
Constructing VEGGIE: Machine Learning for
Context-Sensitive Graph Grammars

Keven Ates, Kang Zhang
University of Texas at Dallas

atescomp@utd.edu, kzhang@utd.edu

Abstract

Context-sensitive graph grammar construction
tools have been used to develop and study interesting
languages. However, the high dimensionality of
graph grammars result in costly effort for their
construction and maintenance. Additionally, they are
often error prone. These costs limit the research
potential for studying the growing graph based data
in many fields. As interest in applications for natural
languages and data mining has increased, the
machine learning of graph grammars poses a prime
area of research. A unified graph grammar
construction, parsing, and inference tool is proposed.
Existing technologies can provide a context-free tool.
However, a general context-sensitive tool has been
elusive. Using existing technologies for graph
grammars, a tool for the construction and parsing of
context-sensitive graph grammars is combined with a
tool for inducing context-free graph grammars. The
system is extended with novel work to infer context-
sensitive graph grammars.

1. Introduction

Well-established construction and parsing
technologies currently exist in the field of context-
sensitive graph grammars. To a lesser extent, graph
grammars induction technologies also exist, most of
which focus on context-free applications. Currently,
only one known induction system exists for the
inference of a limited context-sensitive graph
grammar [2]. However, no known tool exists that
combines both of these technologies into a unified
system. This fact is also complicated by the lack of a
widely accepted standard for a common structure for
graphs, much less a standard for graph grammars.
This paper addresses these issues by presenting
VEGGIE, a Visual Environment for Graph Grammar
Induction and Engineering.

VEGGIE is a tool that marries an existing
parsing system with an existing induction system and

is extended with novel work for context-sensitive
induction. Therefore, the tool represents a
reinforcement learning system composed of and
extending existing technologies. While the concept of
such a tool is a simple idea, constructing a tool from
existing technologies presents its own challenges,
particularly in the areas of structure compatibility,
robustness, and space-time efficiencies.

There are two primary motivations for creating
such a system. The first focuses on reducing the
manpower involved in producing complex graph
grammars for visual languages. The manpower
requirements for constructing a graph grammar can be
costly for many languages. This has had a detrimental
effect on the acceptance of graph grammars in
mainstream computing. By constructing examples of
a visual language as a learning set, a preliminary
graph grammar can be quickly constructed by a
machine learning system. Language examples are an
intuitive way for a designer to represent a language
since foreseen complexities are generally modeled
with existing systems such as the UML. Examples
also lower the learning curve associated with a user's
understanding of a new language. Unforeseen
complexities can be added later through an editing
process or modeled and added to the learning set for
reconstruction of the grammar.

The second motivation is due to the increasing
interest in mining large bodies of data. As databases
can be modeled as graphs, a graph parsing and
induction system can infer a grammar from the given
data exposing hidden structures. The inferred
grammar can also be used to parse related databases.
The parsing system could report which structures exist
in other databases. A parsing failure could result in a
reinforcement learning for new structures or expose
embedded data aberrations requiring further analysis.

2. A graph grammar system

A visual language can be defined as “a pictorial
representation of conceptual entities and operations
and is essentially a tool through which users compose

visual sentences” [3]. Graph grammars are central to
the study of visual languages. As such, a brief history
of an existing graph grammar system gives some
background for the requirements of VEGGIE.

Graph grammar systems have existed for at least
two decades. Some of the earliest work on visual
languages date back to the 1970s [4, 5]. Some
foundational work even dates back to the 1960s [6].
However, interest in graph grammar technology began
growing in the 1980s with significant enhancements in
the 1990s. The history and progress of one graph
grammar system provides the basis for VEGGIE. The
development of the Reserved Graph Grammar and its
derivatives are presented as foundational works. The
Spatial Graph Grammar derivative is presented as a
state-of-the-art system for graph grammar
development and is the basis for VEGGIE.

2.1 The Reserved Graph Grammar

An important advancement in graph grammars
was realized with the development of the Reserved
Graph Grammar (RGG) [8]. This work is based on
prior work from the Layered Graph Grammar (LGG)
[7]. LGG provided two important advancements in
graph grammar development. Most graph grammars
system only address context-free implementations.
Context-free graph grammars allow for only a single
non-terminal in the left hand side of a production rule.
LGG provided a context-sensitive environment
allowing for a more robust expressiveness for the
grammars. Context-sensitive graph grammars allow
for an arbitrary number of nodes and edges in either
side of a production rule. Additionally, LGG
provided an intuitive graph formalism for designing
grammars. Each production rule in a grammar
consists of left hand side (LHS) graph and a right
hand side (RHS) graph. However, the parsing system
was inefficient. The graph membership problem is
generally NP-hard. As an initial advancement for
graph grammars into context-sensitivity, the LGG
parser often reached exponential time. Improvements
to LGG led to the development of RGG.

The RGG system extends the LGG formalism
with an embedding mechanism that enhances nodes
with visual notation resulting in a simplified grammar
representation. The simplification allows the resulting
grammar to avoid much of the context specification
required in LGG. This increases the expressiveness of
the grammar as well as the efficiency of the parsing
algorithm.

Given this efficiency, a general parsing algorithm
for RGG is still exponential in time. RGG improves
on this by introducing a constraint on the grammar.
The confluence constraint [8] restricts the parser to
grammars that do not rely on the order of selection for
production rules to validate a graph—the selection-

free condition [8] . The selection-free condition states
that any failed parsing path indicates all other paths
also fail and backtracking in the parser is not required.
This reduces the time complexity of the parser to
polynomial time [8]. The confluence constraint's
effect on languages is unknown. However, empirical
tests indicate that practical applications are robust.
The requirement that a graph grammar be selection-
free results in a confluence checking algorithm which
is based on the well known Critical Pair lemma and
Church-Rosser property [8]. However, due to the
undecidability of the algorithm, no confluence
checking is actually performed. All graph grammars
under RGG are assumed to be selection-free.

Since the confluence constraint imposes a
restriction with an unknown impact on the language
domain, an extension to RGG, called RGG+ [9], was
developed. RGG+ generalizes the parsing process by
sacrificing the confluence condition. However, it
imposes a size-increasing condition on the production
rules—the LHS size is less than or equal to the RHS
size—resulting in a weak structural restriction on the
grammar, while ensuring decidability [9]. It also
reduces the LGG multi-layer decomposition of labels
to the usual two layers of terminals and non-terminals.
Due to the weak restriction, simplification, and a few
low-cost preprocessing enhancements, RGG+
proposes that, while the worst case run time for
parsing is exponential, the worst case is rarely
encountered for many applications.

2.2 The Spatial Graph Grammar

The idea of a Spatial Graph Grammar (SGG) [9]
developed from the RGG+ system. Many graphs
contain inherent structural information such as relative
relationships between nodes expressed as location,
direction, topology, distance, etc. The spatial
specification in SGG is generally employed as fuzzy
logic categorizations such as north, south, east, and
west, or near and far. The granularity and meaning of
the categorizations is specified by the grammar
designer. Using spatial specifications in the graph
grammar imposes constraints on the search space
during parsing. Those constraints improve the parsers
runtime [9]. The amount of improvement depends
entirely on the sparseness of spatial specifications
embedded in the grammar. Grammars having no
spatial specifications have a parsing run time equal to
RGG+. Grammars with spatial specifications in every
rule gain the most parsing runtime benefit.

As SGG represents the latest development for this
line of systems, it represents a robust formalism to
pair with a grammar induction system. However, the
formalism is lacking in some areas—most notably
with edge specifications. This area is addressed in the
design of VEGGIE. The SGG system is also designed

for graph transformation as well as graph parsing. For
graph parsing, the parser uses an R-application
process—grammar rules applied right to left. For
graph transformation, the parser uses an L-application
process—grammar rules applied left to right. When
using the grammar induction system, an R-application
grammar is constructed for VEGGIE.

3. A graph grammar induction system

As interest in graph grammars has grown, so has
the interest in applying machine learning principles to
them. Several methods for inferring graph grammars
have been developed since the early 1990s. Inferring
graph grammars has significant research potential.
The process can be used in data mining applications as
inferred grammars contain frequently occurring
substructures found in the graph dataset. A
substructure is defined as an abstraction of some
subgraph found in the dataset. An instance is defined
as an occurrence of the substructure in the dataset.

These substructures represent hidden recurrent
patterns within the larger graph. Substructures can
also show divergent patterns between common
recurrent patterns. Both help the researcher
understand large, complex systems. Inference also
aids in the construction of system generators. By
inferring a graph grammar from existing graph data,
the researcher may study the growth of complex
systems. Using the grammar in a generator, the
researcher can produce size constrained graphs that
simulate a system's growth. Other applications are
numerous.

For VEGGIE, a machine learning system for
context-sensitive graph grammars is desired. The
definition of context-sensitive graph grammars is that
the left hand side (LHS) of production rules may
contain one or more data elements—nodes of terminal
or non-terminal designation. Context-free graph
grammars are restricted to one and only one non-
terminal on the LHS. The inference of context-
sensitivity graph grammars is generally user centric.
Finding contextual meaning within a system generally
implies the analysis of attributes associated with data
elements. While several context-free induction
systems have been developed, only one context-
sensitive induction system was found in literature [2]
and its application is limited to a few well defined
context-sensitive patterns.

Some popular graph grammar induction systems
are AGM [10], FSG [11], and gSpan [12]. These
three systems are essentially incremental
enhancements to a common process. The latter
systems provide improvements over the earlier.
However, another system, SubdueGL [13], has
evolved within its own uniform domain with little

change to performance and its variants generally add
optional functionality to the original system.

3.1 The SubdueGL induction system

The SubdueGL induction system uses a subgraph
discovery approach that places emphasis on
compressing the graph dataset as opposed to finding
frequent subgraphs. While the compression and
frequent subgraph approaches are closely related, they
can produce different results as a less frequent
subgraph may produce a better overall compression
for the dataset. Using a subgraph growth process,
SubdueGL generates candidate substructures that may
be used to compress the graph dataset. The original
method uses a minimum description length (MDL)
compression value to compare each competing
substructure's compression on the dataset. The
substructure with the highest MDL value is used to
compress the dataset. This process repeats until the
dataset is either fully compressed—a single node
remains or no substructure can be found—or a
specified number of iterations is reached. The
compression process results in an hierarchical
reduction of connected subgraphs that directly
corresponds to grammar production rules.

Since exact isomorphic subgraph discovery is
NP-complete, an optional optimization uses an inexact
isomorphic subgraph discovery based on a branch and
bound algorithm to match subgraphs that vary slightly
in their edges and nodes. Costs are associated with
the variations. Substructure instances with the lowest
cost within a threshold limit are selected for
compression. When the threshold limit is set to zero,
the inexact matching process reduces to the exact
matching process.

The other systems use node adjacency matrices to
maintain edge connections. SubdueGL maintains a
list of nodes and edges. Each node contains an edge
reference list and each edge contains its two node
references. Therefore, it can handle graphs with
multiple edges between two nodes and cycles.

Several additional options are noteworthy.
Predefined subgraphs can be specified to compress the
dataset before the normal induction process begins. It
also performs as a supervised machine learner with the
specification of a negative graph dataset. In addition,
various options are provided to control the induction
process, such as limits on the size and number of
substructures to consider.

3.2 A SubdueGL derivative

The SubdueGL version used for VEGGIE
provides both the MDL-based graph compression
method and a sized-based alternative method [14, 1].
The size-based algorithm uses the same form as the

MDL algorithm to compute the final compression
value. However, the size calculations for each portion
of the algorithm are a simple sum of the node and
edge counts. Therefore, its computation time is
significantly less—O(1)—than the MDL calculation—
O(log2(n)) average, O(nlog2(n)) worst case. The result
is a reduced runtime that occasionally selects a less
optimal compression for the graph [14].

This version also introduces a change to the type
of recursive substructures detected. The previous
version allowed for a single connecting edge between
substructure instances to define substructure recursion.
The derived version replaced this edge recursion with
node recursion. Node recursion allows for a single
overlapping node between substructure instances to
define substructure recursion.

4. The VEGGIE system

The VEGGIE system is essentially a combination
of the SubdueGL and SGG systems with novel
enhancements. Its user interface is primarily a
refactored combination of SGG's three independent
editors: the Node Type, Grammar, and Graph editors.
Since SGG and SubdueGL are different systems, they
each use data structures and processes optimized for
their respective goals. Standardizing on a common
framework is a goal for constructing VEGGIE.
Several enhancements are made due to the
standardization process. Other novel enhancements
are introduced independently to each system.

As VEGGIE is a merging of the SubdueGL and
SGG software, they require a standardization of terms,
concepts, and structures. Since they both deal with
graph data, VEGGIE endeavors to find a common
ground based on a graph formalism. There are many
formalisms for graph structures, but one formalism,
GraphML, promises to become dominant in the
standards community as many competing formalisms
have been unified under its specification. GraphML is
an XML specification for representing graphs of broad
applicability and allows for general data extensions
under the guise of XML attributes as well as a
specifically defined “data” tag. As such, the
SubdueGL and SGG applications are refactored using
the GraphML specification.

4.1 Supporting GraphML

Much of the refactoring is a simple updating of
terminology. The SubdueGL system referred to graph
nodes as “vertices”, but the SGG system referred to
them as “nodes”. As GraphML refers to them as
“nodes”, they are standardized as such in both
systems. A “vertex” notation is used in SGG, but it
refers to edge connecting endpoints within a node.
These endpoints are called “ports” in GraphML and

are standardized as such. GraphML also supports
hyper-edges. Currently, VEGGIE does not recognize
hyper-edges. As they are a grouping of standard
edges, this could be implemented. This has been left
for future work as there is little perceived gain.

Aside from terminology, VEGGIE implements
several structural and visual changes. The GraphML
formalism specifies data storage. The file types use
the XML specification for GraphML. Data extensions
as XML attributes are added to most GraphML
elements. Data extensions as specified data types are
added for any node type attributes and any production
rule action code and spatial specifications.

4.2 The Type editor

The Type editor is refactored from SGG's Node
Type editor. As an enhancement, edge types were
added. In the display tree, two tree nodes appear in
the editor's type tree to support the two different type
lists: one for node types and the other for edge types.
Node types contain a name, category, ports, and
attributes. The categories were changed to the
traditional terms, “Terminal” and “NonTerminal”.
Edge types contain a name and a directed attribute that
specified whether the edge is directed or undirected
from its source node to its target node.

Another enhancement is default types. Default
types cannot be added, renamed, or removed by users.
All default names are denoted with surrounding
brackets as users are restricted to starting a name
identifier with alphanumeric characters. One default
node type is generated with the name identifier
“{Root}” and specified as a non-terminal. This
default node type serves to specify the final node on
the LHS of the final production rule. The parser
recognizes the node with this default node type as the
validating criteria when there is one and only one
remaining node derived from parsing a graph dataset.
For each node type, a default port is automatically
generated with the identifier “{<NodeType>}” where
“<NodeType>” is the name identifier for each node
type. For example, the default port name for the
“{Root}” node type is “{{Root}}”. Two default edge

Figure 1: The VEGGIE Type editor

types are automatically generated in the edge type list.
One is generated with the identifier “{E}” and
specified as undirected. The other is generated with
the identifier “{D}” and specified as directed. There
are two purposes for maintaining default elements.
The first is to allow users to create simple grammars
and graphs from the default elements with a minimum
of effort in the Type editor. The second, more
important purpose, is to allow a less restrictive loading
of graph data into the editors—defaults are used when
edge data is not fully qualified:

1. For an edge, if a node port is not specified for
a node, the default node port is used.

2. For an edge without a name, a default edge
connects the nodes—the “{E}” default edge
for unspecified or undirected edges and the
“{D}” default edge for directed edges.

3. For a node, a default port with the given node
type name is guaranteed. A node without a
node type name is given the name
“<BAD#>” and its default port is named
“{<BAD#>}” where # is an enumeration for
the currently malformed node.

Type specifications are stored separately from the
grammars and graphs that use them. They are used to
specify nodes and edges used in grammars and graphs.
Therefore, a single type specification can be used for
multiple grammars.

4.3 The Grammar editor

The refactored Grammar editor incorporates the
node type changes and the edge type enhancements.
In addition, the visual interface is updated in several
important ways. The LHS and RHS display areas are
essentially graph editors (see section 4.4 below). The
graphs are related to represent a production rule.
When nodes and edges are added, the user specifies its
type from the currently loaded type specification. The
action code and spatial specifications are supported as
per SGG.

A grammar is a list of production rules. It is
stored separately from the type specifications, graphs,
and the parsing system. Therefore, a variety of
grammars can be used to parse any given graph as
long as the types used are contained in the current type
specification.

4.4 The Graph editor

The refactored Graph editor allows for the adding
and removing of nodes and edges. Node and edges
are automatically given an integer identifier indicating
an instance of their respective types. Node ports are
used to connect edges and are selected during the edge
adding process. The display area is also fully
scrollable allowing for large visual representations of
graphs.

In SGG, an invalid parse generally produced a
malformed partial parse tree for display. As an
enhancement, VEGGIE displays a corrected partial
parse tree for review. The partial parse tree shows all
the parsing done to the point of failure with all the
proper links between production rules containing the
nodes they used. This provides important feedback to
the user for possible corrective actions or to identify
aberrations within a graph.

The addition of edge types has a significant
impact on the parsing algorithm. Edges were
previously considered undirected, type independent
entities. Therefore, the parser represented the edge
information as node adjacency lists with port
connection information. Representing typed edges
with directive information (directed or undirected)
complicates the parsing process, but not significantly.
Edge type and directive information provides
constraint conditions that affect the parsing runtime.
During the parser's search process, the port connection
information is used to match connected production
nodes to connected graph nodes. When additional
edge information is provided, the matching process
reduces the possible matching candidates as the search
is constrained to a more limited edge set. The original
edge matching code compared the end nodes' type and
port connections between host graph and production
rule. The modified code includes comparing the edge
type and directive information. As the port

Figure 4: Parsing results for a graph

Figure 3: The VEGGIE Graph editor

Figure 2: The VEGGIE Grammar editor

connection information is essentially an edge list for
each port of a node, the edge directive information is
coded to identify the edge as undirected between the
nodes, directed to the target node, or directed from
the source node.

Graphs are nodes and their connecting edges.
Nodes are simple instances of node types. Edges are
instances of edge types connecting two nodes via
ports. A graph is stored separately from any type
specification and grammar. Therefore, a graph may
be related to a variety of grammars as long as the
types used are contained in the current type
specification.

4.5 Supporting SubdueGL

A refactored version of SubdueGL is integrated as
a subsystem of VEGGIE. To support SubdueGL
functionality, several changes and enhancements are
incorporated. To support the supervised learning of
SubdueGL via its negative graph function, an
additional Negative Graph editor is added. The
Negative Graph editor is identical to the Graph editor
in every respect. Both graph editors have access to
the same inference function that implements the
SubdueGL subsystem. As a system validation check,
the Graph editor must contain a nonempty graph while
the Negative Graph editor is allowed to contain an
empty graph for unsupervised learning.

To support the predefined substructures
functionality of SubdueGL, production rules may be
predefined in the Grammar editor. Any production
rules that exist in the Grammar editor are interpreted
as predefined substructures that compress the
combined positive and negative graph dataset through
R-applications. This allows the user to preprocess the
graph data before the induction process begins.

VEGGIE supplies data to SubdueGL subsystem
by translating the SGG graph dataset into a SubdueGL
dataset. The work related to translation highlights the
structural differences in each system. The SGG
system uses node ports to connect edges while
SubdueGL does not. Therefore, the SubdueGL
subsystem is modified to accept and use ports. Most
of these modification relate only to edge matching
processes.

5. Context-sensitive induction

VEGGIE is intended to be a context-sensitive
reinforcement machine learning system. As such,
VEGGIE must be context-sensitive in both its parsing
and inference processes. Context-sensitive parsing is
provided by the original SGG system. However,
SubdueGL is not context-sensitive. Previous work [1]
has shown the usefulness of combining the two
systems and proposed future work for context-

sensitive induction. VEGGIE realizes these two
objectives by combining the systems and extending
the SubdueGL subsystem with novel work for
context-sensitive induction.

Useful context-sensitive induction could include
user provided contextual information to direct the
induction process. The contextual information could
target a particular contextual domain such as a spatial
domain constrained to the major two dimensional
vector directions as specified by the SGG formalism
(N, S, E, W, NE, NW, SE, SW), an expanded three
dimensional formalism, or some other fuzzy spatial
context. However, the SGG system allows for the
specification of general context-sensitivity without
formal domain constrains. Therefore, the novel work
extends the induction process in VEGGIE to include
general context-sensitive induction.

5.1. The context-sensitive inference problem

Context-sensitivity in graph grammars is defined
as allowing the LHS of a production rule to contain
one or more non-terminals and zero or more terminals.
To ensure a halting condition during parsing, a size-
increasing constraint on the production rules can be
imposed as per RGG+[9]. To ensure proper node
assignments (non-terminals, terminals, and their edge
connections), the rules must provide node context and
port marking information describing the embedding
relationship between LHS and RHS nodes. In the
SGG system, a production rule's LHS and RHS
respective nodes are given contextual markers that
inform the parser about node and edge reassignments.
Ports are given contextual markers that inform the
parser about edge connection reassignment. These
issues impose problems for an induction process that
is required to infer context-sensitive production rules.

To create a context-sensitive production rule, the
induction process must identify substructures within
the host graph that cannot be simply reduced to a
single non-terminal as is done for context-free
grammars. These substructures must contain some
property that challenges the induction of a context-
free production rule. To ensure the halting condition,
an inferred context-sensitive production rule must
reduce two or more RHS nodes to a single LHS non-
terminal node. This ensures that the LHS size is less
than the RHS size—a requirement of the halting
condition.

Non-terminal nodes are generated during the
induction process. As they are not predefined node
types, they are added by the induction system. These
non-terminals are free of multiple port definitions as a
context-free induction system only relies on the
default ports. However, for context sensitive rules,
marking plays an important role in replacing RHS
substructure in a host graph with LHS substructures—

the embedding issue. Marking is used on ports and
nodes in the definition of production rules to maintain
edge connections outside an instance in the remaining
host graph.

5.2. Inferring context-sensitive grammars

Previous work for inferring context-sensitive
graph grammars [2] was limited to matching general
predefined patterns within the host graph. These
general patterns consisted of chain and star patterns
containing nodes and directed edges of general type.
As chain patterns of size M and star patterns of size N
can be limited, the method highlights pattern growth
through the recursive use of production rules.

However, the work did not address pattern
overlap. Two patterns may overlap by sharing
common nodes and edges within the host graph. The
chain and star productions were limited to
unconnected nodes on the LHS, therefore, patterns
only overlapped on nodes. Furthermore, only end
nodes could modify chains to produce longer chains
and stars only added edges between a central node to
the other nodes. Therefore, overlap was a trivial chain
extension problem for chains and a trivial chain
connecting problem for stars.

Within SubdueGL, overlapping instances of
discovered substructures can be identified when the
instance overlap parameter is used. Overlapping
instances are then considered non-overlapping and
compressed as any other instance. This is unsuitable
for generating a general context-free production rule
as the parsing system fails on the induction graph
since individual instances are identified, but they are
ignored as recursive instances sharing a common
overlapping structure.

To handle basic context-free overlapping
instances, a node recursion parameter is used to allow
instances sharing a single node to specify node
recursive production rules. An edge recursion
parameter is also allowed, but the instances are not
considered overlapping as the edge is not shared by
the instances—it connects the instances. For node
recursion, there is only one node shared between
multiple instances, so there is no requirement to
provide embedding information. A single non-
terminal with its default port suffices to replace each
instance's overlapping node as well as an entire
instance. The result is a context-free recursive
production rule. However, embedding information
can be applied to the production rule by copying the
ports of the overlap node to the new non-terminal
node and marking all ports between the overlap node
and its non-terminal.

Expanding the instance overlap and single node
recursion provides a mechanism to infer context-
sensitive production rules. When the overlap between

instances is a substructure consisting of one or more
nodes, each of the overlap nodes form new non-
terminal nodes with identical ports that require
marking to resolve their embedding requirements in
the host graph. Consider the example graph in figure
5. The dotted oval shows the overlap of three
instances of a common substructure.

The resulting recursive production rule could be as
shown in figure 6. Embedding marks are not shown
in this simple example.

It is noteworthy to mention that a context-free
solution could be applied. The overlap could be
reduced to a single non-terminal node before a
recursive rule is constructed. However, overlapping
structures embody a contextual reference between
common instances. Context can be lost using this
approach as embedding information between the
overlap and non-overlap areas is undefined.
Therefore, the reduction process cannot preserve
structural context within the recursive instances. A
context-sensitive solution is required.

The process for constructing a context-sensitive
solution relies on the mapping of instances to their
shared overlapping substructure. As multiple
instances may overlap, the system must ensure that the
shared substructure applies to all concerned instances.
The mapping provides the required embedding
information to mark ports for context preservation.

Chains of overlapping instances are also possible
and must be captured in the resulting production rules.
In this case, overlapping and non-overlapping areas
can be reinterpreted and exchanged producing a
“chicken-or-egg” problem when constructing the rule.
A solution is to let both versions compete for the best
compression value with ties broken arbitrarily.

6. Conclusion and Future Work

VEGGIE provides a context-sensitive parsing and
induction environment—the first of its kind for the
visual computing domain. SGG provides a graph
formalism and parsing system. SubdueGL provides a
graph grammar induction system. GraphML provides
a comprehensive data format and file structure. As a
reinforcement machine learning environment,

Figure 6: Two context-sensitive production rules

S1

S2

N3

N1

N2

S1

S2

Figure 5: An example graph

N1

N2

N3

N3
N3

VEGGIE extends artificial intelligence in the graph
grammar domain. The graph grammar induction
process provides a mechanism for quickly
constructing visual languages from example graphs.

Context-sensitive induction is extended from the
context-free induction of overlapping single node
recursive production rules. Overlap between instances
of common substructures provides a connection
context between those instances. Mapping the
substructure defined by the overlap to the instances
provides the means for extracting embedding
information used in a production rule.

As VEGGIE is a new tool, few tests on real world
examples have been applied. Comprehensive tests are
planned for data related to bioinformatics, social
networks, and adaptive web interfaces [3]. However,
some initial evaluation of VEGGIE has been
performed. Tests were conducted on the examples
provided in previous work [1] and previous
SubdueGL examples. The grammar induction tests
validate the grammar construction process. The
grammar parsing tests were equal to the results of the
previous work's tests. Accuracy of the induced
grammars was preserved when the parser was used
against representative graphs of the grammars.

A future goal of VEGGIE is to find context
between different substructures. Overlapping
instances of differing substructures also provides an
opportunity for connection context. Finding these
overlaps are problematic as this assumes the
substructures have previously been inferred from the
graph dataset. As each inferred substructure affects
later inference processing, a different approach to
grammar induction may be required.

SubdueGL and SGG both have a isomorphic
subgraph matching function. SubdueGL uses its
function to find substructures in the dataset to apply
compression. SGG uses its function to find grammar
instances in the dataset for parsing resolution. As both
functions share common applicability, they should be
code compatible. However, they both take different
approaches to matching subgraphs. A future goal of
VEGGIE is to reduce both of these functions into a
single process.

7. Acknowledgments

Thanks goes to Dr. Larry Holder for SubdueGL
assistance and Dr. Jun Kong for SGG assistance.

The VEGGIE project was funded in part by the
GetDoc program from the University of Texas at
Dallas and the Graduate Assistance in Areas of
National Need (GAANN) program from the U. S.
Department of Education.

8. References

[1] Ates, K., Kukluk, J., Holder, L., Cook, D., and Zhang,
K., “Graph Grammar Inference on Structural Data for Visual
Programming”, Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI
2006), 2006

[2] Bartsch-Spörl, B., “Grammatical inference of graph
grammars for syntactic pattern recognition”, Lecture Notes
in Computer Science, 153: 1-7, 1983

[3] Zhang, K., Visual Languages and Applications.
Springer, New York, NY, pp. xiii, 2007

[4] Chang, S. K., “Picture Processing Grammar and Its
Applications”. Information Sciences 3:121-148, 1971

[5] Smith, D. C., “Pygmalion: A Computer Program to
Model and Simulate Creative Thought”. Ph.D. Thesis,
Stanford University, 1975

[6] Sutherland, I. E., “Sketchpad: A Man-machine
Graphical Communications System”. Ph.D. Thesis, MIT,
1963

[7] J. Rekers and A. Schurr, “Defining and Parsing Visual
Languages with Layered Graph Grammars”. Journal of
Visual Languages and Computing, 8(1):27-55, 1997

[8] D. Zhang, K. Zhang, and J. Cao, “A Context-sensitive
Graph Grammar Formalism for the Specification of Visual
Languages”, The Computer Journal, 44(3):186-200, 2001

[9] Kong. J., “Visual Programming Languages and
Applications”. Ph.D. Thesis, Department of Computer
Science, The University of Texas at Dallas, 2005

[10] A. Inokuchi, T. Washio and H. Motoda, “An Apriori-
based Algorithm for Mining Frequent Substructures from
Graph Data”, Proceedings of the European Conference on
Principles and Practice of Knowledge Discovery in
Databases, 2000

[11] M. Kuramochi and G. Karypis, “An Efficient
Algorithm for Discovering Frequent Subgraphs”, Technical
Report 02-026, Department of Computer Science,
University of Minnesota, 2002

[12] X. Yan and J. Han, “gSpan: Graph-Based Substructure
Pattern Mining”, Proceedings of the International
Conference on Data Mining (ICDM), 2002

[13] I. Jonyer, “Context-Free Graph Grammar Induction
Based on the Minimum Description Length Principle,”
Doctoral Dissertation, The University of Texas at Arlington,
August 2003

[14] J. Kukluk., L. Holder, and D. Cook, “Inference of Node
Replacement Recursive Graph Grammars”, Sixth SIAM
International Conference on Data Mining, 2006

