectively remov-
ing ambiguous noise.

Instead of relying on clustering methods to
identify noise, wavelet transformation (Mallat,
1989) reduces noise in images through a hierarchical
decomposition of original data into a nested
subsurface of approximations at different resolution
(Chang et al., 1998; Fan and Xia, 2000; Lang et al.,
1996; Lebart and Boucher, 1996; Strela, 2000;
Vidal-Pantaleoni and Marti, 2004). The main idea
of wavelet-based noise removal is to represent the
data using a basis function, where the large coeffi-
cients are usually corresponding to the valid
information and the smaller ones to noise. By
modifying the coefficients of the basis function
properly, noise can be effectively removed from the
data (Li et al., 2002). Recently, wavelet-based
methods have also been used in finding clusters
automatically in noisy environments (Sheikholeslami
et al., 2000). However, it is not always a trivial work
to select or define an appropriate mother wavelet
and resolution for an unknown data set.

None of the aforementioned noise-removing
methods, however, is purposely designed to encode
domain-specific information. Since noise is often
application dependent, requirements of a specific
domain area should be taken into consideration
before removing noise. In our proposed approach,
noise is not defined until the prior domain knowl-
edge is incorporated. To achieve this, the data
points are first preprocessed to create a k-mutual
neighbor graph, and then a fast graph partitioning
method, the k-core algorithm (Seidman, 1983), is

applied to partition graph nodes, i.e., data points,
into groups. The partitioning of the data points
enables users to classify each group as either noise
or valid data through the support of a visualization
tool. This approach provides the flexibility to assign
data of different densities into the same class
according to custom specifications of a specific
domain.

It is important to clarify that our approach is
different from those aiming at discovering network
intrusions, detecting fraud, etc. Their primary goal
is to discover outliers and abnormal situations
based on criteria such as distance (Aggarwal and
Yu, 2001; Bay and Schwabacher, 2003; Knorr et al.,
2000), density (Breunig et al., 2000), and graph-
related features (Shekhar et al., 2001). Outliers are
often explicit and well-defined patterns in nature,
usually not comprising ambiguous noise that we are
targeting here.

3. Data preprocessing and visualization

As mentioned earlier, the preprocessing of the
data set for visualization is accomplished through
constructing a k-mutual neighbor graph, and decom-
posing the resulting graph into small groups using
the k-core algorithm (Seidman, 1983). With data
groups generated, the visualization is then made
possible to incorporate subjective domain know-
ledge into configuring the subsequent noise-removing
scheme.

3.1. k-mutual neighbor graph

The k-mutual neighbor graph (Jain and Dubes,
1988) is an effective graph structure to model the
spatial proximity between data points. It is one of
the variants of the well-known k-nearest-neighbor
graph that is widely used to model spatial depen-
dency. As illustrated in Fig. 3, each vertex of a
k-mutual neighbor graph represents a data point.
For each pair of data points, an edge can be
established only if both data points are among the
k-most similar data points of each other. For spatial
data sets, the similarity between two data points is
usually measured by the Euclidean distance.

The use of a k-mutual neighbor graph exhibits the
following advantages (Jain et al., 1999): data points
that are far apart are completely disconnected; a
higher degree implies a point belonging to a more
uniformly distributed region; data points of uni-
formly dense and of uniformly sparse regions have
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similar degrees; the number of graph edges is linear
to the number of vertices. The first three advantages
allow the effective distinguishing of noise from valid
data, regardless of the underlying density of the
spatial data distribution, while the last guarantees
the efficiency of subsequent graph operations.

3.2. Decomposing data into cores

Once a k-mutual graph is constructed, a graph
partitioning method can be applied. The notion of a
core (or cluster) is introduced by Seidman (1983).
Let G ¼ (V, E) be a graph. V is the set of vertices
and E is the set of edges. A subgraph Hk ¼

(W, EjW) induced by the set W is a k-core or a core

of order k iff 8 v in W: degree (v)Xk and Hk is the
maximum subgraph with this property. The core of
the maximum order is also called the main core. The
cores have the following properties:

� They are nested: 8ioj-HjDHi.
� There exists an efficient algorithm to determine

the core hierarchy.
� A core is not necessarily a connected subgraph.

A core hierarchy is sketched in Fig. 4. Given a
graph G ¼ (V, E), jVj ¼ n and jEj ¼ m, G is
partitioned into the set of cores, denoted by H0,
H1, y, Hx�1, Hx, where Hi represents the core of
order i. In Fig. 4, the higher the order, the darker
the area. To explain the concept of core-ID, let
Sx ¼ Hx, Sx�1 ¼ Hx�1– Hx,y, S1 ¼ H1�H2, S0 ¼

H0–H1, and Sx ¼ Hx is the main core. A core-ID of
a vertex is i if and only if the vertex belongs to Si.

Determining the core hierarchy from a given
graph G ¼ (V, E) (i.e., assigning a core-ID for each

vertex) is called core decomposition, which costs only
O(m) time for the given graph with m edges
(Seidman, 1983). Previously being used to produce
layouts for very big graphs (Batagelj et al., 2000),
the core decomposition algorithm is now utilized in
this paper to partition the k-mutual graph con-
structed above. It is important to note that
removing the vertices of small degrees is different
from removing cores of small orders. Fig. 5 shows
such a difference and the advantage of removing
cores of small orders in preserving valid data. The
use of core decomposition for spatial noise removal
is justifiable as the removal of the cores with smaller
orders will not affect the integrality of the cores of
bigger orders. Therefore, cores with small orders,
which are often assumed as noise, have no impact
on the distribution of valid data if being removed.
Additionally, vertices with slightly different degrees
that are connected with each other would belong to
the same core. This is consistent with the common
recognition process of human beings.
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Fig. 3. (a) A 2D spatial data set and (b) its 4-mutual neighbor graph.

Fig. 4. A core hierarchy showing core decomposition result.
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The core decomposition method applied to a
k-mutual neighborhood graph is thus referred to as
core-based noise removal in this paper. The greatest
advantage of the core-based noise removal is its
flexibility. Unlike traditional approaches that have
used hardwired thresholds to separate the data set
into two parts, core-based removal allows users to
assign cores with various and sometimes discontin-
uous core-IDs (i.e., the orders of the cores) to noise
through the visualization process to be discussed
below. This enables interactive participation of
users in the noise-removing process and avoids
troublesome parameter tuning on a trial and error
basis.

3.3. Visualization

To incorporate domain knowledge, we build a
visualization-supporting tool, which provides qua-
litative insights into the data. After being reorga-
nized into groups of different cores, the data points
can be displayed as layers in 3-dimensional (3D)
space according to the hierarchy structure of the
cores. The reorganized data are mapped to the three
graphical dimensions of the data visualization tool
in such a way that the original two dimensions of
the data points are assigned to the x- and y-axis,
respectively, and the core-IDs of data points to the
z-axis. Additionally, different layers of data points
are also rendered with different colors to better
reveal the hierarchical structure.

Fig. 6 illustrates the 3D layered visualization of
the core hierarchy of the benchmark, with points of
different core groups displayed in different layers
with different colors. The effectiveness of core-

based data decomposition can be manifested by the
effective segregation of noise and valid data into
different cores in the visualization tool. The
horizontal line crossing ‘‘GEORGE’’ is segmented
into a layer below the six letters, followed by the
‘‘salt and pepper’’ noise points formed as other
layers under it. Through visual inspection of the
layers, users can easily make a judgment as to which
layer is noise or valid data. Intuitively, a user can set
an appropriate threshold of core-ID defining the
boundary, above which layers are retained as valid
data while layers below are removed as noise. In
addition, a set of ranges can also be specified to
assign some of the layers as valid data and others
noise. Unlike traditional noise-removing ap-
proaches that only allow a single fixed threshold
to cut through data points, the proposed technique
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Fig. 5. A comparison between (a) degree-based noise removal: begin from original graph, remove vertices whose degree ¼ 0, 1, 2, and 3 at

each step—no true cluster discovered, and (b) core-based noise removal: remove 0, 1, 2—core step by step—true cluster discovered and

noise removed.

Fig. 6. A 3D visualization of core hierarchy.
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provides the flexibility of defining noise at the level
of individual layer. For example, the horizontal line
can set either as noise to be removed or as valid data
to be assembled with other desirable layers in a
customizable fashion. A query can be formulated to
achieve these using core-IDs. For example, a query
to extract the horizontal line crossing ‘‘GEORGE’’
is (coreID430) and (coreIDo36) in the example.
Fig. 7 presents two different results with the
horizontal line being removed as noise or included
as valid data as the two possible outcomes of the
customizable process.

Fig. 8 compares the results of three different
noise-removing methods applied to the CHAME-
LEON benchmark. Each row in Fig. 8 corresponds
to one method and contains three results of
this method produced with different parameters.
Figs. 8(a–c) show the results of the distance-based
method used by DBSCAN (Ester et al., 1996), (d–f)
those of degree-based methods, and (g–i) display the
results of the proposed core-based VINE approach.
For each method, three different algorithm
parameters are used to demonstrate the influence
of parameters on the quality of corresponding
outcomes. It is observed that the core-based noise-
removal approach enables noise to be well segre-
gated with all the three sets of testing parameters,
while either distance-based or degree-based ap-
proaches cannot effectively differentiate noise from
valid data. It is also observed that the outcomes of
the core-based approach are only slightly different
with different parameters, demonstrating the ro-
bustness of the approach compared with other
methods. Moreover, Fig. 8 illustrates that the roles
of data partitioning and the visualization tool are
reciprocal. The data partitioning process preparing

cores of different core-IDs makes possible the
visualization with layered structure and rendering
with colors. Visualization on the other hand allows
parameter selection for customizable noise removal
through 3D graphic rotation and navigation of the
cores, which makes the whole noise-removal process
visualization-informed.

4. Post-classification smoothing of remotely sensed

images

To further evaluate the effectiveness of the core-
based VINE technique, we adapt it to a real-world
application involving remote sensing image classifi-
cation. In the context of remote sensing application,
noise refers to sensor responses that are unrelated to
target brightness. Noise can be originated internally
by accumulated electronic errors from various
components of the sensor, or introduced externally
from environment, such as atmospheric attenuation
and shadows from high buildings and tall trees. For
a sensor system to be effectively utilized, the noise
level of the acquired image should be kept small
relative to signal (Campbell, 2002). This is often
measured by using the signal-to-noise ratio (SNR).
Various sensors may exhibit different SNR levels
due to different configurations of spatial and
spectral resolutions. For example, sensors such as
Landsat TM of lower spatial resolution with a large
instantaneous field of view permit a greater quantity
of total energy to be focused on a sensor detector
and allow a longer dwelling time of measurement,
thus yield a signal that is much greater than
background noise (i.e., higher SNR) compared with
sensors of higher spatial resolution, such as
IKONOS, QuickBird, and OrbView. Similarly,
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Fig. 7. Results of customizable noise removal with horizontal line treated as (a) noise and (b) true data.
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sensors of lower spectral resolution may have a
higher SNR level with a broader wavelength band
over which a given detector operates (Lillesand
et al., 2004).

Traditional land use/cover classification techni-
ques are based solely on the spectral information of
single image pixels without considering their spatial
context, i.e., the spatial distribution of the pixels
and the spatial relationship of their corresponding
geographic entities. This leads to classification

results that may be ‘‘noisy’’ and produces geometric
outlines of land use/cover entities that may not
correspond to those of their real-world counter-
parts, such as fields, roads, and streams (Shekhar
et al., 2002). Such problems become more severe
with the advent of higher-spatial-resolution remote
sensing data such as those acquired by IKONOS,
QuickBird, and OrbView satellites because of their
lower SNR levels. The refinement of spatial resolu-
tion in these sensors that have similar wavelength
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Fig. 8. Effects of distance-based (a–c), degree-based (d–f), and core-based (g–i) noise removal illustrated and compared using 3D

visualization in VINE.
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bands, in the visible-NIR spectrum, to Landsat TM
also brings forth increased within-class spectral
heterogeneity and between-class spectral confusion.
A large amount of randomly distributed noise may
be produced by per-pixel-based classifiers using only
spectral information. Unlike noise seen in our
benchmark images of textural and shape data set,
these noise pixels may not be ‘‘erroneous’’ results
but just unwelcome reminders of the complexity of
the earth’s surface. They may be correct classifica-
tions, for example, of a single tree grown in the
middle of large grassland or a small sandbar within
a wide area of a water body, which may not be
visible in lower-spatial-resolution images. The pre-
sence of many of these unwanted noise pixels may
significantly degrade the quality of the final
classification map and ultimately limit the effective
use of high-spatial-resolution imagery. As a result,
there will likely be a significant return to ‘‘on-screen’
photo-interpretation and manual digitization of the
high-resolution digital remote sensor data (Jensen
et al., 2001).

To address such problems, efforts (Li and
Narayanan, 2004; Shekhar et al., 2002; Zhao
et al., 2003) have been made to utilize spatial
contextual information to improve the accuracy of
traditional per-pixel-based classifiers, among which
per-field classification and object-based classifica-
tion approaches (Blaschke et al., 2000) have been
recently explored. Per-field classification requires
prior information about an object (often with the
object’s boundary predefined by a GIS), which has
limited its wider application (Walter, 2004). In
contrast, object-based classification does not need
input from a GIS. It usually starts with grouping
neighboring pixels into meaningful objects through
advanced image segmentation techniques (Benz
et al., 2004; De Kok et al., 1999). Classification is
then performed on the grouped objects instead of
individual pixels. The results of object-based classi-
fication rely heavily on the correctness of object
generation. An object usually consists of a large
number of pixels. If the pixels are not grouped
correctly or accurately, the statistics of the object
classes can be misleading, causing large areas to be
misclassified.

We proposed to employ the core-based VINE
method to process post-classified images produced
by per-pixel-based approaches. The logic of con-
ducting post-classification noise removal is based on
three observations. Firstly, the existence of many
pixels of unwanted but true small ground features

randomly distributed in high-spatial-resolution ima-
gery, if considered during the image classification
process, can be difficult to remove. The presence of
unwelcome small features will not have any negative
impact on the derivation of the decision rule of any
image classification algorithm, because they are
often ignored and could be separated and dealt with
independently later after classification is completed.
Secondly, the majority of pixels in an image are
usually correctly classified with per-pixel-based
approaches, which provide valuable contextual
information for further spatial analysis. Finally,
noise pixels are usually inconsistent with the pixels
of their surrounding objects in spatial distribution
(Qian et al., 2005). Conducting spatial analysis of
the pixels can identify incorrectly classified noise
and reassign them to their proper target class
according to their spatial dependency with the class.
Starting from the aforementioned observations, the
proposed VINE approach has advantages over per-
field- and object-based classification approaches.
VINE technique does not require prior GIS knowl-
edge about field boundaries, which often are
difficult to obtain and thus limit per-field classifica-
tion approaches from being widely applied. The risk
of misclassifying a large area is reduced because the
basic unit to be processed is a pixel, instead of an
object as in object-based approaches.

There have been other post-classification
image smoothing approaches that were utilized
previously (Tomas, 1980; Townshend, 1986), pri-
marily through a moving window-based focal
majority filter where the class ID of the center pixel
in the moving window is determined by majority
voting of the class IDs of all the pixels in the
window. The minority can then be removed as
noise. The majority filter is easy to implement, but
its weaknesses are also apparent. On the one hand,
the size of neighborhood for the filter is fixed and
must be very large for noise to be sufficiently
removed; on the other hand, a neighborhood of
large size may cause the boundaries between classes
to be altered, creating zigzag bounding polygons
(Caprioli and Tarantino, 2001).

Jensen et al. (2001) proposed a size-based filter for
post-classification smoothing based on the region
group operator, where regions having an area less
than a user-defined threshold are regarded as noise
and removed. Compared with the majority filter,
size-based noise removal can better preserve details
of boundaries between classes. This method requires
the specification of a single threshold of region size
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that applies to all classes. It, however, is possible
that some small regions of a class are actually valid
classes, while some larger regions of a different class
can be noise. Another problem with this filter is that
if the noise pixels are interlaced between two
different adjacent object classes, they may remain
as unclassified and not removed.

Our post-classification smoothing process is
carried out in three steps as shown in Fig. 9. First,
a per-pixel classifier is used to classify a remotely
sensed image. Each individual class is then sepa-
rated into different layers and processed with the
proposed noise-removing method. Finally, the
‘‘cleaned’’ classes are combined to form a final
map. In order for the core-based VINE technique to
be applied, an adaptation of the original algorithm
is needed. It is necessary to transform the classified
pixels into vector data points with spatial coordi-
nates first. The distances between data points are
then calculated based on their spatial coordinates
and a k-mutual neighbor graph is constructed.
Unlike general noise removal that is often con-
ducted in one layer, noise identified here in each
layer is not actually removed but reallocated to
another proper class. Noise reallocation is achieved
through putting each noise pixel identified in one
layer of a class back into other layers to recompute
k-nearest neighbors. A measure based on the
nearest-neighbor consistency (Fix and Hodges,
1951) is then derived to assess whether a noise pixel
fits well with each class. The noise pixels will be
assigned to the class with the best measure, i.e., the
smallest average distance to its k-nearest neighbors
among all other classes. The use of nearest-neighbor

consistency measure follows the Tobler’s (1979)
First Law of Geography: everything is related to
everything else, but nearby things are more related
than distant things. The nearest neighbors of the
noise pixels are now recomputed within each class,
instead of on the whole map with a fixed moving
window as in most filter-based approaches. The
interactive nature of our visualization system also
provides the alternative that allows users to force a
noise pixel to be reallocated to any class, which is
especially useful to accommodate users’ customized
definition of noise.

To evaluate the effectiveness of the post-classifi-
cation smoothing approach, two remotely sensed
images are employed: an airborne NAPP digital
orthophoto image (with 1m spatial resolution) at
Jacksonville Beach, FL as shown in Fig. 10a, and an
IKONOS satellite multispectral image (with 4m
spatial resolution) at Singapore in Fig. 14(a). The
classification of the two images is conducted using a
neural network classifier proposed by Jensen et al.
(2001) for extracting rural and urban land use and
land cover information using the spectral informa-
tion of each pixel. The results of initial classification
of the two images are shown in Figs. 10b and 14b,
respectively. Since the classification is primarily
based on spectral analysis of the image only, the
resulting maps are still very ‘‘noisy’’.

The proposed VINE technique was first applied
to the post-classification smoothing of the NAPP
digital orthophoto. One noticeable type of noise
resulting from the per-pixel classification map
(Fig. 10b) is the sporadic shadows cast by tall trees.
They are misclassified as water and are scattered
inside the forest class and other classes. In addition
to some newly developed residential subdivisions,
small spots of new clearings can be observed within
the forest regions, which are classified as urban
based on their spectral characteristics. Theoreti-
cally, these pixels are not misclassified results but
reminders of the complexity of the study area. In
order to produce a useful and high-quality map,
which is a simplified model of reality instead of the
reality itself, the presence of these scattered urban
pixels inside the forest class is considered unwel-
come and should be removed as noise. Fig. 11 shows
the four individual land use/cover classes (a) water,
(b) wetland, (c) forest, and (d) urban, which are
separated from the per-pixel-based classification of
the NAPP digital orthophoto (Fig. 10a). K-mutual
graph and core decomposition is then applied to
each class by partitioning each class into many
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Fig. 9. Three steps of applying core-based VINE to post-

classification smoothing of remote sensing image.
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cores. The 3D visualization of the water class is
shown in Fig. 12, which demonstrates that the core
decomposition preserves the main body of water as
layers of the higher core-IDs, which allows users to
assign layers of lower core-IDs to other classes. For
example, layers with core-IDs less than 10 are
primarily regarded as noise for the water class and

most of them need to be reallocated to either forest
or wetland class. The same process is repeated for
other three classes.

After noise pixels for each class are detected and
reallocated to their target classes, the individual
maps of the ‘‘cleaned’’ classes are combined to
form a final classification map. Fig. 13 provides a
comparison between the results produced by (a)
initial classification without post-classification
smoothing, (b) focal majority filter, (c) size-based
filter, and (d) core-based VINE approach. The
result of focal majority filter (Fig. 13b) shows a
significant boundary distortion due to the applica-
tion of a fixed moving window of large size. Size-
based filter demonstrates tremendous improvement,
producing comparable results as that of our
approach with most sporadic tree shadows and
unwelcome urban spots removed. However, a close
inspection of this result reveals that several small
regions of wetland within the circles are incorrectly
assigned to the surrounding water class (Fig. 13c)
using size-based filter, which is quite obvious when
compared with the initial classification map
(Fig. 13a) and original image (Fig. 10a). This
problem is attributed to the large threshold used
in the size-based filter, which treats all small regions
less than the threshold as noise, even though they
might be disconnected regions belonging to the
same target class. The comparison discloses an
inherent weakness of the size-based approach due to
the use of a fixed size threshold for all classes. This,
however, is not a problem for core-based VINE
smoothing, because the fixed size of the regions is
not used as criteria to remove noise. The utilization
of a k-mutual graph makes it possible to group
small regions in heterogeneous areas into the cores
of high orders, while larger regions in more
homogeneous areas into the cores of a similar
order. In addition to this sensitivity to patterns of
spatial distribution, different and discontinuous
threshold ranges are allowed for a different target
class, and the spatial contextual information of the
pixels (i.e., the spatial dependency in this case) is
incorporated into the post-classification smoothing
process. As a result, the core-based VINE smooth-
ing method is able to produce the best result among
the three approaches compared, with the details of
the boundaries of the classes well preserved,
sporadic shadows misclassified as water corrected,
unwelcome urban spots removed, and legitimate
large residential subdivisions retained, as shown in
Fig. 13d.
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Fig. 10. (a) A digital National Aerial Photography Program

(NAPP) image (with pixel size of 1� 1m) of Jacksonville Beach,

FL. (b) Initial classification map (blue stands for water, green for

forest, cyan for wetland and magenta for urban).
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We also applied the core-based VINE smoothing
technique to the IKONOS high-spatial-resolution
satellite image (Fig. 14a). Similar to the aforemen-
tioned NAPP image, shadows caused by tall trees

are also observed in the IKONOS image, a
notorious problem for the classification of high-
spatial-resolution satellite imagery. The presence of
the shadows in the IKONOS image poses a bigger

ARTICLE IN PRESS

Fig. 11. Four individual classes extracted from initial classification with core decomposition applied. Different colors are used to

differentiate different resulting cores. (a) Water, (b) wetland, (c) forest, and (d) urban.
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challenge for noise removal. In addition to the
sporadic shadows similar to those seen in the NAPP
digital orthophoto, a new pattern of contiguous
shadows extended from southwest to northeast was
also detected along the highway, which is visible in
the original image (Fig. 14a), but more obvious in
the initial classification map (Fig. 14b) as misclassi-
fied water pixels. The highway itself, although
perceptible from the IKONOS image (Fig. 14a),
becomes less discernible on the classified image
(Fig. 14b) due to the intrusion from surrounding
trees and their shadows. Perceived also from the
original image (Fig. 14a) are some newly planted
individual trees, uniformly distributed inside the
grass land and barren land in the center region of
the image. On the initial classification map
(Fig. 14b), they are classified as forest class.
Spectrally, it is a correct classification but ontolo-
gically individual trees should not be regarded as
forest, and should be treated unwelcome noise for
the grass and barren land. Another interesting
observation is over the bay area where the boats
and the white wakes behind them were classified as
urban because of their spectral similarity to the
urban class. To produce a final classification map
that is of practical use, any mobile objects (such as
cars on the road, and the boats and their wakes in
this case) should be removed as noise.

The result of size-based smoothing is displayed in
Fig. 14c. The size threshold for a pixel region to
be considered as noise was determined through
multiple trial and error tests, with the one that
produces the best outcome selected for the noise-
removal operation. The post-classification smooth-
ing result of the core-based VINE technique is
shown in Fig. 14d. A visual comparison of the two
easily reveals that the core-based VINE approach
demonstrates some obvious superiorities to the size-
based approach in many aspects. First, not only the
sporadic shadows of individual trees that were
misclassified as water are successfully identified
and removed, but also the contiguous shadows
extended along the highway were also effectively
eliminated as shown in Fig. 14d. The 3D visualiza-
tion of the water class cores obtained from initial
classification is shown in Fig. 15a, where the third
dimension is based on the core-IDs of the decom-
posed cores. The sporadic shadows (in green),
contiguous shadow (in red), and the true water
bodies (in blue) are well segregated from each other
as different layers with various core-IDs. With the
support of the visualization tool, the core-based
decomposition makes it possible for an image
analyst to bring his/her domain knowledge into
the decision making process on whether a certain
layer should be kept as water class or be regarded as
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Fig. 12. An example 3D visualization of data partitions after applying core decomposition to water class.
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noise to be reassigned to another class. It is not
difficult to understand that the mutual k-nearest-
neighbor algorithm embedded in the VINE techni-
que could easily separate the shadows from water,
because the algorithm utilized spatial proximity to
form graphs and most of the shadows are far away
from the water bodies. However, just like the
horizontal line crossing ‘‘GEORGE’’ in the bench-
mark data set shown in Fig. 1, the contiguous
shadows intermingle with other features (such as the
sporadic shadows) in the 2-dimensional (2D) space
(Fig. 15b). In addition, sporadic and contiguous
shadows are spectrally identical, making it very
difficult to separate them. However, the core
decomposition process could differentiate these
two types of shadows by taking advantage of their
difference in the patterns of spatial distribution, just
like the algorithm could exploit the different spatial
patterns between ‘‘GEORGE’’ and the crossing line

in the benchmark data set. The 3D visualization
makes it possible for different types of noise to be
grouped into dissimilar layers and treated differ-
ently if necessary, although they all would be
reallocated to forest class in this case. While, in
other cases such as an urbanized area, shadows cast
by tall trees and high-rise buildings could be
reassigned to urban class. In contrast, the size-based
post-classification smoothing (Fig. 14c), although
could remove most of the sporadic shadow with the
exception of some at the northwest part of the
image, failed to eliminate the major contiguous
shadows along the highway and several other
places. The size-based approach that uses a fixed
size threshold for all noise types of all classes, could
not handle sporadic shadows and contiguous
shadows differently.

In order to completely eliminate the contiguous
shadows, the size-based approach needs a much
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Fig. 13. A comparison of results obtained from applying (a) initial classification, (b) focal majority smoothing, (c) size-based smoothing,

and (d) core-based VINE smoothing.
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larger size threshold. As a consequence, regions of
valid classification with an area less than the
threshold could be eradicated unintentionally. This
actually has already occurred with a small threshold
that could not even remove the contiguous shadows.
Most of the highway segments that pass through the
forest region were inadvertently eliminated by the
size-based approach (Fig. 14c). Due to the intrusion
of surrounding trees and their shadows, the
originally uninterrupted highway (Fig. 15a) is now
broken into many disjointed pieces of urban pixel
regions after classification (Fig. 15b). Most of these
regions have an area less than the size threshold and
therefore are discarded as noise by the size-based

approach (Fig. 14c). In the core-based VINE
technique however, these disjointed pieces were able
to constitute a big core of a continuous linear
feature. This is evident when different core layers
are rendered with different colors in the 3D
visualization tool (Fig. 15c) and the corresponding
2D view. It is interesting to note from both Figs. 15c
and d that the highway is in the same red layer as
the bridge, indicating that they are grouped into
similar cores in the urban class and are well
separated from other urban features.

For both the size-based and core-based smooth-
ing approaches, the removal of the individual trees
from the forest class as unwanted noise was an easy
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Fig. 14. (a) An IKONS high-spatial-resolution multispectral satellite image (with pixel size of 4� 4m) at Singapore. (b) Initial

classification (blue stands for water, green for grass, dark green for tree, cyan for urban, and pink for barren land), (c) size-based

smoothing result, and (d) core-based VINE smoothing result.
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task (Figs. 14c and d). However, the sized-based
smoothing has the difficulty eliminating all the
boats and their wakes from the urban class
(Fig. 14c), because some of them have an area
greater than the size threshold selected. This is not
an issue for the core-based VINE technique as
shown in Fig. 14d. An examination of their
corresponding cores in 3D view of the urban class
(Fig. 15d) explains why the boats and the associated
wakes were completely removed by the core-based
smoothing. They have different core-IDs (as well as
rendering colors) with those of the highway, the
bridge and other valid urban cores and therefore
can be easily removed from urban class and
reassigned to water class. Finally, it is worth
mentioning that boundaries and linear features
can be better preserved in core-based smoothing,
which can be seen from Fig. 14d where the details of

shorelines of the two small lakes at the left part of
the image, the three country roads crossing the
grassland, and the coastline at the lower left corner
of the picture are very well maintained when
compared with those from size-based smoothing.

In addition to the above visual comparison, we
also conducted statistical accuracy assessment in
order to make a more objective evaluation. A total
of 323 test points were selected for the accuracy
assessment with 200 points directly generated for
the whole image using stratified random sampling.
However, only a few of these points fell into the
areas where the noises were removed by the two
post-classification smoothing approaches. In order
to achieve a more effective accuracy assessment
of these two noise-removal strategies, two masks
that correspond to the difference between the
original classified image and the two respective
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Fig. 15. (a) A 3D visualization of water class based on core-IDs showing that core decomposition separates shadows from true water with

true water in blue and shadows in red and green; (b) corresponding 2D visualization of water class showing spatial distribution of shadows

and true water bodies. (c) A 3D visualization of urban class with highway and bridge in red, country road and other urban area in blue,

while boats and their wakes and other noise in cyan, yellow, and green; (d) corresponding 2D visualization of urban class.
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smoothed images were created, respectively.
Then these two masks were combined for use to
generate another stratified random sampling,
from which 123 additional points were randomly
created.

Table 1 displays overall accuracy and the Kappa
coefficients (Khat statistics) of the original classified
image and two smoothed images. The overall
accuracy of the initial classification, the size-based
approach, and the core-based technique was
66.25%, 76.47%, and 91.95%, respectively. Kappa
statistic was also computed, which are regarded as
better representation of the general quality of a
classification. The Kappa statistic for the core-based
VINE smoothing is 0.8966. The Kappa statistic for
the size-based noise removal is only 0.6943, while
that for the initial classification was 0.5659.
According to Fleiss (1981), Kappa coefficients
40.75 suggest strong agreement above chance.
Landis and Koch (1977) suggest that Kappa
coefficients 40.81 are almost perfect. To statisti-
cally compare Kappa coefficients, a significance
Z-test was performed between the Kappa statistics
of the two smoothing approach. A Z-score of 5.632
is achieved, suggesting the core-based smoothing
method was significantly better than size-based
approach at the 99% confidence level.

5. Conclusion

The core-based VINE technique is proposed
based on a three-step procedure consisting of graph
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Table 1a

Accuracy assessment of initial classification (Fig. 14b)

Classification error matrix

1 2 3 4 5

1 72 6 17 0 2 97

2 1 59 4 14 4 82

3 7 12 30 1 5 55

4 2 12 2 24 4 44

5 10 2 4 0 29 45

Column total 92 91 57 39 44 323

Overall accuracy ¼ 66.25%

Producer’s

accuracy (%)

User’s

accuracy (%)

1 78.26 74.23

2 64.84 71.95

3 52.63 54.55

4 61.54 54.55

5 65.91 64.44

Conditional

kappa is

0.64 0.61 0.450.480.59

Kappa ¼ 0.5659,Variance ¼ 0.001116

Table 1b

Accuracy assessment of size-based smoothing (Fig. 14c)

Classification error matrix

1 2 3 4 5

1 83 1 15 0 7 106

2 0 73 8 8 3 92

3 3 6 34 0 5 48

4 1 9 0 31 3 44

5 5 2 0 0 26 33

Column total 92 91 57 39 44 323

Overall accuracy ¼ 76.47%

Producer’s

accuracy (%)

User’s

accuracy

(%)

1 90.22 78.30

2 80.22 79.35

3 59.65 70.83

4 79.49 70.45

5 59.09 78.79

Conditional

kappa is

0.70 0.71 0.65 0.66 0.75

Kappa ¼ 0.6943, Variance ¼ 0.000914

Table 1c

Accuracy assessment of core-based VINE smoothing (Fig. 14d)

Classification error matrix

1 2 3 4 5

1 82 0 0 1 0 83

2 1 85 3 3 0 92

3 3 2 53 0 1 59

4 2 4 0 35 1 42

5 4 0 1 0 42 47

Column total 92 91 57 39 44 323

Overall accuracy ¼ 91.95%

Producer’s

accuracy (%)

User’s

accuracy

(%)

1 89.13 98.80

2 93.41 92.39

3 92.98 89.83

4 89.74 83.33

5 95.45 89.36

Conditional

kappa is

0.98 0.89 0.88 0.81 0.88

Kappa ¼ 0.8966, Variance ¼ 0.000376
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construction, core partitioning, and data visualiza-
tion to inform a customized noise removal. For n

data point, constructing a k-mutual graph of a 2D
data set requires O(n log n) time (Xu et al., 1998)
when using a k– d tree; core decomposition can be
completed in O(n) time based on the definition of
k-mutual graph (Batagelj et al., 2000). The genera-
tion of 3D layered display is a simple point plotting
based on the core hierarchy. In summary, all these
operations can be completed within O(n log n) time.
The actual running time of the program applied to
the two remotely sensed images is both less than 2 h.
In contrast, visual image interpretation and manual
digitization for the same image require 2–3 person
days to achieve a similar quality (Jensen et al.,
2001). For space complexity, the implementation
requires O(kn) space to compute and store the list of
adjacency links of the k-mutual graph of the whole
data set with n data points.

The construction of the k-mutual graph allows
the effective segregation of noise from valid data in
areas of different size and densities. The data
partitioning and visualization are functionally
reciprocal. Data partitioning reorganized the data
for visualization, and the visualization of the data in
the resultant layered structure supports an informed
noise removal and reassembling of the remaining
data according to custom domain requirements.
With such visualization support, the parameter
determination for noise removal is much straight-
forward and no longer a trial and error process.

The proposed approach is adapted to improve
post-classification smoothing of two remotely
sensed images. Both cases demonstrate the advan-
tages of the core-based VINE approach over
previous methods through side-by-side visualization
comparisons. Statistical accuracy assessment was
also performed on the IKONOS image to evaluate
the apparent improvement of the proposed techni-
que over the size-based approach. Experimental
results show that the core-based VINE technique
can successfully discover and reassign noise pixels to
their proper target classes and improve the overall
classification accuracy of the high-spatial-resolution
remote sensing images. Compared with other post-
classification smoothing approaches, the core-based
VINE relies on neither a fixed moving window, nor
a fixed threshold of region size, and can effectively
differentiate and remove shadows as noise through
a flexible and customizable process informed by
domain knowledge through visualization support.
By capitalizing on the spatial contextual information

embedded in a k-mutual graph, the core-based
VINE is also able to better preserve the details of
the between-class boundary than the focal majority
filter and the size-based filter. Compared with per-
field and object-based classification approaches,
core-based VINE does not require any prior GIS
boundary and avoids the possible misclassification
of large areas.
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