
Who Asked What: Integrating Crowdsourced FAQs into
API Documentation

Cong Chen
Department of Computer Science
The University of Texas at Dallas

Richardson, TX, USA
congchen@utdallas.edu

Kang Zhang
Department of Computer Science
The University of Texas at Dallas

Richardson, TX, USA
kzhang@utdallas.edu

ABSTRACT
Documentation is important for learning Application Pro-
gramming Interfaces (APIs). In addition to official docu-
ments, much crowdsourced API knowledge is available on
the Web. Crowdsourced API documentation is fragmented,
scattered around the Web, and disconnected from official doc-
umentation. Developers often rely on Web search to retrieve
additional programming help. We propose to connect these
two types of documentation by capturing developers’ Web
browsing behavior in the context of document reading and
integrating crowdsourced frequently asked questions (FAQs)
into API documents. Such an integration not only provides
relevant API help more conveniently, but also opens a new
approach to promoting knowledge collaboration and studying
API users’ information needs.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation; H.5.2 [Information
Interfaces and Presentation]: User Interfaces—Graphical
user interfaces

General Terms
Documentation, Human Factors

Keywords
API, documentation, crowdsourcing, social media, search

1. INTRODUCTION
Many software libraries and frameworks are exposed as

Application Programming Interfaces (APIs). Learning APIs
heavily relies on documentation, which has two primary types:
official and crowdsourced [4]. Official documents shipped
with software libraries are usually authoritative, structured,
and comprehensive, yet many of them are single sourced,
authored and maintained by the software manufacturers, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

����������	

������
���������
������������
�

�������������

����	��
��
�

������
���

�����
�� ��������������
�
�!

��	

��"��
��� �
�� ��������
�

�#$��%�

�����
�� ���

������
�����

�##��������
�����

��

��"��
���

�&��'�����������((�������

'�� �����

�����
�� ���

�)����
���

�#��	��
��
�

�*��	+������

Figure 1: The proposed approach. Arrows represent
information flow.

API users are not given much opportunity to contribute to
their content directly. Social media, such as Wikis, blogs,
and Q&A Web sites, have enabled software developers to
share API knowledge on the Web. When a question can-
not be answered by the official documents, developers often
search the Web for additional help [13]. Compared with
official documents, crowdsourced documents are more dy-
namic and interactive, allowing developers to share, social,
and collaborate.

API documents are fragmented, and the two types of doc-
umentation are disconnected with each other traditionally.
Developers’ work is often distracted by context switching
between API documents and Web browser and cannot ben-
efit from both of them in an integrated environment [11].
Although Web search can be time-consuming, the search
questions and the answers found online are not often saved
or shared in practice [6].

To fill these gaps, we propose to integrate crowdsourced
frequently asked questions (FAQs) into API documents. By
associating developers’ Web browsing behaviors (“who asked
what”) with their document-reading context (“who viewed
what”), we can infer the questions they have and the answers
they have found and embed them as FAQs into corresponding
API documents. Figure 1 illustrates the proposed approach
and the benefits it can provide to various stakeholders in
software development. A prototype system called Crowd-
sourced Online FAQs (COFAQ)1 has been developed. This

1http://www.utdallas.edu/~congchen/Projects/
CrowdsourcedFAQ/

paper introduces the motivation, design and implementation,
and implications of our work.

2. BACKGROUND AND RATIONALES
Several lines of research have attempted to retrieve pro-

gramming assistance from the Web. Code search tools can
extract code examples and other API learning resources more
efficiently than general-purpose search engines [2, 17, 1]. Rec-
ommender systems can provide programming assistance, such
as related Web browsing history [9, 15] and bug fixes [11],
based on current coding context. Information on the Web
can also help to generate FAQs [10], code descriptions and
comments [12, 19], and enhance existing documents [16, 5].

Our research rationales differ from the previous work in
the following ways:
“Sometimes questions are more important than answers.”

Web search is a fundamental tool for knowledge seeking and
search-driven development. With the advancement of search
technology, answering a question can often be as simple as
typing on a search bar, and asking the right question (or
composing the right search query) sometimes takes more
skills than getting right answers [4]. Much existing research
[2, 17] aims at seeking answers to developers’ questions, un-
derutilizing the questions and who asked them. Knowing
what questions others have asked about an API helps devel-
opers not only acquire new knowledge, but also gain expertise
in asking good questions. Even unanswered questions are
valuable, because they can locate API learning obstacles and
deficient documentation [3, 18].
Link resources to documents, not just code. Most of the

related work attempts to associate online API resources with
code [9, 11, 15]. We reason that documentation is a more
reusable and stable platform for sharing API knowledge than
code. APIs can be used by a wider range of projects. Public
APIs and their documents do not change as frequently as
other types of code. Knowledge carried in API documents is
therefore more likely to be reused by more developers.

Learn from non-coding behavior. Developers’ fine-grained
coding behavior often tells what they need and what they
know, yet non-coding activities such as document reading and
Web browsing have seldom been utilized [14]. By capturing
the context and behavior of a Web search, we can retrieve
the knowledge from the search and link it to corresponding
documents.
Integrated documentation. Previous research has proven

the benefits of integrating external programming assistance
into IDEs, such as reducing the cost of context switching
and providing contextual help [2, 9]. Such an integration,
however, is seldom applied to software documentation [16],
and whether similar benefits can be received is unclear. Our
approach provides an integrated documentation environment
combining the strengths of both official documentation and
crowdsourced knowledge on social media.
Focusing on individuals. Social Q&A Web sites (e.g.,

Stack Overflow2) and search engine logs can also tell what
questions are asked, but usually do not track who viewed
what questions or provide information at a team or project
level [1, 3, 18]. We hypothesize that developers in the same
team or project tend to have more common information
needs, and knowledge is more reusable in smaller groups [4].
Our approach captures each individual’s questions, which

2http://www.stackoverflow.com

Figure 2: Document-reading context captured.

Figure 3: FAQs embedded into an API document.

helps to provide customized API documentation and reveal
a team’s technical difficulties.

3. THE COFAQ SYSTEM
To examine the effectiveness of our approach, we developed

Crowdsourced Online FAQs (COFAQ), a documentation
integration system.

3.1 Features
The following example demonstrates the major features of

the system: (F1) search query composition, (F2) FAQs inte-
gration, (F3) knowledge collaboration network discovery and
visualization, and (F4) document-reading history analysis.

(F1): Alice is a software developer using the standard Java
library. She found that ArrayList.ensureCapacity() did not
work in her code. She read the official document for the
API using the browser provided by the system, but could
not find an explanation. She right-clicked the area of the
API document and found an option for Web search (see
Figure 2). The browser recognized the API she clicked and
prompted the API name as part of the search query, because
using API elements helps to achieve more accurate search [4].
Alice composed a query “JavaSE 7 ArrayList ensureCapacity
not working” and obtained a list of related Web pages from
the search engine. She opened a page that seemed relevant
and found an answer to her question. The relevance of the
page to her question was inferred automatically based on her
interactions (e.g., dwell time and cursor movement) with the
page [7]. The confirmed Q&A pair was then saved in the
system.

(F2): Another developer Bob encountered the same prob-
lem later and read the document for the API. Upon loading
the document page, the browser fetched the saved FAQs
related to the API and created a FAQ section next to the
original document, describing the questions, answers, and

Figure 4: A personal profile page showing the per-
son’s interested APIs and related people.

����

���

���	�
��
��	�

���
������

���
������
��

���
�������

���
������

���
�������

�����
������

����������������
� ���!�
	
"�����#

Figure 5: The architecture of the COFAQ system.

people involved (see Figure 3). Bob obtained the answer to
his question immediately by clicking the answer link.

(F3): Bob had another question about this API, which was
not answered. On his personal profile page (see Figure 4), he
noticed that Alice was linked with him and shared the same
interest in this question. So he contacted her for further
discussion.

(F4): On the team profile page, team lead Carl reviewed
the summary of the questions his team had asked recently
and decided to give them a training on these APIs, because
they seemed to have difficulties in using them. Developers’
frequent viewing and searching for the APIs also suggest that
the existing documents lack corresponding information or
perhaps the API design makes them hard to use.

3.2 Implementation
The implementation of the system aims to meet the fol-

lowing goals: (G1) easy user adoption, (G2) combining the
strengths of both types of documentation, and (G3) extend-
able for different API documents.

As shown in Figure 5, the system adopts a client-server
architecture, consisting of FAQ Server and FAQ Browser.
Given that many API documents (e.g., Java and .Net API
references) are hosted on the Web, we created FAQ Browser
for reading Web-based documents, consisting of the following
four logical modules.

�����������	
�
���
����
���

�������
���

�
����������

���
����
���

�
����
��

��� ���

��	���
��

������
������

��������������

��������� ����

Figure 6: A state machine tracking users’ interac-
tions with the IDE and the Web browser.

Web viewer is based on browser engine, Webkit3, and
implements typical features of a Web browser, allowing users
to read any Web contents (G1).
Communicator exchanges information with FAQ Server.

Users’ interactions with the documents (as document-reading
history) and the Web (as Q&A pairs) are uploaded continu-
ously, and related FAQs are downloaded automatically upon
opening a document page.

For each document Web site, there is a Doc Visitor for
parsing and modifying the document Web pages. It detects
developers’ interactions with the documents and inserts FAQ
sections into the pages dynamically while keeping the orig-
inal structure and appearance (G1, G2). It models user
behavior as a cycle of coding, reading documents, and search
the Web (Figure 6). Most document Web pages use fixed
HTML structure and style. We analyzed these structures and
styles and defined search patterns to recognize corresponding
HTML elements. When a user interacts with an element on a
Web page (e.g., by clicking or selecting), the associated API
(attribute, method, or class) is automatically recognized for
logging interaction history and prompting an option for Web
search. When the FAQs are downloaded from FAQ Server,
Doc Visitor locates the Web element containing the API
document and appends a FAQ section within the element.
The current prototype supports any document generated
by JavaDoc4 and is extendable (G3) by creating new Doc
Visitors for other Web sites.

Socializer constructs and visualizes a knowledge collabo-
ration network by linking developers with shared interests
in APIs. An interest in an API is recognized as asking ques-
tions about an API, submitting answers to a question about
an API, viewing answers related to an API, or reading the
document of an API.

FAQ Server maintains a repository of Q&A pairs and
document-reading history, such as who asked what questions
about an API, who viewed what API documents, and when.
Our initial experience with the system has found that users
often ask similar questions about an API. To avoid duplica-
tion, the server merges semantically similar questions using a
Semantic Textual Similarity service [8]. The service returns
a score of similarity between two sentences on a scale of 0
to 1 with 1 being equivalent. We empirically set a threshold
of 0.75 to determine two questions equal and merge them
into a group. The question being asked the most in a group
represents the group and is shown in the FAQ section.

3http://www.webkit.org
4http://docs.oracle.com/javase/7/docs/technotes/
guides/javadoc/

4. IMPLICATIONS AND FUTURE WORK
Integrating crowdsourced FAQs into official API documen-

tation can benefit various stakeholders in software develop-
ment as well as researchers in software documentation.

Software developers can avoid searching for answers already
known by others and discuss with people with shared interests
when no answers are found. Our approach can also help
developers ask good questions by learning from others, which
is a fundamental skill for search-driven development.
Team leads may be interested in the questions frequently

asked by the team, especially those not answered, because
they can pinpoint technical obstacles of the team [18]. Con-
sidering that developers in the same team or project have
more common questions [4], we expect our approach to be
more effective at a team or project level. Compared with
Q&A Web sites, our approach can also provide contextual
help customized for an individual, team, or project.
Document authors often see frequently asked questions

as an indication for problems in documentation [3]. Our
approach can provide quantitative data for what parts of the
documents are viewed the most and what are missing from
existing documents, which help document authors adjust the
focus of the work and make corresponding improvements.
API designers may also be informed of potential design

issues, as frequent questions on an API may have roots in
the design in addition to the lack of documentation [18].

The current prototype has implemented most of the pro-
posed features. More features are under development, such
as visualizing the knowledge collaboration network, integrat-
ing the browser into an IDE to minimize context switching,
and better mechanisms for measuring question similarity and
filtering out low-quality questions.

In addition to the benefits to practitioners, our approach
can also empower researchers to conduct empirical studies of
developers’ information needs when learning APIs and the
quality of existing API documents. First, we plan to evaluate
the system as a document generator by studying the quality
of the FAQs it generates. Then, we can use the tool to collect
data that are hard to obtain traditionally to answer some of
the fundamental questions on API documentation, such as
what information is often missing from existing documents,
how often do developers have common questions on an API,
and how much API knowledge is reused.

5. CONCLUSIONS
In this paper, we have proposed a new API documenta-

tion approach, integrating crowdsourced FAQs on the Web
into API documents. Developers’ document-reading and
Web searching behaviors are captured and associated to infer
what questions they have and what Web resources they have
found helpful for answering the questions, and crowdsourced
FAQs are collected and embedded into API documents au-
tomatically. We present the rationales, design, an initial
implementation of the COFAQ prototype. Our approach
could have impacts on studying API knowledge sharing, API
documentation, and developers’ information needs.

6. REFERENCES
[1] S. K. Bajracharya and C. V. Lopes. Analyzing and

mining a code search engine usage log. Empirical Softw.
Eng., 17:424–466, 2012.

[2] J. Brandt, M. Dontcheva, M. Weskamp, and R. S.
Klemmer. Example-centric programming: Integrating
web search into the development environment. In
CHI’10, pages 513–522.

[3] J. C. Campbell, C. Zhang, Z. Xu, A. Hindle, and
J. Miller. Deficient documentation detection: A
methodology to locate deficient project documentation
using topic analysis. In MSR’13, pages 57–60.

[4] E. Duala-Ekoko and P. Robillard. Asking and
answering questions about unfamiliar APIs: An
exploratory study. In ICSE’12, pages 266–276.

[5] S. D. Eisenberg, J. Stylos, and A. B. Myers. Apatite: A
new interface for exploring APIs. In CHI’10, pages
1331–1334.

[6] A. Grzywaczewski, R. Iqbal, A. James, and J. Halloran.
Software developers’ information needs: Towards the
development of intelligent recommender systems. In
iUBICOM’11, pages 66–74.

[7] Q. Guo and E. Agichtein. Beyond dwell time:
Estimating document relevance from cursor movements
and other post-click searcher behavior. In WWW’12,
pages 569–578.

[8] L. Han, A. L. Kashyap, T. Finin, J. Mayfield, and
J. Weese. UMBC EBIQUITY-CORE: Semantic textual
similarity systems. In *SEM’13, pages 44–52.

[9] B. Hartmann, M. Dhillon, and K. M. Chan.
Hypersource: Bridging the gap between source and
code-related web sites. In CHI’11, pages 2207–2210.

[10] S. Henß, M. Monperrus, and M. Mezini.
Semi-automatically extracting FAQs to improve
accessibility of software development knowledge. In
ICSE’12, pages 793–803.

[11] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes.
Automatically locating relevant programming help
online. In VL/HCC’12, pages 127–134.

[12] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and
G. Canfora. Mining source code descriptions from
developer communications. In ICPC’12, pages 63–72.

[13] C. Parnin and C. Treude. Measuring API
documentation on the web. In Web2SE ’11, pages
25–30.

[14] T. Roehm and W. Maalej. Automatically detecting
developer activities and problems in software
development work. In ICSE’12, pages 1261–1264.

[15] N. Sawadsky, C. G. Murphy, and R. Jiresal. Reverb:
Recommending code-related web pages. In ICSE’13,
pages 812–821.

[16] J. Stylos, A. B. Myers, and Z. Yang. Jadeite:
Improving API documentation using usage information.
In CHI EA’09, pages 4429–4434.

[17] L. Wang, L. Fang, L. Wang, G. Li, B. Xie, and F. Yang.
APIExample: An effective web search based usage
example recommendation system for Java APIs. In
ASE’11, pages 592–595.

[18] W. Wang and M. W. Godfrey. Detecting API usage
obstacles: A study of iOS and Android developer
questions. In MSR’13, pages 61–64.

[19] E. Wong, J. Yang, and L. Tan. Autocomment: Mining
question and answer sites for automatic comment
generation. In ASE’13, pages 562–567.

