
The Effects of Continuous Awareness on Distributed
Software Development

Cong Chen
Department of Computer Science

The University of Texas at Dallas

Richardson, Texas, USA

Email: congchen@utdallas.edu

Kang Zhang
Department of Computer Science

The University of Texas at Dallas

Richardson, Texas, USA

Email: kzhang@utdallas.edu

Abstract—Awareness, the understanding of others’ activities,
has been widely accepted as a remedy to many collaboration
difficulties in distributed organizations. Continuous Awareness
(CA), a continuous support for integrated awareness information
across space and time, aims to address the need of continuous
awareness information in globally distributed software teams.

This paper presents an comprehensive evaluation of a CA
system, Team Radar, across multiple platforms. The result shows
that Team Radar enables developers to receive continuous aware-
ness information effectively and efficiently without the limitations
of space and time. Our work provides insights into further
exploration of awareness for distributed software development
and the design and evaluation of similar tools.

Keywords—Distributed software development, virtual team,
awareness, collaboration, experiment.

I. INTRODUCTION

Software development is a typical team-based activity.
Such teamwork requires intense collaboration among team
members and other outside stakeholders. High levels of col-
laboration necessitate frequent communication between team
members, spontaneous information processing, and mutual
awareness of each other [1]. Awareness, “an understanding
of the activities of others that provides a context for one’s
activities” [2], is important for efficient collaboration, as it
“aids coordination of tasks and resources, and assists transi-
tions between individual and shared activities.” [3].

To foster competition and minimize cost, more and more
software teams are becoming distributed. Team distribution
incurs many difficulties to awareness, such as physical, tem-
poral, and cultural barriers [4]. The loss of awareness not only
harms team effectiveness and mutual trust [5], but also affects
contributors’ willingness and enthusiasm of work [6]. In such
a setting, people have to take various alternative approaches
to obtaining awareness. It has been argued that the key to
promote collaboration in virtual teams is increasing the level
of awareness and providing continuous information of ongoing
changes [1], [7].

To address the need of continuous awareness information in
distributed teams, we propose Continuous Awareness (CA), a
continuous support for integrated awareness information across
space and time [8]. CA emphasizes continuous awareness sup-
port in two aspects: continuous on the spectrum of awareness
types and continuous across space and time.

A. Problem

Several challenges have to be addressed to realize CA,
including supporting multiple awareness types and dealing
with team distribution in space and time.

Software developers often need multiple types of aware-
ness, such as presence awareness [9], workspace awareness
[10]), and social awareness [11]), and these needs may change
with the context of the work [4]. Unlike traditional paradigms
of awareness research that often study single awareness type
individually, CA requires providing integrated awareness infor-
mation to meet users’ changing needs. Although CA can be
partially supported by many existing tools, such as instance-
messaging (for presence awareness and communication) and
synchronous online editors (e.g., Google Docs, for activity
awareness), a more integrated CA system especially designed
and customized for distributed software development is still
lacking.

In modern software teams, team members may work at
variable locations or in mobile. Much time can be spent in
meetings, visiting customers, or moving between locations. At
the same time, spontaneous meeting and group discussions
continue to be an important factor in work [12]. Unplanned
exchange of information can lead to spontaneous collaboration,
such as code inspection, pair programming, and problem
solving, which is one of the reasons collocated teams perform
better than distributed teams [6].

B. Solution

To meet the awareness needs in physically and temporally
distributed teams, we propose to realize CA on multiple
platforms. Current awareness systems are limited to desktop
platforms, which are insufficient for distributed collaboration
across space and time. Mobile devices provide unbeatable flex-
ibility than desktop or laptop computers, bringing information,
availability, and efficiency to any stage and component of a
software process. A mobile awareness approach can fill the
information gap of desktop awareness tools and help construct
a complete CA system.

We call awareness support on desktop platforms desktop
awareness, and its support on mobile platforms mobile aware-
ness. Being a relatively new concept, there is little validation
for the effectiveness and efficiency of a CA system combining
desktop awareness with mobile awareness. To address these

2014 IEEE 9th International Conference on Global Software Engineering

978-1-4799-4360-9/14 $31.00 © 2014 IEEE

DOI 10.1109/ICGSE.2014.28

56

knowledge gaps, we have created Team Radar, a complete
CA system and evaluated its efficacy for providing continuous
awareness information. Team Radar consists of Team Radar
Desktop, a desktop awareness tool, and Team Radar Mobile,
a mobile awareness tool.

C. Contributions

Our previous publications have presented the rationales and
design of the system [13] and an evaluation of Team Radar
Mobile [8]. This paper reports a comprehensive evaluation
of the entire Team Radar system for presenting continuous
awareness information under several predefined usage sce-
narios and system configurations. The experiment has found
that workspace awareness offered by Team Radar Desktop
allows developers to receive conflict warnings more quickly
and accurately. Adding a mobile awareness tool and supporting
online and offline modes enable developers to receive prompt
notifications of the progress and activities of a project without
the limitations of space and time. Consistent visualization for
integrated awareness information ensures that users perform
equally well on desktop and mobile awareness platforms.

The rest of the paper is organized as the following.
Section II introduces the background of the research, espe-
cially continuous coordination. Section III briefly describes
the features and design of the system. Section IV presents
the experiments, followed by a discussion of the results in
Section V and the implications and limitations of our work in
Sections VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Our study on CA is based on two important trends of recent
research: integrated and contextual awareness support and
being continuous. Considering that developers need multiple
types of awareness information, and such need often changes
with time and location, researchers have proposed to identify
users’ dynamic information need and provide information
based on current context. Holmes and Walker [14] proposed
the notion of Developer Specific Awareness (DSA) and real-
ized it in YooHoo, by which awareness information about code
changes is automatically filtered based on a developer’s own
code and interests. Omoronyia et al. [4] suggested that more
research is required for context awareness, a crosscutting form
of awareness that concerns an individual’s changing context in
collaboration.

Most existing awareness tools aim to support single type
of awareness information. CollabVS [15] attempts to integrate
multiple awareness elements into workspace based on the
context of the collaboration session as well as the role of
the user. CollabVS has integrated many collaboration streams
into the Microsoft Visual Studio IDE, such as a presence
stream for presence awareness, a concurrent-access stream and
a code-sharing stream for workspace awareness and conflict
resolution, and a text-chat and audio/video stream for online
chatting.

Compared with previous awareness studies, our work tar-
gets team distribution and uses mobile awareness platforms and
asynchronous communication to deal with geographical and
temporal separation. Our awareness tool also supports multiple

TABLE I: Awareness information supported by Team Radar
[8].

Information type Benefit Benefited party
Project status Monitoring project progress Manager

Activeness of developers Understanding developers’ work-
load

Manager

Collaboration patterns Understanding team organization
and group dynamics

Manager

Developers’ activities Understanding work dependency
Assisting expert locating and
knowledge sharing

Developer

Overlapped work Reducing merge conflicts Developer

types of awareness information but utilizes visualization tech-
niques for consistent user experience on multiple platforms.

Continuous Coordination (CC) [16] aims at integrating
heterogeneous tools to benefit from both formal and informal
approaches. CA is an extension of CC focusing on continuous
awareness support. We implement CA by integrating desktop
awareness with mobile awareness and supporting synchronous
and asynchronous communications. By studying the impact of
CA on collaboration, we have also validated the CC paradigm
and obtained experience with its implementation.

Evaluating awareness tools is challenging, considering the
large number of participants needed and a complex collabora-
tion scenario. Only a few awareness tools have been formally
examined, such as the workspace awareness tool Palantı́r
[10]. The evaluation of Team Radar adopts some strategies
of previous experiment design, such as choosing a small
software project that is likely to create conflicts [15] and
reducing individual differences [10]. We have also innovated
a new automatic conflict seeding technique that guarantees the
consistence of the conflicts and saves human effort.

III. TEAM RADAR

To contextualize the discussion, we briefly introduce the
major features of Team Radar. More details of the system can
be found in our previous publications [8], [13].

Realizing CA in distributed teams faces three major chal-
lenges: multiple types of information needs, geographical dis-
tribution, and temporal separation. To meet these challenges,
Team Radar is designed with the following goals: (1) support-
ing multiple types of awareness for different roles and usage
patterns in a software team, (2) working on desktop and mobile
platforms, and (3) supporting synchronous and asynchronous
communication.

Team Radar consists of a desktop client, Team Radar
Desktop, and a mobile client, Team Radar Mobile. Team
Radar Desktop can be used by any roles in a team who
need unobtrusive continuous awareness of the team dynamics.
Team Radar Mobile is especially useful for people who often
work out of office or office hours (e.g., project managers) and
also promotes unplanned collaboration. Team Radar supports
both online and offline modes. The online mode enables users
to receive awareness information in real-time. For projects
across multiple time zones, the offline mode allows aware-
ness information to be downloaded upon request and played
asynchronously. Moreover, push notification on Team Radar

57

Conflict warning

Light trail

Afterimage

Playback controls

Fig. 1: The visualization on Team Radar Desktop.

Mobile ensures that developers will not miss any important
updates or collaboration opportunities. Table I summarizes the
major types of awareness information Team Radar supports,
as well as their benefits in practice.

The Team Radar system adopts a client-server architecture.
The server side, Team Radar Server, is a central repository
and relay of awareness information. On the client side, Team
Radar Desktop is an awareness information monitor and viewer
on the desktop, embedded into Qt Creator1 as a plug-in.
Team Radar Desktop supports all major desktop operating
systems, including Windows, Mac OS, and Linux. Team Radar
Mobile is a mobile awareness client with the same set of
features as Team Radar Desktop, except that it does not
capture awareness information. Team Radar Mobile supports
two mobile operating systems: Symbian and Android.

Team Radar takes the following steps to process awareness
information in a team: capturing, dissemination, analysis, and
visualization. Team Radar Desktop monitors and captures
events of interest in local IDEs and sends them to Team Radar
Server, which broadcasts them to other registered clients.
Team Radar Desktop and Team Radar Mobile use the same
technique to analyze the received information, and present it
with intuitive visualization. A set of analytical tools can mine
the underlying patterns of collaboration, allowing managers to
inspect daily activities, monitor progress, and analyze collab-
oration issues.

Figure 1 illustrates the animated visualization. Team Radar
adopts a tree structure [17] to present the directory structure of
a project. The tree is laid out aesthetically and automatically
by a force-directed layout algorithm [18] to fully utilize screen
space with minimal edge crossings. Non-leaf nodes represent
directories and are connected by edges representing their
directory relationships. Leaf nodes denote files and are colored

1Qt Creator: a C++ IDE, http://qt-project.org

(a) Node-edge view (b) Treemap view

Fig. 2: The visualizations provided by Team Radar Mobile.

by file types. Each online developer is shown as an icon. When
a developer starts making changes to a file, her icon will fly
close to the corresponding tree node indicating the artifact she
is working on. When an icon moves, its afterimage stays, and
a light trail shows its path. The accompanying tag shows a
developer’s current working mode (coding, debugging, etc.).
When conflicting changes to an artifact occur, an exclamation
mark will give developers an early warning of the potential
merge conflict. All local events are stored in the repository of
Team Radar Server as event scripts for users to retrieve and
replay. As time intervals between events vary, in the offline
mode, users are allowed to adjust the playback speed and
navigate to certain event through the playback controls.

Team Radar Mobile shares most features with Team Radar
Desktop. Making a mobile version of an application, however,
is not a simple reimplementation of its desktop counterpart. It
involves much attention to the specific requirements for mobile
platforms. The characteristics of mobile platforms, such as
smaller screen, limited computation power and battery life,
and users’ intermittent focus (contrasted to more continuous
focus on desktop computers) [19] impose special requirements
for mobile application design.

Team Radar Mobile is designed to meet the following
requirements for mobile visualization we have identified [20]:

1) Maximizing the performance for mobile devices.
2) Utilizing screen space better.
3) Supporting multi-touch.
4) Suiting mobile users’ intermittent use.
5) Minimizing power consumption.
6) Keeping style consistent with Team Radar Desktop.

The visualization on Team Radar Mobile is tailored for
mobile platforms. As shown by Figure 2, it has two views:
a node-edge view and a vertical treemap view. The node-
edge view provides dynamic project information similar to its
desktop counterpart. It uses a new multi-level force-directed
layout algorithm considering screen boundary and shape [8],
which utilizes screen space more efficiently and keep style con-
sistency with the desktop version. The treemap view presents

58

the static structure of the project with better navigation and
screen utilization. Contrasted to the original two-dimensional
fashion, it divides the screen vertically, leaving enough space
for labeling. Additional information, such as modification
status, who are working on the files, and conflict warnings,
are annotated on the treemap.

IV. EVALUATION

We conducted a controlled experiment to evaluate how
Team Radar meets the requirements of CA in distributed
teams: delivering continuous awareness information. More
specifically, the experiment answers the following research
questions.

Q1: How does Team Radar (Desktop) promote workspace
awareness for a physically distributed team?

Q2: How does Team Radar (Desktop and Mobile) promote
project and activity awareness for a temporally dis-
tributed team?

Q3: Does the efficacy of the system differ on different
platforms?

The first question is answered by an online experiment
evaluating user performance for detecting conflicts arising in
parallel development. The second question is answered by an
offline experiment measuring user performance for perceiving
awareness information relevant to project status and teammate
activities. We answer the last question by comparing the user
performance on Team Radar Desktop and Team Radar Mobile
in the offline experiment.

A. Process

The experiment was conducted in three phases. First, there
was a training session for the subjects to get familiar with the
systems. Second, a pilot study involving a small (separate)
group of participants refined the tasks and the questions,
ensuring that the experiment environment was functional and
the tasks could be completed within reasonable time. Any
technical problems arose in the pilot study were solved before
the experiment. Finally, we proceeded with the experiment.

B. Configurations and variables

We designed a set of configurations to simulate typical col-
laboration scenarios in software development. As many main-
stream IDEs, Qt Creator supports various stages in software
development, including UI design, code editing and navigation,
refactoring, debugging, language reference, SCM, etc. Because
Team Radar is based on Qt Creator, it is ideal to use Qt Creator
as the baseline for comparison. The system can be used under
three configurations: the original development environment
provided by Qt Creator (O), Qt Creator with Team Radar
Desktop (D), and Team Radar Mobile (M), as listed in Table II.
Configuration O consists of Qt Creator 2.4.1 with default
settings, a SVN plugin for Qt Creator, and a SVN server.
The SVN plugin and the SVN server represent a traditional
SCM system2. Configuration D adds a Team Radar Desktop
plugin to Qt Creator, bringing workspace awareness, project

2SVN: http://subversion.apache.org/

TABLE II: Experiment configurations.

Configuration Tool set Experiment
O Qt Creator 2.4.1

SVN plugin for Qt Creator
SVN server

Online
Offline

D Qt Creator 2.4.1
SVN plugin for Qt Creator
SVN server
Team Radar Desktop plugin for Qt Creator

Online
Offline

M Team Radar Mobile running on Nokia C7 with
a 3.5” screen and 640 × 480 resolution

Offline

awareness, and activity awareness to developers. Configuration
M consists of Team Radar Mobile running on a Nokia C7
cell phone. Configurations O and D are on desktop platforms
and were used for both online and offline experiment, while
configuration M is especially designed for offline experiment.

C. Subjects

A total of 31 subjects participated in the experiment vol-
untarily. The online experiment involved 10 graduate students
from our department at our university. The offline experiment
used 15 graduate students from the same institution and 6
professionals in software industry. Professional profiles of the
subjects were gathered before the experiment to ensure that
they have the required skills and experience. As the experiment
tasks require only basic understanding of the C++ program-
ming language and the Qt Creator IDE, and the subjects were
given step-by-step instructions on what to do, we did not
find significant difference in subjects’ ability to perform the
experiment tasks.

The experiment used a between subjects design. In the on-
line experiment, the subjects were divided into a control group
(configuration O) and an experiment group (configuration D),
both of size 5. The offline experiment divided the subjects
into three groups of size 7 using configurations O, D, and M
respectively.

D. Experiment design

To make the experiment realistic, several key attributes
were designed carefully: physical and temporal distribution of
a team, a software project (object system) being developed in
parallel, and change conflicts arising during the development.
We used the online experiment and the offline experiment to
simulate physical and temporal distribution respectively. We
also created a fictional software project that is realistic, small,
and leads to conflicts [15]. Finally, an automatic virtual conflict
technique guarantees that conflicts are created consistently for
all the subjects. The following subsections introduce these
techniques in detail.

1) Online experiment: The goal of the online experiment
is to test the efficacy of Team Radar as a workspace awareness
tool for developers to identify teammates’ activities and detect
conflicts. It simulates a parallel development setting in which
conflicts arise because of physical separation and lack of
workspace awareness. In the experiment, a team of partici-
pants (subjects) worked on a software project (object system)
simultaneously. They were asked to finish several predefined
programming tasks involving modifying code and UI of the

59

Task 2: Move Method

1) Open Customer.cpp and locate method Customer::statement()
2) Find the switch statement and move it into a new method called

double getAmount(Rental aRental) const
3) Modify the code of Customer::statement() and call getAmount(each) to get the value for thisAmount
4) Run the test
5) Commit the revision

A conflicting event was created when the subject modified Customer.cpp in Step 2. The event was sent to Team Radar
Desktop and also committed to the SVN server. The subject could observe an early warning of the conflict in Team Radar
or receive a merge error later from the SVN server when she committed the changes manually in Step 5.

Fig. 3: An example of a programming task.

TABLE III: Variables.

Experiment Independent variable Dependent variable
Online System configuration (O and D) Conflict detection rate

Conflict detection time

Offline System configuration (O, D, and M) Answer correctness
Question completion time

object system. Several conflicts were created automatically
while the subjects were working in parallel. Although seated
in the same room, the subjects were not allowed to talk to each
other directly, simulating physical separation in a distributed
team. Their changes to the code and interactions with the Qt
Creator IDE were saved in Team Radar Server as event scripts
for the offline experiment.

We made a tool to control and time the progress of the
experiment. The subjects had to click a “start” button to read
the instruction of a task and click “next” to start working on
it. When they noticed a conflict, they would click “conflict”
to note the time and location of the conflict. We measured
the performance of the subjects for detecting the conflicts
with (configuration D) and without Team Radar (configuration
O). As shown in Table III, the independent variable is the
configuration of the system (O and D), and the dependent
variables are the number of subjects who detected the conflicts
successfully and the time used for detecting the conflicts.

2) Object system: Ideally, the object system should be
an actual software project. Choosing a real project, however,
would complicate the experiment by introducing several other
variables, such as the subjects’ knowledge in the application
domain and expertise in programming. The object system
we used was a fictional software project adapted from an
example in [21], a seminal work on refactoring. The example
is a simple movie rental management system, demonstrating
how a professional developer would improve the code of a
software project through a series of disciplined refactorings.
The subjects were asked to perform some of the representative
refactorings, including “Extract Method”, “Moving Method”,
“Replace Temp with Query”, “Renaming”, etc. Each refactor-
ing was used as a programming task, consisting of multiple
smaller steps.

We carefully rewrote the program in C++ from the original
Java code, balancing simplicity and reality. The program

consists of 19 files, 11 classes, and approximately 400 lines
of code. Although small in size, the project has the skeleton
of a complete software system, including UI, business logic,
data persistence, and test code, and adopts typical structure
and design of a real software system.

To ensure that all the subjects can finish the programming
tasks at consistent pace, we explained the design and code
of the system and demonstrated all the programming tasks
to the subjects during the training session. The subjects were
also provided with detailed written instructions on the steps to
perform.

3) Automatic virtual conflict: When designing an experi-
ment for a workspace awareness tool, it is important to ensure
that the occurrences of conflicts are consistent across all the
subjects. This is challenging, because individuals change the
code at their own paces, and a conflict may not occur for a team
or may occur at different times for different teams. Previous
studies relied on carefully selected programming tasks to create
conflicts in parallel changes [15] or added a virtual teammate to
introduce conflicts manually at appropriate time [10]. Our pilot
study had found that it is too tricky to control the timing of
seeding conflicts manually, because the subjects may perform
a programming task in different steps, and the order of the
steps is often unpredictable.

In addition to selecting programming tasks that are likely
to cause conflicts, we invented an automatic virtual conflict
technique to create conflicts consistently. The virtual conflicts
were triggered automatically by the subjects’ actions. Each
subject was told that she would work in a team with 2 other
members. When she made a certain change to the code (called
trigger event, such as renaming a variable), as determined by
her programming task, Team Radar Server would receive the
trigger event and respond to her with a virtual event describing
a conflicting action from a virtual teammate (e.g., renaming
the same variable differently). Being unaware of the virtual
teammate, the subject would consider that the conflict was
caused by a real teammate. The triggers and the responding
virtual events were both predefined. No matter in what steps
and order the subjects performed a programming task, they
always experienced the same set of conflicts, and the contexts
(precedent events) of the conflicts remained consistent.

The virtual conflicts were created in both the Team Radar
system and the SVN system, so that if the subjects failed to

60

TABLE IV: Experiment tasks.

Task
Tested features

Conflict warning Work dependency Project progress Expert locating Developer activeness

1. Find the most conflicted file
√ √

2. Find who conflicted with Mike
√ √

3. Find the most active developer
√

4. What phase is the project most likely at (e.g, coding and testing)?
√

5. List the files Mike has edited
√

6. Tell who has edited rental.cpp
√

notice the conflicts in Team Radar, they could still receive
merge error messages from the SVN system. Note that we
could only detect when a subject was about to change the
code (e.g., using opening a file as a trigger event) but could
not determine when she would commit the change to the
SVN server. Because of this limitation, all the virtual conflicts
were created before the subjects committed the changes to the
SVN repository. In a SVN system, the developer who commits
the conflicting change later receives the merge error. For the
control group using only the SVN system, the subjects could
always receive merge conflicts from the SVN server, because
they committed the revisions after the virtual teammate.

Each subject performed 7 programming tasks. 7 conflicts
were seeded in 5 tasks, leaving 2 tasks with no conflicts.
Figure 3 gives an example of a programming task with a seeded
virtual conflict. For each task, the subjects had to finish several
steps of the refactoring, run the test code, and commit the
changes to the SVN repository. The subjects must ensure that
the code passes compiling and the test but were not required
to resolve the conflicts.

4) Offline experiment: The offline experiment simulates an
asynchronous collaboration scenario in a temporally distributed
team and studies how Team Radar promotes project awareness
and activity awareness in such a setting. After the subjects
in the online experiment finished changing the code, another
group of subjects received notification of the updates and were
asked to download previously stored awareness events, review
the visualization for them, and answer questions about what
awareness information was perceived. There were 55 events,
and the visualization lasted 47 seconds (idle time between
events was shortened). The subjects were allowed up to 180
seconds for each question. Table IV lists the questions, which
cover all the information aspects of Team Radar (see Table I
for details).

We compared user performance under 3 configurations.
Configuration O displays awareness information textually on
Qt Creator, while configurations D and M visualize awareness
information on Team Radar Desktop and Team Radar Mobile
respectively. The independent variable is the configuration of
the system (O, D, and M), and the dependent variables are the
correctness of the answers and the time spent on the questions
(see Table III).

V. RESULTS AND FINDINGS

We quantitatively measured the performance differences
between different groups by performing an Analysis of Vari-
ance (ANOVA) on each metric.

TABLE V: Conflict detection rate.

Group
Conflict

Mean SD
1 2 3 4 5 6 7

O 5 5 5 5 5 5 5 5.00 0

D 5 5 5 5 5 4 5 4.86 0.35

TABLE VI: Average conflict detection time (second).

Group
Conflict

Mean SD
1 2 3 4 5 6 7

O 355 130 389 389 83 509 509 337.83 156.81

D 135 108 144 305 86 146 229 164.59 70.65

A. Online experiment

One of the expected benefits of using Team Radar for
distributed development is increased workspace awareness of
parallel activities. To test this hypothesis, we compared the
user performance for identifying conflicts with and without
Team Radar. We measured conflict detection rate and time for
the effectiveness and efficiency of the system respectively.

For each group, a total of 35 conflicts were created during
the online experiment (5 subjects and 7 conflicts per subject).
Table V reports the conflict detection rate, measured as the
number of subjects who detected a conflict correctly. The
subjects in the control group (O) detected all the conflicts when
they committed the revisions to the SVN repository manually
and found their (virtual) teammates had made conflicting
changes to the files. The experiment group (D) detected 34
conflicts, leaving one undetected. We hypothesize that it is
because there were two conflicts emerging at almost the same
time and the subject failed to notice one of them. ANOVA
does not find significant difference between the detection rates
of the two groups (p=0.34).

Table VI presents the average time used for detecting
the conflicts. ANOVA shows that the experiment group spent
significantly less time than the control group (with p=0.03 at
95% confidence level). The subjects in the experiment group
could often notice the change conflicts immediately when
they arose, while the control group had to wait until the
changes were committed manually to the SCM repository. It
is interesting to note that Team Radar did not improve the
performance for detecting Conflict 5, which was seeded in a
simple task taking only a few minutes. In such a short task, the
benefit of early awareness may be lost, because the subjects
can receive the merge failure message from the SCM system
quickly when they commit the revision. This confirms the

61

TABLE VII: Correctness of the answers to the questions.

Group
Conflict

Mean SD
1 2 3 4 5 6

O 5 5 5 5 6 7 5.50 0.76

M 6 7 6 4 6 7 6.00 1.00

D 6 6 7 5 7 7 6.33 0.75

TABLE VIII: Average completion time of the questions (in
second).

Group
Conflict

Mean SD
1 2 3 4 5 6

O 164 118 131 173 106 97 131.50 28.29

M 127 89 53 114 134 64 96.83 30.68

D 101 77 58 89 87 61 78.83 15.37

effectiveness of practitioners’ strategy of making frequent and
small commits for reducing the risks of merge conflicts [22].

The online experiment aims to answer research question
Q1. By simulating a parallel development scenario in a phys-
ically distributed team, we measured the effectiveness and
efficiency of Team Radar Desktop for delivering workspace
awareness information. Compared with the non-awareness
approach, increasing workspace awareness can effectively
shorten the time to notice conflicting actions while achieving
comparable detection rate. Team Radar Desktop can help
developers not only take actions earlier to avoid costly merge
resolution, but also perceive relevant information with less
effort.

B. Offline experiment

One of the key features of a CA system is allowing
temporally distributed members to coordinate effectively. The
offline experiment concerns how Team Radar delivers various
types of awareness information asynchronously to both desktop
and mobile platforms.

Table VII presents the correctness of the subjects’ answers
to the questions, calculated as the number of subjects who
answered a question correctly. The performance of group D
and M are slightly better than that of group O, and group D
better than group M.

In addition to improving the correctness of the answers,
Team Radar also shortened average completion time of the
questions. As shown in Table VIII, group D finished the
questions with the least time, group M was in the middle,
and group O was the slowest.

Table IX reports the ANOVA significance test result for
configurations O compared to D, O compared to M, and D

TABLE IX: ANOVA result (p value) for offline experiment.

Correctness Completion time
O-D 0.29 0.02
O-M 0.63 0.15

D-M 0.81 0.54

compared to M. The differences of correctness between the
three groups are not significant, while the completion time
between groups O and D is significant (with p=0.02 at 95%
confidence level) and the completion time between O and M
and D and M are not significant.

The offline experiment is designed to answer questions
Q2 and Q3. By comparing the performances of group D and
group O, we can tell that Team Radar Desktop delivers project
and activity awareness information more efficiently than the
original IDE, and the effectiveness of the system is also slightly
improved.

Team Radar Mobile is an essential component of our CA
implementation. Due to the limitations of the computation
power, screen size, and navigation method, Team Radar Mobile
did not perform as effectively and efficiently as Team Radar
Desktop, but the difference is not significant. With the advance
of mobile computing techniques, this difference may be further
diminished in the future. Also note that group M beat group
O in almost all the tasks and questions. It is obvious that
Team Radar Mobile offers much more freedom than Team
Radar Desktop, thus we believe that Team Radar allows
developers to monitor project status and coworkers’ activities
asynchronously and enables a temporally distributed team to
collaborate across different time zones.

VI. DISCUSSIONS

This section summarizes the implications of our research
on the theoretical study of awareness and software develop-
ment practice, as well as the limitations of current work.

A. Theoretical Implications

Current research on awareness has evolved from providing
single type of awareness support to offering integrated and con-
textual awareness services. Developers’ changing work loca-
tion and time in distributed teams, however, are not addressed
enough by current study. CA fills this gap by providing an
integrated awareness service that supports geographically and
temporally distributed teams. One of the major contributions
of this paper is the concept of CA and the evaluation of its
effectiveness.

Few existing awareness systems meet all the requirements
of CA, particularly in globally distributed settings. Our work
on Team Radar has explored several ways to address the
major challenges of maintaining CA in distributed teams.
Specifically, we have proposed to extend awareness support
to mobile platforms to tackle geographical and temporally
distribution. We have also investigated techniques for visual-
izing integrated awareness information on multiple platforms
consistently. Team Radar is among the few awareness tools
that support asynchronous communication, which allows tem-
porally distributed teams to coordinate more conveniently. Our
initial exploration can inspire more research on new ways to
support CA.

Our study has also evaluated whether CA benefits a dis-
tributed team with continuous and flexible access to awareness
information. Compared with previous work, our evaluation
considers team distribution in space and time, covers multiple
platforms, and examines multiple types of awareness services.

62

The online experiment has shown that workspace aware-
ness offered by Team Radar enables developers to detect
conflicts effectively and more efficiently than traditional SCM
systems. The use of Team Radar can reduce the risk of
merge conflicts and improve developers’ confidence in making
changes. Team Radar Mobile offers performance and experi-
ence comparable to those of Team Radar Desktop and thus
complements the deficiency of desktop platforms with more
flexibility and portability.

Our practice in mobile awareness is based on general
guidelines for mobile awareness design. Our experiment has
proved that the experiences from mobile CSCW can be applied
to awareness for software development and has contributed
design lessons for mobile awareness for distributed software
development.

B. Practical Implications

Our study on CA may also provide practical suggestions for
the design and evaluation of similar tools. To our knowledge,
Team Radar Mobile is the first mobile awareness tool dedicated
to software development. Our experiment has shown that using
consistent visualization ensures that users receive similar expe-
rience on multiple platforms. We have explored techniques for
adapting a visualization from desktop to mobile platforms with
limited screen space and computational power. Our experience
with visualizing awareness information on mobile platforms
could benefit the design of similar tools in this area.

Ensuring that conflicts arise consistently for all the partic-
ipants is critical for a successful workspace awareness experi-
ment. Previous studies relied on carefully chosen programming
tasks to create conflicts or introduced conflicts manually at
fixed time. We have created a new automatic virtual conflict
technique that has better control over the timing of the conflicts
and reduces manual effort. During the online experiment, all
subjects received the same set of conflicts in the same order
and context. The automatic virtual conflict technique can be
applied to other similar experiments.

C. Limitations

The experiment was conducted in a controlled lab setting.
Although we made the environment as close to the real world
as possible, the limitations of the experiment design may affect
the generalizability of our findings.

Our current study relies on the assumption that mobile
platforms offer more flexibility than desktop platforms and fit
developers’ changing work location and time better. The exper-
iment shows that our mobile awareness tool achieves similar
performance for delivering awareness information compared
with the desktop tool, but whether such a tool is equally useful
in a real software team still needs to be verified through an
empirical study.

Most of the participants of the experiment were graduate
students, with at least 5 years’ experience in C++ program-
ming, SCM, and IDEs. Such a subject group may only repre-
sent typical profiles of fresh graduates in software industry.
Thus our findings may not apply to senior developers in
the real world, who have more experience with handling
workspace conflicts and obtaining awareness information. Our

experiment, however, has provided an initial opportunity to
understand the nature of CA and laid out foundations for future
study.

Due to the limitation of time, the subjects in the experiment
experienced frequent change conflicts, and such intensity may
not be seen in an actual software project. This design places
a higher burden for detecting conflicts equally on both the
experiment and control groups, and the advantages of Team
Radar should also exist in the real world.

Although the conflicts in the online experiment were cre-
ated automatically, the timing of them was predefined. In
actual settings, the rise of conflicts may be more random,
affected by team organization, work division, and developers’
commit strategy. As confirmed by our experiment, making
small and frequent commits can reduce the chance of conflicts
but requires more manual attention. The actual benefit of
workspace awareness may increase or decrease depending on
the commit strategy used. In either case, workspace awareness
offered by Team Radar can help reduce the risk of conflicts or
save manual effort.

Finally, in order to compare the performance of two con-
flict notification mechanisms (traditional SCM and workspace
awareness), we made the control group to be able to receive
all merge errors from the SCM system. In actual settings, only
the developer who commits the conflicting revision later gets
the error. This design is biased in favor of the control group,
and the Team Radar approach should perform even better than
the traditional approach in a real setting.

VII. CONCLUSIONS

This paper has presented an evaluation of a continuous
awareness (CA) system, Team Radar. Awareness is widely
accepted as an effective approach to promoting collaboration,
especially in distributed organizations. Existing research on
awareness, however, usually focuses on single awareness type
and platform and does not address awareness challenges of
global distribution. We propose CA as an extension of CC for
the need of continuous and integrated awareness information
in geographically and temporally distributed teams. We have
realized CA in Team Radar through the cooperation of multi-
ple information platforms and synchronous and asynchronous
communication modes.

The effectiveness and efficiency of our approach to CA
have been evaluated by a controlled experiment. We have
found that with increased workspace awareness offered by
Team Radar, developers receive warnings of potential merge
errors more quickly and accurately. Adding a mobile awareness
tool and supporting online and offline modes enable developers
to receive prompt notifications of the progress and activities
of a project without the limitations of space and time. By vi-
sualizing integrated awareness information consistently, users
perform equally well with desktop and mobile awareness tools.
These results indicate that the design and implementation of
Team Radar have met the requirements of CA in physically and
temporally distributed teams. Our research can inspire further
exploration of new ways to achieving CA and has provided
lessons for designing and evaluating CA systems.

63

REFERENCES

[1] J. Espinosa, S. Slaughter, R. Kraut, and J. Herbsleb, “Team knowledge
and coordination in geographically distributed software development,”
J. Manage. Inf. Syst., vol. 24, no. 1, pp. 135–169, 2007.

[2] P. Dourish and V. Bellotti, “Awareness and Coordination in Shared
Workspaces,” in Proc. 1992 ACM Conf. Computer-supported Coop.
Work. ACM, 1992, pp. 107–114.

[3] C. Gutwin and S. Greenberg, “Workspace Awareness for Groupware,”
in Proc. Conf. Companion on Human Factors in Computing Systems:
Common Ground. ACM, 1996, pp. 208–209.

[4] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood, “A Review of
Awareness in Distributed Collaborative Software Engineering,” Soft-
ware: Practice and Experience, pp. 1107–1133, 2010.

[5] S. L. Jarvenpaa and D. E. Leidner, “Communication and trust in global
virtual teams,” Organization Science, vol. 10, no. 6, pp. 791–815, 1999.

[6] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “Distance,
Dependencies, and Delay in a Global Collaboration,” in Proc. 2000
ACM Conf. Computer Supported Coop. Work. ACM, 2000, pp. 319–
328.

[7] M. Lanza, L. Hattori, and A. Guzzi, “Supporting Collaboration Aware-
ness with Real-time Visualization of Development Activity,” in Proc.
14th IEEE European Conf. Software Maintenance and ReEng. IEEE
Computer Society, 2010, pp. 207–216.

[8] C. Chen, W. Tao, and K. Zhang, “Continuous awareness: A visual
mobile approach,” Journal of Visual Languages & Computing, vol. 25,
no. 5, pp. 390 – 401, 2013.

[9] A. E. Milewski and T. M. Smith, “Providing Presence Cues to Tele-
phone Users,” in Proc. 2000 ACM Conf. Computer Supported Coop.
Work. ACM, 2000, pp. 89–96.

[10] A. Sarma, D. Redmiles, and A. Van der Hoek, “Palantı́r: Early detection
of development conflicts arising from parallel code changes,” IEEE
Trans. Software Engineering, vol. 38, pp. 889–908, 2012.

[11] F. Calefato, F. Lanubile, N. Sanitate, and G. Santoro, “Augmenting
Social Awareness in a Collaborative Development Environment,” in
Proc. 4th Int’l Workshop on Social Software Eng. ACM, 2011, pp.
39–42.

[12] L. E. Holmquist, J. Falk, and J. Wigström, “Supporting Group Collab-
oration with Inter-Personal Awareness Devices,” J. Personal Technolo-
gies, vol. 3, pp. 13–21, 1999.

[13] C. Chen and K. Zhang, “Team Radar: Visualizing Team Memories,” in
Proc. 6th Int’l Conf. Evaluation of Novel Approaches to Software Eng.,
2011, pp. 114–120.

[14] R. Holmes and J. R. Walker, “Customized Awareness: Recommending
Relevant External Change Events,” in Proc. 32nd Int’l Conf. Software
Engineering. ACM, 2010, pp. 465–474.

[15] P. Dewan and R. Hegde, “Semi-synchronous Conflict Detection and
Resolution in Asynchronous Software Development,” in Proc. 10th
European Conf. Computer-Supported Coop. Work. Springer, 2007,
pp. 159–178.

[16] D. Redmiles, A. van der Hoek, B. Al-Ani, T. Hildebrand, S. Quirk,
A. Sarma, R. Silva Filho, C. de Souza, and E. Trainer, “Continuous
Coordination: A New Paradigm to Support Globally Distributed Soft-
ware Development Projects,” Wirtschaftsinformatik, vol. 49, pp. S28–
S38, 2007.

[17] A. H. Caudwell, “Gource: Visualizing Software Version Control His-
tory,” in Proc. ACM Int’l Conf. Companion Object Oriented Program-
ming Systems Languages and Applications Companion, 2010, pp. 73–
74.

[18] P. A. Eades, “A Heuristic for Graph Drawing,” Congressus Numeran-
tium, vol. 42, pp. 149–160, 1984.

[19] J. C. Tang, N. Yankelovich, J. Begole, M. Van Kleek, F. Li, and
J. Bhalodia, “ConNexus to Awarenex: Extending Awareness to Mobile
Users,” in Proc. SIGCHI Conf. Human Factors in Computing Systems,
2001, pp. 221–228.

[20] C. Papadopoulos, “Improving Awareness in Mobile CSCW,” IEEE
Trans. Mobile Computing, vol. 5, no. 10, pp. 1331–1346, 2006.

[21] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional,
1999.

[22] J. Estublier and S. Garcia, “Process Model and Awareness in SCM,”
in Proc. 12th Int’l Workshop on Software Configuration Management.
ACM, 2005, pp. 59–74.

64

