
Design Pattern Evolution and Verification Using Graph Transformation

Chunying Zhao
University of Texas at Dallas

Richardson, TX 75083

cxz051000@utdallas.edu

Jun Kong
North Dakota State University

Fargo, ND 58105

jun.kong@ndsu.edu

Kang Zhang
University of Texas at Dallas

Richardson, TX 75083

kzhang@utdallas.ed

Abstract

This paper presents a graph transformation based

approach to design pattern evolution. An evolution of a

design pattern includes modifications of pattern

elements, such as classes, attributes, operations and

relationships between classes. Compared with other

techniques, graphical notation, as a natural and

intuitive way in software modeling, is suitable to be

used at the transformation stage. In this paper we

focus on the automated evolution of design patterns

using graph transformation. The rules for the potential

design evolutions are defined. After the evolution

process, a graph grammar based syntax parser is

proposed to check the structural integrity of the

evolved design patterns.

1. Introduction

In recent years, object-oriented design patterns [1]

have been widely used in the development of software
systems, as systems become increasingly complex and
hard to maintain. As a micro-architecture of high level
abstraction, a design pattern extracts the common and
featured structural information from a system. Design
patterns represent the successful and reusable practice
and solve general problems in a particular context,
which facilitates the development of large software
systems.
Intensive research has been carried out on the

implementation and application of design patterns.
Software systems should be adaptable to the changes
of users’ requirements, which require the evolution of
patterns to comply with the changes of a system design.
This ensures systems to be extensible and flexible
since we cannot know all the requirements and build a
perfect system at the beginning [2]. This type of
evolution includes modifying a software element in a
system without changing the basic design of the
system. More specifically, classes and relationships
may be added or removed in a particular design pattern
without changing its structural properties [3]. Manual

modifications of pattern elements require designers to
go to the details of a program, which is a tedious and
error-prone process. To accelerate software evolutions,
researchers separate a system into the abstraction level
and the implementation level, as specified in the Model
Driven Architecture [4]. In a Model Driven
Architecture, it saves considerable time to modify a
system design at a conceptual level before actually
putting a design into implementation.
Graphical notation provides an intuitive and flexible

approach to describing structural information.
Compared with other formal methods, graph
transformation [5, 6] is a visual pattern and rule based
manipulation of graph models and is suitable for
describing the evolution of design patterns. Graph
transformation is theoretically well founded and many
matured environments and tools [7, 8, 9] are available
to support the design and implementation of graph
transformation. Furthermore, since design patterns are
represented as UML diagrams, an evolution process
can be simulated with the application of transformation
rules on these diagrams.
In this paper we define the graph transformation

rules that cover the potential evolutions for all design
patterns. After an evolution process, consistency
checking is conducted using a syntax parser to verify
the structural integrity of the modified design. More
specifically, a supporting visual language environment
[9] can be used to check the consistency of the evolved
design.
To summarize, the contribution of this paper

includes:
� A graph transformation based approach that is

able to evolve design patterns and extend the
system is presented.

� A Reserved Graph Grammar based syntax
parser is proposed to verify the structural
integrity of the evolved design.

The remainder of the paper is organized as follows.
Section 2 briefly introduces the Reserved Graph
Grammar formalism and the concept of graph
transformation. Section 3 proposes the framework of
our approach and focuses on the design pattern

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

1©1530-1605/07 $20.00 2007 IEEE
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

evolution process using graph transformation. Section
4 shows how to check the consistency of evolved
design patterns using a graph grammar based syntax
parser. Section 5 reviews related work. Conclusion and
future work are given in Section 6.

2. Reserved Graph Grammar and graph

transformation

In this section we give an overview of the Reserved

Graph Grammar (RGG) formalism [10] and graph
transformation, which are the theoretical foundation of
the discussion in Sections 3 and 4.

2.1. Reserved Graph Grammar

Graph grammars extend the generative grammars of
Chomsky into the domain of graphs. Different from
string grammar expressing sentences in sequence of
characters, graph grammars are suitable for specifying
visual information in a multi-dimensional fashion.
A graph grammar is made up of a set of rewriting

rules, called productions. Each production consists of
two parts: a left hand side (LHS) and a right hand side
(LHS). Applying a production in a graph instance
(called host graph) is in the form of L-application or
R-application. When the right hand side of a
production is matched in a host graph, it will be
replaced by the left hand side of the production which
is called R-application. The reverse process is called
L-application. Any transformation of graphs can be
realized by applying a sequence of productions. If a
host graph is eventually transformed into an initial
graph, the parsing process is successful and the host
graph is considered to represent a type of design
sharing the structural properties specified by the graph
grammar [11].

The Reserved Graph Grammar is a

context-sensitive graph grammar formalism, which is
expressed in a node-edge format. A node is defined as
a two-level hierarchy with a node itself and vertices
embedded in it as shown in Figure 1(a). A node can
denote any pattern element, e.g. classes, attributes and
operations; an edge represents the relationship between
nodes. A vertex in a node functions as a point attached
to an edge.

The marking technique, which classifies a vertex as
marked or unmarked, is used to deal with embedded
issues: to update the connection between the replacing
sub-graph and the surrounding of the replaced
sub-graph in the host graph. Figure 1 (a) illustrates a
node “attribute” with two vertices and (b) shows an
RGG production. It denotes a group of connected
attributes that can be reduced to one entity. The dashed
rectangle represents a non-terminal graph symbol and
the solid rectangle denotes a terminal graph symbol.

2.2. Graph transformation

Design patterns may be described by UML

diagrams thus it is natural to use graphical notations to
depict and transform them through graph
transformation.
Graph transformation is the application of a

sequence of rules on a given host graph. Slightly
different from the parsing process of verification, in
which the parser finally presents a parsing result, i.e.
valid or not, the transformation process produces a new
graph from the input host graph after applying
transformation rules. Moreover, the transformation
process terminates when no more transformation rules
can be applied, while in the validation process the
parser terminates only when the host graph is reduced
to an initial graph.
Let L be the LHS of a grammar rule r and R be the

RHS of the rule. Let G be a host graph. The
transformation from graph G to graph H by rule r can
be achieved through the following steps [13]:
1. Recognize sub-graph L in the host graph G.
2. Check if the transformation rule can be

applied.
3. Replace sub-graph L by sub-graph R.
4. Connect the dangling edges if the vertex is

marked to preserve the association with the
original surrounding of the replaced sub-graph
L.

According to Varró et al. [12], steps 1 and 2 can be
classified as a pattern matching process and steps 3 and
4 are used to update the surrounding connections with
the host graph. The example in Figure 2 shows a
process of graph transformation:

L R

Figure 1. Node and production

Attri
1:P

2:N

Attri
1:P

2:N
:=

Attri
P

2:N

1:P

N
Attri

(a) (b)

Figure 2. A graph transformation process

A B
C’

A’
B’

A B

E
C’

A’
B’

E
G H

:=

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

3. Pattern based design evolution

After introducing the concepts of the Reserved

Graph Grammar and graph transformation in Section 2,
we proceed to explain pattern based design evolutions,
which involve the modifications of pattern elements.

3.1. Classification of design pattern evolution

In this section we focus on the evolution of pattern

level design. It is very common for a designer to
add/remove a software element into/from a system. For
example a designer may need to add one class with its
association with another class and extend the original
design. Pattern elements of a software system include
classes, attributes, operations and relationships, e.g.
association, generation.
For all the patterns there may be addition or

removal of operations, attributes and classes with
corresponding relationships. From this perspective
design pattern evolutions are classified into five main
categories [3] as shown in Figure 3 to Figure 7.
1. Independent. An independent class and its

relationships with other classes are added or removed.
For example, in the Mediator pattern, a concrete class
with a generation and an association to other classes
can be added to the Mediator pattern as shown in the
dashed line in Figure 3 without changing the structural
integrity of this pattern.

Figure 3. Independent evolution

2. Packaged. One independent class with attributes
or operations and the corresponding relationships with
other classes can be added or removed. Figure 4 shows
an Observer pattern. The dashed part is the elements
that can be added for extension purpose.

Figure 4. Package evolution

3. Class group. One attribute or operation can be

added to/removed from several different classes

consistently. Figure 5 shows an Observer pattern with
a set of attributes added that are highlighted in the
dashed rectangle.

Figure 5. Class group evolution

4. Correlated class. A group of correlated classes

are added or removed. Figure 6 shows an
AbstractFactory pattern. Adding one ConcreteFactory
class will be accompanied by the addition of two
Product classes with the corresponding relationships as
shown in the dashed areas in Figure 6.

Figure 6. Correlated class evolution

5. Correlated attribute/operation. Adding or

removing a group of classes should also add or remove
the correlated attributes or operations. As shown in the
dashed part of Figure 7, adding ProductB classes are
accompanied by the addition of two correlated Create
methods.

Figure 7. Correlated attribute/operation evolution

All the possible potential evolutions for each design

pattern can be expressed by the above five types of
transformations although different design patters have
different structural properties. For example, the

Mediator Colleague

ConcreteMediator ConcretColleage ConcreteColleague

ConcreteFactory1

+CreateProductA()
+CreateProductB()

AbstractFactory

ConcreteFactory2

+CreateProductA()
+CreateProductB()

ProductA1 ProductA2 ProductB1 ProductB2

AbstractProductA AbstractProductB

Subject

ConcreteSubject

+Attribute:A1
+Attribute:A2

Observer

ConcreteObserver ConcreteOberver

+Attribute:A1
+Attribute:A2

+Attribute:A1
+Attribute:A2

Subject

ConcreteSubject

+Attribute: A1

Observer

ConcreteOberver

+Attribute: A1

ConcreteObserver

+Attribute: A1

ConcreteFactory1

+CreateProductA()
+CreateProductB()

AbstractFactory

ConcreteFactory2

ProductA1 ProductA2 ProductB1 ProductB2

AbstractProductA AbstractProductB

+CreateProductA()
+CreateProductB()

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

3
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

possible potential evolutions of Adapter pattern are of
the fourth and fifth types; the first type of evolution
can occurs only in the Façade pattern and Mediator
pattern [3]. Minor modifications to these basic rules
are necessary when they are applied to different
patterns for graph transformation. Therefore we only
focus on the transformations of these five types of
pattern evolutions using graph transformation.

3.2. A framework of our approach

In this section we describe the general framework

of our approach. Design patterns are evolved in three
steps as shown in Figure 8:
1. Pattern generation. Design patterns expressed in

UML class diagrams are extracted and depicted in
the graph editor. Each pattern is used as an input
graph for the next step.

2. Graph transformation. The graph transformation
engine consists of a set of predefined graph
transformation rules for each type of pattern
evolution. The input of the transformation engine
includes the UML diagrams generated in the first
step and the commands from users. The user
should specify the desired modification, e.g. the
class to be added or the type of design evolution
he/she needs. The output of this step is an evolved
design pattern.

3. Consistency verification. The consistency of the
transformed pattern is examined by a syntax parser.
Since any modification of a design should
maintain its structural integrity, the evolved
pattern should be transformed to an initial graph
by a sequence of productions that represent the
structural properties of a design pattern.

Figure 8. A framework of pattern evolution process

3.3. Graph based design pattern evolution

According to the definition and classification of

pattern evolutions, we define graph transformation
rules for each type of evolution respectively, as shown
in Figure 9. For space limitation, we only present the
addition of software elements. The principle is similar
to that of the removal process if the rules are applied
reversely.

In rule (a), a new independent class and its
relationships with its surrounding are added. We can
match the graph of LHS of this rule with the host graph
and replace the matching part with the RHS. Similarly,
in rule (b), a new concrete class with its attributes is
added. In rule (c), a new attribute is added to a set of
concrete classes. Rules (d) and (e) appear more
complicated since the additions of some classes are
accompanied by the additions of other elements
(classes or methods) besides the relationships with
other classes.

:=
ConcreteClass

ConcreteClass

AbstractClass

ConcreteClass

ConcreteClass

ConcreteClass

AbstractClass

(a) Independent

Figure 9. Pattern evolution rules

(c) Class group

ConcreteClass
Operations

ConcreteClass
Operations
Operation

:=

ConcreteClass
Operations

ConcreteClass1

ConcreteClass
Operations
Operation

Concrete
Class1

Concrete
Class2

NewAbstractClass

(e) Correlated attribute/operation

:=

:= ConcreteClass
Operation 1
Operation n

AbstractClass

(b) Package

AbstractClass

 (d) Correlated class

AbstractClass

ConcreteClass
Operations

ConcreteClasses

AbstractClass

Concrete
Classes

ConcreteClass
Operations

Concrete
Classes

AbstractClass

ConcreteClass

AbstractClass

ConcreteClass

:=

:= Pattern
Generation
Tool

Source

Pattern
Transformation

Engine

Syntax
Parser

UML diagram Pattern

User Command Output

ConcreteClass
Operations

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

4
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

For instance, to realize a Correlated class evolution,
we need to add a new ConcreteFactoray class with
corresponding addition of some new Product classes
thus the transformation rules in Figure 9 (d) can be
used. This transformation consists of two steps. First, a
new ConcreteFactory class and its corresponding
concrete product classes are added. Second, the
inheritance relationship between AbstractClass and
ConcreteClass is added. To illustrate a sample
evolution process, we use the independent rule in
Figure 9(a) to show how to extend the Mediate pattern.
The shaded elements of graph G in Figure 10 are
matched by the LHS of the independent rule and
replaced by the RHS of the rule. The graph H is the
evolved pattern.

4. Consistency checking

After the design is evolved, we need to check the

consistency to verify that the structural properties and
constraints of the changed design are preserved.
Consider the transformation process in Figure 10,
when a ConcreteColleague class is added to the graph
G, the association with ConcreteMediator class and the
generation with Colleague class should also be added.
If any of these relationships is missing, the transformed
pattern will no longer be a Mediator pattern and the
transformation is inconsistent.
Based on the Reserved Graph Grammar formalism,

a generic parsing approach is used to check the
consistency. A set of productions are defined for each
pattern. If a pattern can be reduced to an initial graph
by a sequence of productions, the evolved pattern is
considered to conform to the structural properties of a
particular design pattern represented by the graph
grammar and the evolution of the design is proved
correct.
We define relationships: association, generation,

composition, etc, as terminal symbols. Pattern

elements such as classes, attributes and operations are
represented as non-terminal symbols determined by
their syntactic meanings. An edge between two
vertices represents a connection of two nodes. A
dashed rectangle represents a non-terminal node and a
solid rectangle denotes a terminal node. For brevity,
we only define the productions for three design
patterns mentioned earlier in this paper, as shown in
Figure 11.
Production 1 shows that an attribute can be reduced

from a group of attributes or one single attribute.
Similarly production 2 defines a set of operations.
Production 3 is a class that consists of a class name,
operations and/or attributes. These three productions
can be viewed as the building blocks of design patterns.
Productions 4 - 6 specify an Observer pattern.
Productions 7 - 9 represent a Mediator pattern.
Productions 10 - 13 define an AbstractFactory pattern.

Mediator Colleague

ConcreteMediator ConcreteColleague ConcreteColleague

Mediator Colleague

ConcreteMediator ConcreteColleague

ConcreteColleague

ConcreteColleague

Figure 10. A graph transformation process

G

H

<4> Observer

Observer
1:P

:=

Class N

Genera L R Class P Observer N

Genera L R Class P

<5> Subject

:= Genera
l

L R Class P Subject

1:P
Subject N Class 1:P

<6> ObserverPattern

:= Association L R
Subject
2:N

O_P

2:N 1:P

P P
2:N

Observer

<7> ColleagueMediator1

1:P

2:N

2:N

2:N 2:N

General L R
Class

N 1:P associat L R
Class

N P
Class

1:P N

:=

:=

General L R associat L R
Class

N P

General L R associat L R
Class

N P

Class N

1:P

Class
N

1:P

<8> ColleagueMediator2

Co_Me
1:P

:= Genera
l

L R
Class

N 1:P assoc
iat

L R
Class

N P
Class

1:P N

2:N

2:N 1:P

Attri
1:P

2:N

:= Attri
1:P

N

Attri
P

2:N

<2> Operations

Oper
1:P

N

Oper
P

2:N

<3> Class

<1> Attributes

Class
1:P

:=
ClassName

1:P

N

Attri
P

N
Oper
P

N

Oper
s

1:P

2:N
:= Attri

1:P

2:N
Oper
1:P

2:N

2:N

ClassName
1:P

N

Oper
P

N

ClassName
1:P

N

Attri
P

N

Figure 11-1. Design pattern productions

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

5
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

5. Related work

Graph transformation has been successfully used in

many applications [14, 15, 16].
Dong et al. [3] proposed that the potential evolution

of all design patterns could be categorized into five
basic types. An XMI-based approach to design pattern
evolutions was used to change the UML class diagram.
This requires users to manually specify all the pattern
elements that relate to a pattern evolution, i.e. classes,
attributes, operations or relationships, and group these
elements in one transformation. However, the user has
to keep in mind of all the possible elements modified
without having an intuitive scenario of the
transformation process. Performing this task by hand
will be tedious and error-prone. Also, to conduct the
consistency checking, Java Theorem Prover (JTP) was
deployed to verify the system. The XMI files had to be
converted to an RDF/RDFS format before verification,
and only circular inheritance was checked in the
system. In contrast, the approach presented in this
paper specifies all the necessary manipulations in a
graph grammar rule, which enhances the

expressiveness and accuracy of the evolution. For
consistency checking, we do not need any intermediate
transformation of pattern elements, since an RGG
parsing process can be performed directly on the
evolved pattern diagrams generated by graph
transformation. Not only circular inheritance but also
the structural integrity of the evolved design pattern is
examined.
Kobayashi et al. [17] considered pattern evolutions

from the viewpoint of software development. They
evolved Analysis Patterns in the requirements analysis
step to Design Patterns in the design step. The process
of evolving customers’ requirements into a final design
was considered as a software development. The
evolved patterns did not maintain the structural
property of the original pattern. To achieve the target
transformation from one pattern to another, designers
need to group a set of operations on the diagrams. The
idea of encapsulating a sequence of operations as one
transformation on a diagram is similar to that of Dong
et al. [3] and also error-prone. No consistency
checking of this transformation was mentioned.
Costagliola et at. [18] proposed a design pattern

recovery approach and patterns were expressed in
terms of visual grammars. Design patterns were
retrieved by a pattern recognition parser. This parser
used an attributed-based representation of XPG
grammar, which is not as expressive as the RGG. The
RGG reserves the structural information by linking to
other components through edges and vertices.

6. Conclusion and future work

Evolution of design pattern represented in UML

diagrams is a common and important practice in the
development of software systems.
This paper has presented a graph transformation

approach to design pattern evolution and a consistency
verification process using a Reserved Graph Grammar
parser. Based on the classification of design pattern
evolutions, we define graph transformation rules to
manipulate the pattern elements and extend the system.
To verify the consistency after transformation, a graph
grammar parser is proposed and productions are
defined for each design pattern.
The transformation rules in the transformation stage

and the grammar productions in the verification stage
are applied in sequential steps specified by designers.
To accelerate the process, an automated system that
integrates the current graph transformation
environments with the pattern evolution rules, will be
further investigated. More experiments will be
conducted on complex systems that include compound

Figure 11-2. Design pattern productions

<10>AbstractProduct

:= Class P
2:N

Class

1:P
N Genera

l
L R

:= Genera
l

L R
Class

1:P
N

<11> Product

<12> ConcreteFactory

CF

ClassName
N

Attri

1:P

N

:=

associa
t

L
R

Product P

1:P

2:N CF
1:P

N Attri
1:P

N

associa
t

L
N

R
Product P

Product
1:P

2:N

Product
1:P

2:N

Product
1:P

2:N

Product
P

2:N

2:N 2:N

<13>AbstractfactoryPattern

A_P
1:P

:= Class N Genera L R Class P

A_P P Genera L R Class P

2:N

2:N

1:P

<14> Pattern

λ := A_P

1:P M_P O_P

<9>MediatorPattern

M_P := Co_Me
P P

N

Genera
l

L R

associa
t

L R N

Class

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

design patterns. We will also conduct empirical studies
in the future work.

7. References

[1] E. Gammar, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, 1995.
[2] M. Ó Cinnéide, P. Nixon, “Automated Software
Evolution Towards Design Patterns”, Proceedings of the 4th
International Workshop on Principles of Software Evolution,
pp. 162-165, 2001.
[3] J. Dong, S. Yang, and K. Zhang, “A Model
Transformation Approach for Design Pattern Evolutions”,
Proceedings of the 13th Annual IEEE International

Symposium and Workshop on Engineering of Computer

Based Systems, pp. 80-92, 2006.
[4] Model Driven Architecture, http://www.omg.org/mda.
[5] G. Rozenberg (Ed.), Handbook of Graph Grammars and
Computing by Graph Transformation: Foundations, vol. 1,
World Scientific, 1997.
[6] L. Baresi and R. Heckel, “Tutorial Introduction to Graph
Transformation: A Software Engineering Perspective”,
International Conference on Graph Transformation, LNCS
2505, Springer, pp. 402-439, 2002.
[7] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P. Wadsack,
R. Wagner, L. Wendehals, and A. Zündorf, “Tool Integration
at the Meta-Model Level: the Fujaba Approach”,
International Journal on Software Tools for Technology

Transfer, vol. 6, pp. 203-218, 2004.
[8] A. Schürr, A. Winter, A. Zündorf, “Graph Grammar
Engineering with PROGRES”, Proceedings of Europe

Software Engineering Conference, pp. 219-234, 1995.
[9] K. Zhang, D. Q. Zhang, and J. Cao, “Design,
Construction, and Application of a Generic Visual Language
Generation Environment”, IEEE Transaction on Software
Engineering, vol. 27, pp. 289-307, 2001.
[10] D. Q. Zhang, K. Zhang, and J. Cao, “A
Context-sensitive Graph Grammar Formalism for the
Specification of Visual Languages”, Computer Journal, vol.
44, pp.187-200, 2001.
[11] J. Kong, K. Zhang, J. Dong, and G. Song, “A Graph
Grammar Approach to Software Architecture Verification
and Transformation”, Proceedings of the 27th Annual

International Computer Software and Applications

Conference, pp. 492-497, 2003.
[12] G. Varró, A. Schürr, and D. Varró, “Benchmarking for
Graph Transformation”, Proceedings of the 2005 IEEE
Symposium on Visual Language and Human-Centric

Computing, pp. 79-90, 2005.
[13] Y. Zhao, Y. Fan, X. Bai, Y. Wang, H. Cai, and W. Ding,
“Towards Formal Verification of UML Diagrams Based on
Graph Transformation”, Proceedings of IEEE International
Conference on E-Commerce Technology for Dynamic

E-Business, pp. 180-187, 2004.
[14] J. Kong, G. Song, and J. Dong, “Specifying Behavioral
Semantics through Graph Transformation”, Workshop on

Visual Modeling for Software Intensive Systems, pp.51-58,
2005.

[15] D. Le Métayer, “Describing Software Architecture
Styles Using Graph Grammars”, IEEE Transaction on
Software Engineering, vol. 24, pp. 521-533, 1998.
[16] R. Bardohl, G. Taentzer, M. Minas, and A. Schürr,
“Application of Graph Transformation to Visual Languages”,
Handbook on Graph Grammars and Computing by Graph

Transformation: Applications, Language and Tool, Vol.2,
World Scientific, pp. 105-180, 1999.
[17] T. Kobayashi and M. Saaki, “Software Development
Based on Software Pattern Evolution”, Proceedings of the 6th
Asia-Pacific Software Engineering Conference, pp. 18-25,
1999.
[18] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino
and M. Risi, “Design Pattern Recovery by Visual Language
Parsing”, Proceedings of the 9th European Conference on
Software Maintenance and Reengineering, pp. 102-111,
2005.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

7
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00 © 2007

