
Graph Grammar Induction on Structural Data for Visual Programming

Keven Ates1, Jacek Kukluk2, Lawrence Holder2, Diane Cook2, Kang Zhang1

1University of Texas at Dallas, 2University of Texas at Arlington
atescomp@utd.edu, kukluk@uta.edu, holder@uta.edu, cook@uta.edu, kzhang@utd.edu

Abstract

Computer programs that can be expressed in two
or more dimensions are typically called visual
programs. The underlying theories of visual
programming languages involve graph grammars. As

graph grammars are usually constructed manually,
construction can be a time-consuming process that
demands technical knowledge. Therefore, a
technique for automatically constructing graph
grammars—at least in part—is desirable. An
induction method is given to infer node replacement
graph grammars. The method operates on labeled
graphs of broad applicability. It is evaluated by its
performance on inferring graph grammars from
various structural representations. The correctness
of an inferred grammar is verified by parsing graphs
not present in the training set.

1. Introduction

Visual programming languages (VPLs) provide
the means by which programs are specified and
executed in two or more dimensions. The underlying
theories of VPLs include graph grammars. Graph
grammars assist the creation, editing, analysis, and
execution of visual programs. Many environments

are easily expressed in graph forms. For example,
textual computer programs or data can be represented
as tree structures. Also, diagram specifications
include the UML, Petri nets, database designs, control
flow programming, and state transitions [6]. Labeled
graphs with nodes as entities and edges as relations
between nodes are a good abstraction of such
diagrams [5], which can be expressed as visual
programs.

Generally, graph grammars are difficult to
construct and require considerable expertise. This
provides a motivation to automate the graph grammar

construction process. Using an induction engine is
one solution that can simplify this construction
process. Sample instances of a language are often
available. As a training set, these samples are

processed quickly and automatically to construct a
graph grammar. The induced graph grammars can be
further modified. The main idea is illustrated in
Figure 1. Additionally, the resulting graph grammar

can be verified for correctness by parsing graphs of
the language outside the training set. Furthermore, a
grammar induction system paired with a parsing
system has some interesting implications for the
management of grammars and its impact on machine
learning.

The correctness of the specification for a graph
form can be controlled using graph grammars. The

inference algorithm described in Section 4 is used to
infer node replacement graph grammars. It operates
on labeled graphs of broad applicability. Two
applications for this method are shown. One
application infers a graph grammar from a tree
representation of a partial computer program.
Another infers a graph grammar from a structural
representation of XML data. The correctness of this
second grammar is verified by parsing both valid and
invalid graphs not found in the training set.

A graph is defined with labeled nodes and edges.
Every edge of the graph can be directed or undirected.

The definition of a graph grammar is described as the
class of grammars that can be inferred by the
induction method, which are currently limited to
context-free grammars. The main characteristic of the
inferred grammar productions is that they are
recursive productions. Recursive productions are
inferred such that, for a given production, a non-
terminal node label on the left side appears one or
more times in the node labels of the graph on the right
side. The method can also infer non-recursive
productions which are frequent, non-overlapping
subgraphs of an input graph. The embedding

Figure 1: System for identifying graph grammars

from language samples

Language
Samples

Graph
Grammar

Graph Grammar
Induction

Graph Grammar
Parser

Graph Grammar
Editor

(modification)



mechanism of the grammar consists of connection
instructions. Every connection instruction is a node
pair that indicates where the production graph can
recursively connect to itself.

A review of existing parsing and inference
approaches is presented. Then, the proposed
inference algorithm is presented. Two experiments

using the inference algorithm are examined. The first
uses a partial computer program. The second uses an
XML file for an example book order system and
demonstrates parsing results that examine the
correctness of the inferred graph grammar. The
conclusion follows discussing our results and
describing future work in visual programming and
machine learning using the combined induction-
parsing system.

2. Graph grammar parsing systems

The Layered Graph Grammar (LGG)
environment [14] was an important early system that

provided for the construction of context-sensitive
graph grammars. LGG was motivated by need for
visual languages to have more powerfully expressive
grammars than context-free graph grammars could
provide. This led to the development of a layered
approach where label elements are assigned within the
grammar to produce a more “fine-grained
decomposition” than the previously accepted non-
terminal and terminal sets provided. As in most
context-sensitive parsing, the pure implementation of
LGG contained an exponential time algorithm. Other
improvements have reduced the complexity to

polynomial time algorithms.
The VisPro environment [18] was a next

generation system that extended and simplified the
context-sensitivity of a grammar by introducing the
Reserved Graph Grammar (RGG) [17] which used
embedding rules combined with context elements in
the construction of a grammar. The context elements
provided structural relations that helped direct the
parsing process. VisPro improved upon the
exponential time parsing process by introducing a
constraint that required the grammars to be confluent,
resulting in a polynomial time algorithm. RGG's

simplification over LGG allowed for the expanded use
of graph grammars into many disciplines.

An extension to RGG, RGG+ [16] introduced a
size increasing condition on the production rules
which simplified the grammar definition to traditional
non-terminal and terminal elements. It also provided
for non-confluent grammars. This expanded a
grammar's expressive power, but resulted in an
alternate exponential time algorithm.

As a more important extension to RGG, the
Spatial Graph Grammar (SGG) [9] system added

spatial specifications to the production rules in RGG
grammars. This allowed spatial constraints between
elements to influence the parsing process. Production
rules, identical in all other ways, are allowed to differ
by their nodes' spatial relationships. Spatial
specifications attached to a rule determine when the
spatial relationships apply. As an example

application, SGG has been used in the parsing of web
pages for the purpose of restructuring its presentation
on alternate viewing devices such as PDAs and
cellular phones [10]. As one of the latest tools in the
graph grammar world, SGG is used in the experiments
shown in this paper.

3. Graph grammar induction systems

The development of induction systems has a rich
and varied background. However, the vast majority
of induction systems are developed for text based (or
one dimensional) data. In contrast to text based
induction systems, the development of graph grammar

induction systems has been sparse. One of the earliest
examples for the induction of graph grammars is a
process that uses an enumerative technique to infer a
limited class of context-sensitive graph grammars [4].
However, there have been more recent developments
in inference systems for graph grammars.

As an important modern advancement for graph
grammar induction, the “association rule discovery”
approach [2] was developed. This resulted in an
algorithm, Apriori [3], which is used to discover
“frequent itemsets” within a graph. This algorithm
has resulted in a range of applications such as Apriori-

based Graph Mining (AGM) [7], FSG [13], and gSpan
[15]. However, Apriori based systems are generally
limited to a single connected graph as the training set.

Another modern graph grammar induction
system, SubdueGL [8], has also been developed. As a
competing system, SubdueGL uses an MDL based
heuristic approach. A significant benefit over Apriori
is that it is able to accept multiple graphs in its
training set. It is also able to accept arbitrary graphs
having labeled nodes and edges. Any data that can be
represented in graph form is suitable for the training
set. SubdueGL infers the structural similarities

through the MDL principle to produce a common
context-free graph grammar.

The basis for most induction methods is firmly
rooted in inductive logic programming (ILP) in which
the data is represented using first-order logic. An
induction process is performed on the logic to produce
a learned set, or generalization, of rules on the data.
The expressive power of ILP algorithms is ideal since
they result in recursive expressions with variable and
don't-care terms [8]. As an alternative, some methods
use the genetic programming (GP) approach which



has had limited success. It is suggested that the GP
approach is ideal due to the symbolic nature of
grammars and their tree-like representation [11].
However, the recursive nature of grammars has
limited its usefulness.

4. Inference algorithm

The following describes a new algorithm for node

replacement graph grammar inference based on
overlapping subgraphs [12]. The input for the
algorithm is a training set of labeled arbitrary graphs.
The algorithm starts by finding all nodes with the
same label and storing each of them as initial
subgraphs in a list called Q. Each iteration creates
new candidate subgraphs by expanding all the
subgraphs in the list Q by one edge or an edge and a
node. These are kept in a list called newQ. These
candidates for the so-called “best subgraphs” are
evaluated as follows. Every occurrence of a candidate
subgraph within the entire graph is temporarily

replaced by a new node. The compression achieved
with this replacement is measured by calculating a
minimum description length or size (number of nodes
+ number of edges) of the original and compressed
graph. The subgraphs in newQ with the highest
compression ratio are the “best subgraphs”. These
become the new list Q. The following example
elaborates on the process described above.

A graph composed of three overlapping
subgraphs is shown in the top half of Figure 2 and its
graph grammar representation is shown in the bottom
half of Figure 2. The algorithm generates candidate

subgraphs and evaluates them using the following
measure of compression,

size �G �
size �S � � size � G�S �

where G is the input graph, S is a subgraph, and

G�S is the graph derived from G by compressing

each instance of S into a single node. The size �G �
element can be computed simply by summing the
number of nodes and edges:

size �G � = vertices �G � � edges �G �
Another successful measure of size �G � is the

Minimum Description Length (MDL) [5]. Either of
these measures can be used to guide the search and
determine the best graph grammar.

Instances are allowed to grow and overlap with
the restriction that the overlap is limited to only one
node. The substructure found in the graph of the top
half of Figure 2 is shown in the top half of Figure 3.

The “Items” node is the one node that is allowed to
overlap. The bottom half of Figure 3 shows each
instance of the substructure where the arrows indicate
how each instance overlaps with the others on the
“Items” node. The “(1)” indicates the graph id for the
node and the “1” indicates the substructure id of the
node in both figures.

The candidate subgraphs in the list newQ are
evaluated for the compression process. Therefore,
newQ is composed of subgraphs that are
recursive/overlapping and non-recursive/non-
overlapping. Each candidate competes with all others.

To further control the process, the input parameter
Beam specifies the width of the beam search for the
best subgraphs in newQ that become the new list
stored in Q, i.e. the length of Q [12]. The candidate
process is then repeated. The total number of
subgraphs considered is determined by the input

parameter Limit. G is then compressed with the best

subgraph found over all iterations of the process. The
compression process replaces every instance of the
best subgraph with a single node. This node is labeled
with a non-terminal label. The compressed graph is

Figure 3: Subgraph and instances determining

connection instructions (continues Figure 2)

Item

ID

Title
Quantity

Items

UnitPrice

Item

ID
Title

Quantity

Items

UnitPrice

Item

ID
Title

Quantity

Items

UnitPrice

Item

ID
Title

Quantity

Items

UnitPrice

Substructure graph

definition

Instance 1 Instance 2 Instance 3

1-1 1-1

1 1
1

2 2 2
3(5) 3 (9) 3(13)

4(6) 4(10) 4(14)

5(7) 5(11) 5 (15)

6 (8) 6 (16)6(12)

(1) (1) (1)

(2) (3) (4)

Figure 2: A graph with overlapping subgraphs and

its graph grammar representation

Item

ID
Title

Quantity

UnitPrice

Item

ID
Title

Quantity

UnitPrice

Item

ID
Title

Quantity

UnitPrice

Items

Item

ID
Title

Quantity
UnitPrice

S

1

1-1

Item

ID
Title

Quantity
UnitPrice

Items
1S

(1)

(2) (3) (4)

(5)
(6)

(7)
(8)

(9)

(10)
(11)

(12)

(13)

(14)

(15)
(16)



repeatedly processed for candidates and compression
until it cannot be compressed further. In consecutive
iterations, the best subgraph can have one or more
non-terminal labels. The algorithm results in a
hierarchy of grammar productions where each
compression produces a rule.

A prototype system was developed to test the

inference algorithm. The system consists of a
program implementing the induction algorithm and
the existing SGG editor/parser software. A training
set of graphs are input to the induction algorithm
producing the hierarchy of grammar productions. The
grammar productions are then manually entered into
the SGG software by identifying all terminal and non-
terminal nodes, constructing the given production
rules, and generating the required graphs. The
grammar is then used to validate graphs within the
graph domain both within and outside the training set.

5. Experiments

Two experiments are presented to validate the
inference system. The first experiment is a rapid
grammar development example showing the grammar
inferred from the graph of a parse tree for a partial
text program. The second experiment is a machine
learning example showing the inferred graph grammar
from an XML file containing sample book order data.
This last experiment verifies the “learned knowledge”
of the inferred grammar by processing a set of domain
graphs with the SGG parser.

In order to use XML files, a simple converter was
developed to convert the files into trees. The Java

implementation of Document Object Model (DOM) is
used in the converter. According to [1] there are
twelve DOM node types: Element, Attr, Text,

CDATASection, EntityReference, Entity,
ProcessingInstruction, Comment, Document,
DocumentType, DocumentFragment, and Notation.
However, the converter was designed to build a
directed tree with the root node always labeled DOC
and then only extract the ‘Element’ data types in the
experiments. From the perspective of our graph

grammar inference system, it requires a pattern which
is repeated in the graph, so the converter eliminates
unique text data (e.g., names, card numbers, and price
values) which is consider node attribute data. Labels
are not assigned to the tree edges.

5.1. Inferencing on a tree representing a

program

A partial program is shown in Figure 4 which
was converted to the graph shown in Figure 5. The
program is partial by design with the purpose of
eliminating statements and detailed formal field
declarations. Statements are removed due to graph
complexities on the variety of statement types. They
would normally appear in Statement Lists in a final

“BodyOp” in a “MethodOp”. Field declarations are
minimized due to graph complexity such as
initialization expressions, array creation, and multiple
variables on a single type. They would normally have
complex recursive “CommaOp” subgraphs connected
to recursive “DecOp” nodes. The “DecOp” nodes are
now singleton declarations connected to individual
“BodyOp” nodes for a class or method. This
simplifies the construction of a graph and the analysis
of its inferred graph grammar.

The upper graph of Figure 5 represents a VPL
mapping of the text program where the node labels

have specific meanings. Branch nodes are labeled
with “Op” and leaf nodes are labeled with “Node”.
“ProgramOp” means program, the root node operator.
“BodyOp” means class or method body. “DeclOp”
means declaration operator. “CommaOp” means list
separator. “HeadOp” means head of method.
“SpecOp” means method parameters, operator.
“ClassOp” means head of class. “ClassDefOp” means
class definition operator. “MethOp” means method
operator. “TypeNode” means type identifier.
“IdNode” means attribute identification. Each node
represents some subsection of the program. For

example, “Program MyProg” is represented by a
“ProgramOp” node connected to a “IdNode” node,
where the “IdNode” contains the attribute “MyProg”.
For this experiment, the attribute data does not
contribute to the inferred graph grammar and is not
included in the figures.

The lower part of Figure 5 shows the inferred
production rules. The first production, S, is the initial
graph compressed with production S3. Production SFigure 4: Partial text program

Program MyProg

{

    Class A

    {

       int main()

       {

          int A;

          string B;

       }

       int Meth2()

       {

          string CC;

          int DA;

       }

    }

    Class B

    {

       string Meth1()

       {

          int DA;

          int DB;

       }

       A Meth2(string YY) //return Class A 

object

       {

          string XX;

       }

    }



is non-recursive. Production S3 is recursive and
demonstrates overlapping on a node with label
“ClassOp”, which conveys the idea that a program can
have one or more classes. It is also expanded by
production S2. Production S2 is recursive and shows
that a class declaration can have one or more variable
declarations. It is also expanded by production S1,

which implements the “ClassDeclOp” node.
Production S1 compresses the input graph the most, is
recursive, and shows that a class declaration can have
one or more methods.

Reviewing the grammar indicates that the
induction process has limitations. Since the algorithm
finds the best compressing subgraph on any iteration,
the grammar may not be ideal. The “BodyOp” nodes
under “MethOp” should have their own recursive
production. However, since the S1 production is ideal
by the algorithm, the chained “BodyOp” subgraphs
are moved to the S2 production and are mixed with

the “BodyOp” nodes of “ClassDefOp”. The
“CommaOp” node under “SpecOp” shows the same
limitation where the “CommaOp” subgraph is moved
to the S production. This was expected as the
“CommaOp” subgraph is a singleton. Using
additional graphs that better model these problem
areas can guide the algorithm to create a better
grammar.

These automated productions demonstrate the
rapid development of a basic graph grammar that can
be modified for domain specific purposes. Perhaps
existing domain productions could be added and

linked to inferred productions to create a new
language. Providing a robust set of initial graphs can
provide a developer with a "close-to-ideal" graph
grammar.

5.2. Evaluating inferred graph grammar

productions

To demonstrate the usefulness of a graph
grammar induction process, this subsection presents
an induction-parsing scenario for a graph grammar.
First, the induction system, using the graph grammar
induction algorithm described in Section 4, is used on
sample graphs to produce a graph grammar. Second,
the produced grammar is input to a graph grammar

parsing system, an SGG derivative of VisPro, to test
for correctness. Correctness is verified by parsing the
original samples as well as derived graphs not
processed by the induction system.

In Figure 6, an example XML data file is shown
for a book order system. The graph representation of
the file is shown in Figure 7. In Figure 8, the
Document Type Definition (DTD) file that describes
the XML files is shown for the book order system.
Compared with the DTD file, the inferred grammar
shown in Figure 9 demonstrates the accuracy of the
induction system. The “ROOT” production shows the

initial graph reduction indicating the entire DTD file.
The “S1” productions show that the “Orders” node
can have zero or more “Order” nodes as indicated by

Figure 5: Graph of a partial text program and its inferred grammar productions

ClassOp

ClassDeclOp

BodyOp BodyOp

MethOp

HeadOp

SpecOp

TypeNode

BodyOpBodyOp

DecOp DecOp

TypeNode TypeNodeIdNode IdNode

IdNode

IdNode

MethOp

HeadOp

SpecOp

TypeNode

BodyOpBodyOp

DecOp DecOp

TypeNode TypeNodeIdNode IdNode

IdNode

ClassOp

ClassDeclOp

BodyOp BodyOp

MethOp

HeadOp

SpecOp

TypeNode

BodyOp

DecOp

TypeNode IdNode

IdNode

IdNode

MethOp

HeadOp

SpecOp

TypeNode

BodyOpBodyOp

DecOp DecOp

TypeNode TypeNodeIdNode IdNode

IdNode
CommaOp

VarOp

TypeNodeIdNode

BodyOp BodyOp
DecOp

TypeNodeIdNode

DecOp

TypeNode IdNode

ProgramOp IdNode

S1

Connections

1-1

1

1

S2

IdNode

IdNode

CommaOp

VarOp

TypeNode IdNode

S

ClassDeclOp|S1

BodyOp

DecOp

TypeNode IdNode

S1|S2
Connections

1-1

S3

ProgramOp|S3

ClassOp

S2

4

Connections

4-4

S3

BodyOp

MethOp

HeadOp

SpecOp

TypeNode

BodyOp

DecOp

TypeNode IdNode

IdNode

Figure 6: An XML file with book order data

<Orders>

<Order>

  <Customer>

    <Name>Bill Buckram</Name>

    <Cardnum>234 234 234 234</Cardnum>

  </Customer>

    <Receipt>

      <Subtotal>$53.75</Subtotal>

      <Tax>$4.43</Tax>

      <Total>$58.18</Total>

    </Receipt>

    <Items>

      <Item>

        <ID>209</ID>

        <Title>Duke: A Biography of the Java

               Evangelist

        </Title>

        <Quantity>1</Quantity>

        <UnitPrice>$10.75</UnitPrice>

      </Item>

...

</Order>

</Orders>



the “<!ELEMENT Orders (Order*)>” line from the
DTD file. The “S2” productions show that the
“Items” node can have zero or more “Item” nodes as
indicated by the “<!ELEMENT Items (Item*)>” line

from the DTD file.
In Figure 7, Figure 9, and Figure 10, the use of

node notation from the SGG system differs from the
previous examples. The “B” and “U” vertices in each
node are designated by the user and serve as
connection placeholders used by the SGG system to
convey context-sensitive information. In this example
no context-sensitive information is conveyed by these
vertices reducing the productions to a context-free
application.

The original input graph was tested for
correctness against the inferred grammar along with

several other derived graphs. In Figure 10, one of the
derived graphs is shown. Each graph either tests as a
“Valid graph” or an “Invalid graph” by the parser.
Graphs that successfully parse produce a parse tree
indicating the production rules under which the
parsing completed. Figure 11 is the parse tree
representation of the graph from Figure 10. Graphs

that fail to parse do not produce a valid parse tree—
only the “Invalid graph” result is indicated.

A set of derived graphs were created to test the
correctness of the inferred grammar using the SGG

parser. Derived graphs were hand crafted derivatives
of the original graph using additions and reductions.
For example, Figure 10 has all item subtrees removed.
The set consisted of a group of graphs that were
known to satisfy the DTD and another group that were
known to not satisfy the DTD. The original input
graph, a satisfying graph, parsed successfully.
Another satisfying graph consisting of two connected
nodes, “DOC” and “Orders” parsed successfully. The
satisfying graph of Figure 10 also parsed successfully.
A non-satisfying graph that failed parsing was one
that added an “Order” node without child nodes to an

“Orders” node. Other non-satisfying graphs were

Figure 9: Inferred grammar of book order data

ROOT

S1

U

B

DOC

B

S1

U

B

1

2

S1

U

B

1

2

ORDER

U

B

RECEIPT

U

B

TOTAL

U

TAX

U

SUBTOTAL

U

S2

U

B

1

2

CUSTOMER

U

B

CARDNUM

U

NAME

U

S1

U

B

1

2

ORDERS

U

B

S2

U

B

1

2

ITEM

U

B

ID

U

TITLE

U

QUANTITY

U

UNITPRICE

U

S2

U

B

1

2

S2

U

B

1

2

ITEMS

U

B

Figure 8: DTD file for book order system

<!ELEMENT Orders (Order*)>

<!ELEMENT Order (Customer,Items,Receipt)>

<!ATTLIST Order xmlns CDATA #FIXED 

"http://www.example.com/myschema.xml">

<!ELEMENT Customer (Name, Cardnum)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Cardnum (#PCDATA)>

<!ELEMENT Items (Item*)>

<!ELEMENT Item (ID,Title,Quantity,UnitPrice)>

<!ELEMENT ID (#PCDATA)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Quantity (#PCDATA)>

<!ELEMENT UnitPrice (#PCDATA)>

<!ELEMENT Receipt (Subtotal,Tax,Total)>

<!ELEMENT Subtotal (#PCDATA)>

<!ELEMENT Tax (#PCDATA)>

<!ELEMENT Total (#PCDATA)> Figure 10: A graph used in the parsing process to

verify an inferred graph grammar

DOC

B

ORDERS

U

B

ORDER

U

B

RECEIPT

U

B

TOTAL

U

TAX

U

SUBTOTAL

U

ITEMS

U

B

CUSTOMER

U

B

CARDNUM

U

NAME

U

ORDER

U

B

RECEIPT

U

B

TOTAL

U

TAX

U

SUBTOTAL

U

ITEMS

U

B

CUSTOMER

U

B

CARDNUM

U

NAME

U

Figure 7: Graph of book order system XML file

DOC

B

ORDERS

U

B

ORDER

U

B

RECEIPT

U

B

TOTAL

U

TAX

U

SUBTOTAL

U

ITEMS

U

B

CUSTOMER

U

B

CARDNUM

U

NAME

U

ORDER

U

B

RECEIPT

U

B

TOTAL

U

TAX

U

SUBTOTAL

U

ITEMS

U

B

CUSTOMER

U

B

CARDNUM

U

NAME

U

ITEM

U

B

ID

U

TITLE

U

QUANTITY

U

UNITPRICE

U

ITEM

U

B

ID

U

TITLE

U

QUANTITY

U

UNITPRICE

U

ITEM

U

B

ID

U

TITLE

U

QUANTITY

U

UNITPRICE

U

ITEM

U

B

ID

U

TITLE

U

QUANTITY

U

UNITPRICE

U

ITEM

U

B

ID

U

TITLE

U

QUANTITY

U

UNITPRICE

U



ones that had random leaf nodes, such as
“QUANTITY”, “TAX”, and “CARDNUM”, removed
from satisfying graphs like those in Figure 7 and
Figure 10. Another was one that added an “Item”
node without child nodes to an “Items” node.

The analysis showed that all graphs of the

satisfying group parsed successfully and all graphs of
the non-satisfying group failed with no exception.
This was expected as the DTD file and the inferred
grammar represent equivalent structures by
inspection. However, the SGG parser has a
requirement of confluence for a graph grammar [10].
Grammars generated by the induction algorithm are
not guaranteed to be confluent and proof of
confluence is thought to be NP-hard in general.
Therefore, the success of the induction-parsing
process only indicates its use in related applications.

6. Conclusion and future work

This paper has presented a graph grammar
induction process using structural data that is
applicable to visual programming. Section 4
described an algorithm for graph grammar induction.
The presence of overlapping subgraphs in many graph
domains proposes the induction of recursive graph
grammar productions expressing the concept of “one
or more” of the same subgraphs. The input graph to
the algorithm is a training set of arbitrary directed or
undirected graphs with labels on nodes and,
optionally, edges.

In this paper, the algorithm is applied to trees
with labels on nodes and directed unlabeled edges.
The trees were generated from the structural
representation of a computer program and XML files.
The graph grammar inference algorithm was used to
infer grammars from these trees. The partial program
example demonstrated the application of the induction

algorithm to rapid grammar development for VPLs.
The book order system demonstrates that the graph
grammar inference algorithm can extract the
organization and hierarchy of the structure of XML
files. Comparing the inferred graph grammar to the
DTD indicated a strong correspondence between the
DTD statements and graph grammar productions.

The graph grammar inference algorithm was
created to process labeled arbitrary graphs. In this
paper, it was applied only to tree graphs of a partial
program and data stored in XML files. As such, the
trees only partially demonstrate the power of the

inference algorithm. Future plans are to apply the
graph grammar induction algorithm to other graph
domains such as networks, state transitions diagrams,
and class diagrams.

An area of future research is context-sensitive
graph grammars (CSGGs) and to study the induction
algorithm's performance in rapidly developing VPLs.
Inferring context sensitive productions in graph
grammars is a goal for extending the algorithm. The
expressive power of CSGGs gives adequate
motivation to investigate the usefulness of such
grammars in research. Other motivations are due to

the development of CSGG construction and
management tools, such as the SGG system. In
general, complexities associated with graph grammar
construction call for methods that reduce those
complexities. An induction algorithm can mitigate
such complexities by automating much of the design
process for many difficult graph grammars. When
accurate graph instances of a target grammar are used
to create an inferred grammar, the initial development
time can be drastically reduced. However, one
concern is the issue of confluence as it has an impact
on the time complexity of the parser. Generating

graph grammars that have some guarantee of
confluence is an additional goal of this work.

Another area of future research is in machine
learning. Using existing technology, the pairing of an
induction system with a parser was demonstrated.
This pairing has interesting consequences for artificial
intelligence (AI) applications in the Visual Computing
domain. Creating an induction-parsing loop
implements a basic machine learning system. The
current state of a graph grammar may be modified by
the induction system such that the parser validates a
growing domain of sample graphs—the system's

“knowledge” of some target domain increases. The

Figure 11: Parsing results of Figure 10 graph



parsing process is a “truth engine” and the induction
process changes the system's perception of truth.

The graph grammar induction-parsing system
presented successfully extends the concept of the
traditional text based machine learning system to the
higher dimensional visual programming domain.
Among the many applicable domains are web page

restructuring and bioinformatics. A specific set of
web pages requires a localized graph grammar to
successfully restructure the pages to a given display
device. Therefore, a “learn and use” process is
required. Emerging bioinformatic research requires
data mining and analysis of large and complex multi-
dimensional data. Structures via a grammar can be
learned from existing models through the induction
process. Proposed models can be tested by parsing
them against the known grammar of a model domain.

7. Acknowledgments

Jun Kong is acknowledged for his help with the

SGG parsing system.

8. References

[1] K. Ahmed., S. Ancha, A. Cioroianu, J. Cousins, J.
Crosbie, J. Davies, K. Gabhart, S. Gould, R. Laddad, S. Li,
B. Macmillan, D. Rivers-Moore, J. Skubal, K. Watson, S.
Williams, and J. Hart, 2001, Professional Java XML,
WROX.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining
association rules between sets of items in large databases”,
In Proceedings of ACM-SIGMOD International Conference
on Management of Data, pages 207-216, Washington, DC,
1993

[3] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules”, In Proceedings of the International
Conference on Very Large Databases, pages 487-499,
Santiago, Chile, 1994

[4] B. Bartsch-Spörl, “Grammatical inference of graph
grammars for syntactic pattern recognition”, Lecture Notes
in Computer Science, 153: 1-7, 1983

[5] D. Cook and L. Holder, “Substructure Discovery Using
Minimum Description Length and Background
Knowledge”, Journal of Artificial Intelligence Research,
Vol 1, (1994), 231-255

[6] H. Ehrig, G. Engels, H.-J. Kreowski, U. Montanari, and
G. Rozenberg, editors. Handbook of Graph Grammars and
Computing by Graph Transformation, Volumes 1-3. World
Scientific, 1997-1999

[7] A. Inokuchi, T. Washio and H. Motoda, “An Apriori-
based Algorithm for Mining Frequent Substructures from
Graph Data”, Proceedings of the European Conference on
Principles and Practice of Knowledge Discovery in
Databases, 2000

[8] I. Jonyer, “Context-Free Graph Grammar Induction
Based on the Minimum Description Length Principle,”
Doctoral Dissertation, The University of Texas at
Arlington, August 2003

[9] J. Kong and K. Zhang, “On a Spatial Graph Grammar
Formalism”, Proceedings of VL/HCC'04 - 2004 IEEE
Symposium on Visual Languages and Human Centric
Computing, Rome, Italy, 26-29 September 2004, IEEE CS
Press, pp. 102-104

[10] J. Kong, K. Zhang, and X. Q. Zeng, “Spatial Graph
Grammars for Graphical User Interfaces”, ACM
Transactions on Computer-Human Interaction, 2006 (In
Press)

[11] E. E. Korkmaz and G. Ucoluk, “Genetic Programming
for Grammar Induction”, Proceedings of 2001 Genetic and
Evolutionary Computation Conference Late Breaking
Papers, 2001

[12] J. Kukluk., L. Holder, and D. Cook, “Inference of
Node Replacement Recursive Graph Grammars”, Sixth
SIAM International Conference on Data Mining, 2006

[13] M. Kuramochi and G. Karypis, “An Efficient
Algorithm for Discovering Frequent Subgraphs”, Technical
Report 02-026, Department of Computer Science,
University of Minnesota, 2002

[14] J. Rekers and A. Schurr, “Defining and parsing Visual
Languages with layered graph grammars”. Journal of
Visual Languages and Computing, 8(1):27-55, 1997

[15] X. Yan and J. Han, “gSpan: Graph-Based Substructure
Pattern Mining”, Proceedings of the International
Conference on Data Mining (ICDM), 2002

[16] X. Zeng, K. Zhang, J. Kong, and G-L Song, “RGG+:
An Enhancement to the Reserved Graph Grammar
Formalism”, VLHCC, pp. 272-274, 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC'05), 2005

[17] D. Zhang, K. Zhang, and J. Cao, “A Context-sensitive
Graph Grammar Formalism for the Specification of Visual
Languages”, The Computer Journal, 44(3), 2001, 186-200

[18] K. Zhang, D-Q. Zhang, and J. Cao, “Design,
Construction, and Application of a Generic Visual
Language Generation Environment”, IEEE Transactions on
Software Engineering, Vol.27, No.4, April 2001, 289-307


