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Abstract

Context-sensitive  graph  grammar  construction 
tools have been used to develop and study interesting  
languages.   However,  the  high  dimensionality  of  
graph  grammars  result  in  costly  effort  for  their  
construction and maintenance.  Additionally, they are  
often  error  prone.   These  costs  limit  the  research  
potential for studying the growing graph based data  
in many fields.  As interest in applications for natural  
languages  and  data  mining  has  increased,  the 
machine learning of graph grammars poses a prime 
area  of  research.   A  unified  graph  grammar  
construction, parsing, and inference tool is proposed.  
Existing technologies can provide a context-free tool.  
However,  a  general  context-sensitive  tool  has  been 
elusive.   Using  existing  technologies  for  graph  
grammars, a tool for the construction and parsing of  
context-sensitive graph grammars is combined with a 
tool for inducing context-free graph grammars.  The  
system is extended with novel work to  infer context-
sensitive graph grammars.

1. Introduction

Well-established  construction  and  parsing 
technologies  currently  exist  in  the  field  of  context-
sensitive graph grammars.  To a lesser extent, graph 
grammars  induction  technologies  also exist,  most  of 
which focus on context-free applications.  Currently, 
only  one  known  induction  system  exists  for  the 
inference  of  a  limited  context-sensitive  graph 
grammar  [2].   However,  no  known  tool  exists  that 
combines  both  of  these  technologies  into  a  unified 
system.  This fact is also complicated by the lack of a 
widely accepted standard for a common structure for 
graphs,  much  less  a  standard  for  graph  grammars. 
This  paper  addresses  these  issues  by  presenting 
VEGGIE, a Visual Environment for Graph Grammar 
Induction and Engineering.

VEGGIE  is  a  tool  that  marries  an  existing 
parsing system with an existing induction system and 

is  extended  with  novel  work  for  context-sensitive 
induction.   Therefore,  the  tool  represents  a 
reinforcement  learning  system  composed  of  and 
extending existing technologies.  While the concept of 
such a tool is a simple idea, constructing a tool from 
existing  technologies  presents  its  own  challenges, 
particularly  in  the  areas  of  structure  compatibility, 
robustness, and space-time efficiencies.

There  are  two primary  motivations  for  creating 
such  a  system.   The  first  focuses  on  reducing  the 
manpower  involved  in  producing  complex  graph 
grammars  for  visual  languages.   The  manpower 
requirements for constructing a graph grammar can be 
costly for many languages.  This has had a detrimental 
effect  on  the  acceptance  of  graph  grammars  in 
mainstream computing.  By constructing examples of 
a  visual  language  as  a  learning  set,  a  preliminary 
graph  grammar  can  be  quickly  constructed  by  a 
machine learning system.  Language examples are an 
intuitive way for  a designer  to represent  a  language 
since  foreseen  complexities  are  generally  modeled 
with existing  systems such as  the UML.  Examples 
also lower the learning curve associated with a user's 
understanding  of  a  new  language.   Unforeseen 
complexities  can  be  added  later  through  an  editing 
process or modeled and added to the learning set for 
reconstruction of the grammar.

The  second  motivation  is  due  to  the  increasing 
interest in mining large bodies of data.  As databases 
can  be  modeled  as  graphs,  a  graph  parsing  and 
induction system can infer a grammar from the given 
data  exposing  hidden  structures.   The  inferred 
grammar can also be used to parse related databases. 
The parsing system could report which structures exist 
in other databases.  A parsing failure could result in a 
reinforcement  learning  for  new structures  or  expose 
embedded data aberrations requiring further analysis.

2. A graph grammar system

A visual language can be defined as “a pictorial 
representation  of  conceptual  entities  and  operations 
and is essentially a tool through which users compose 



visual sentences” [3].  Graph grammars are central to 
the study of visual languages.  As such, a brief history 
of  an  existing  graph  grammar  system  gives  some 
background for the requirements of VEGGIE.

Graph grammar systems have existed for at least 
two  decades.   Some  of  the  earliest  work  on  visual 
languages  date  back  to  the  1970s  [4,  5].   Some 
foundational work even dates back to the 1960s [6]. 
However, interest in graph grammar technology began 
growing in the 1980s with significant enhancements in 
the  1990s.   The  history  and  progress  of  one  graph 
grammar system provides the basis for VEGGIE.  The 
development of the Reserved Graph Grammar and its 
derivatives are presented as foundational works.  The 
Spatial  Graph  Grammar  derivative  is  presented  as  a 
state-of-the-art  system  for  graph  grammar 
development and is the basis for VEGGIE.

2.1 The Reserved Graph Grammar

An  important  advancement  in  graph  grammars 
was  realized  with  the  development  of  the  Reserved 
Graph Grammar (RGG) [8].  This work is based on 
prior work from the Layered Graph Grammar (LGG) 
[7].   LGG provided two important  advancements  in 
graph grammar development.  Most graph grammars 
system  only  address  context-free  implementations. 
Context-free graph grammars allow for only a single 
non-terminal in the left hand side of a production rule. 
LGG  provided  a  context-sensitive  environment 
allowing  for  a  more  robust  expressiveness  for  the 
grammars.   Context-sensitive  graph  grammars  allow 
for an arbitrary number of nodes and edges in either 
side  of  a  production  rule.   Additionally,  LGG 
provided  an intuitive  graph  formalism for  designing 
grammars.   Each  production  rule  in  a  grammar 
consists  of  left  hand  side  (LHS)  graph  and  a  right 
hand side (RHS) graph.  However, the parsing system 
was  inefficient.   The  graph  membership  problem is 
generally  NP-hard.   As  an  initial  advancement  for 
graph  grammars  into  context-sensitivity,  the  LGG 
parser often reached exponential time.  Improvements 
to LGG led to the development of RGG.

The  RGG  system  extends  the  LGG  formalism 
with  an  embedding  mechanism that  enhances  nodes 
with visual notation resulting in a simplified grammar 
representation.  The simplification allows the resulting 
grammar to avoid much of  the context  specification 
required in LGG.  This increases the expressiveness of 
the grammar as well as the efficiency of the parsing 
algorithm.

Given this efficiency, a general parsing algorithm 
for RGG is still exponential in time.  RGG improves 
on this  by introducing a constraint  on the grammar. 
The  confluence  constraint [8]  restricts  the  parser  to 
grammars that do not rely on the order of selection for 
production  rules  to  validate  a  graph—the  selection-

free condition [8] .  The selection-free condition states 
that any failed parsing path indicates all  other  paths 
also fail and backtracking in the parser is not required. 
This  reduces  the  time  complexity  of  the  parser  to 
polynomial  time  [8].   The  confluence  constraint's 
effect on languages is unknown.  However, empirical 
tests  indicate  that  practical  applications  are  robust. 
The requirement that a graph grammar be selection-
free results in a confluence checking algorithm which 
is based on the well known Critical Pair lemma and 
Church-Rosser  property  [8].   However,  due  to  the 
undecidability  of  the  algorithm,  no  confluence 
checking is actually performed.  All graph grammars 
under RGG are assumed to be selection-free.

Since  the  confluence  constraint  imposes  a 
restriction with an unknown impact on the language 
domain, an extension to RGG, called RGG+ [9], was 
developed.  RGG+ generalizes the parsing process by 
sacrificing  the  confluence  condition.   However,  it 
imposes a size-increasing condition on the production 
rules—the LHS size is less than or equal to the RHS 
size—resulting in a weak structural restriction on the 
grammar,  while  ensuring  decidability  [9].   It  also 
reduces the LGG multi-layer decomposition of labels 
to the usual two layers of terminals and non-terminals. 
Due to the weak restriction, simplification, and a few 
low-cost  preprocessing  enhancements,  RGG+ 
proposes  that,  while  the  worst  case  run  time  for 
parsing  is  exponential,  the  worst  case  is  rarely 
encountered for many applications.

2.2 The Spatial Graph Grammar

The idea of a Spatial Graph Grammar (SGG) [9] 
developed  from  the  RGG+  system.   Many  graphs 
contain inherent structural information such as relative 
relationships  between  nodes  expressed  as  location, 
direction,  topology,  distance,  etc.   The  spatial 
specification in SGG is generally employed as fuzzy 
logic  categorizations  such  as  north,  south,  east,  and 
west, or near and far.  The granularity and meaning of 
the  categorizations  is  specified  by  the  grammar 
designer.   Using  spatial  specifications  in  the  graph 
grammar  imposes  constraints  on  the  search  space 
during parsing.  Those constraints improve the parsers 
runtime  [9].   The  amount  of  improvement  depends 
entirely  on  the  sparseness  of  spatial  specifications 
embedded  in  the  grammar.   Grammars  having  no 
spatial specifications have a parsing run time equal to 
RGG+.  Grammars with spatial specifications in every 
rule gain the most parsing runtime benefit.

As SGG represents the latest development for this 
line  of  systems,  it  represents  a  robust  formalism  to 
pair with a grammar induction system.  However, the 
formalism  is  lacking  in  some  areas—most  notably 
with edge specifications.  This area is addressed in the 
design of VEGGIE.  The SGG system is also designed 



for graph transformation as well as graph parsing.  For 
graph  parsing,  the  parser  uses  an  R-application 
process—grammar  rules  applied  right  to  left.   For 
graph transformation, the parser uses an L-application 
process—grammar rules applied left to right.   When 
using the grammar induction system, an R-application 
grammar is constructed for VEGGIE.

3. A graph grammar induction system

As interest in graph grammars has grown, so has 
the interest in applying machine learning principles to 
them.  Several methods for inferring graph grammars 
have been developed since the early 1990s.  Inferring 
graph  grammars  has  significant  research  potential. 
The process can be used in data mining applications as 
inferred  grammars  contain  frequently  occurring 
substructures  found  in  the  graph  dataset.   A 
substructure is  defined  as  an  abstraction  of  some 
subgraph found in the dataset.  An instance is defined 
as an occurrence of the substructure in the dataset.

These  substructures  represent  hidden  recurrent 
patterns  within  the  larger  graph.   Substructures  can 
also  show  divergent  patterns  between  common 
recurrent  patterns.   Both  help  the  researcher 
understand  large,  complex  systems.   Inference  also 
aids  in  the  construction  of  system  generators.   By 
inferring a graph grammar from existing graph data, 
the  researcher  may  study  the  growth  of  complex 
systems.   Using  the  grammar  in  a  generator,  the 
researcher  can  produce  size  constrained  graphs  that 
simulate  a  system's  growth.   Other  applications  are 
numerous.

For  VEGGIE,  a  machine  learning  system  for 
context-sensitive  graph  grammars  is  desired.   The 
definition of context-sensitive graph grammars is that 
the  left  hand  side  (LHS)  of  production  rules  may 
contain one or more data elements—nodes of terminal 
or  non-terminal  designation.   Context-free  graph 
grammars  are  restricted  to  one  and  only  one  non-
terminal  on  the  LHS.   The  inference  of  context-
sensitivity graph grammars is  generally  user  centric. 
Finding contextual meaning within a system generally 
implies the analysis of attributes associated with data 
elements.   While  several  context-free  induction 
systems  have  been  developed,  only  one  context-
sensitive induction system was found in literature [2] 
and  its  application  is  limited  to  a  few well  defined 
context-sensitive patterns.

Some popular graph grammar induction systems 
are  AGM  [10],  FSG  [11],  and  gSpan  [12].   These 
three  systems  are  essentially  incremental 
enhancements  to  a  common  process.   The  latter 
systems  provide  improvements  over  the  earlier. 
However,  another  system,  SubdueGL  [13],  has 
evolved  within  its  own  uniform  domain  with  little 

change to performance and its variants generally add 
optional functionality to the original system.

3.1 The SubdueGL induction system

The SubdueGL induction system uses a subgraph 
discovery  approach  that  places  emphasis  on 
compressing the graph dataset as opposed to finding 
frequent  subgraphs.   While  the  compression  and 
frequent subgraph approaches are closely related, they 
can  produce  different  results  as  a  less  frequent 
subgraph  may produce  a  better  overall  compression 
for  the  dataset.   Using  a  subgraph  growth  process, 
SubdueGL generates candidate substructures that may 
be used to compress the graph dataset.  The original 
method  uses  a  minimum  description  length  (MDL) 
compression  value  to  compare  each  competing 
substructure's  compression  on  the  dataset.   The 
substructure  with the highest  MDL value is  used to 
compress the dataset.   This process repeats until  the 
dataset  is  either  fully  compressed—a  single  node 
remains  or  no  substructure  can  be  found—or  a 
specified  number  of  iterations  is  reached.   The 
compression  process  results  in  an  hierarchical  
reduction of  connected  subgraphs  that  directly 
corresponds to grammar production rules.

Since  exact  isomorphic  subgraph  discovery  is 
NP-complete, an optional optimization uses an inexact 
isomorphic subgraph discovery based on a branch and 
bound algorithm to match subgraphs that vary slightly 
in their  edges and nodes.   Costs are associated with 
the variations.  Substructure instances with the lowest 
cost  within  a  threshold  limit  are  selected  for 
compression.  When the threshold limit is set to zero, 
the  inexact  matching  process  reduces  to  the  exact 
matching process.

The other systems use node adjacency matrices to 
maintain  edge  connections.   SubdueGL  maintains  a 
list of nodes and edges.  Each node contains an edge 
reference  list  and  each  edge  contains  its  two  node 
references.   Therefore,  it  can  handle  graphs  with 
multiple edges between two nodes and cycles.

Several  additional  options  are  noteworthy. 
Predefined subgraphs can be specified to compress the 
dataset before the normal induction process begins.  It 
also performs as a supervised machine learner with the 
specification of a negative graph dataset.  In addition, 
various options are provided to control the induction 
process,  such  as  limits  on  the  size  and  number  of 
substructures to consider.

3.2 A SubdueGL derivative

The  SubdueGL  version  used  for  VEGGIE 
provides  both  the  MDL-based  graph  compression 
method and a sized-based alternative method [14,  1]. 
The size-based algorithm uses the same form as the 



MDL  algorithm  to  compute  the  final  compression 
value.  However, the size calculations for each portion 
of  the algorithm are  a  simple  sum of  the  node  and 
edge  counts.   Therefore,  its  computation  time  is 
significantly less—O(1)—than the MDL calculation—
O(log2(n)) average, O(nlog2(n)) worst case.  The result 
is  a reduced runtime that  occasionally  selects  a less 
optimal compression for the graph [14].

This version also introduces a change to the type 
of  recursive  substructures  detected.   The  previous 
version allowed for a single connecting edge between 
substructure instances to define substructure recursion. 
The derived version replaced this edge recursion with 
node  recursion.   Node recursion  allows  for  a  single 
overlapping node  between  substructure  instances  to 
define substructure recursion.

4. The VEGGIE system

The VEGGIE system is essentially a combination 
of  the  SubdueGL  and  SGG  systems  with  novel 
enhancements.   Its  user  interface  is  primarily  a 
refactored  combination  of  SGG's  three  independent 
editors: the Node Type, Grammar, and Graph editors. 
Since SGG and SubdueGL are different systems, they 
each use data structures and processes optimized for 
their  respective  goals.   Standardizing  on  a  common 
framework  is  a  goal  for  constructing  VEGGIE. 
Several  enhancements  are  made  due  to  the 
standardization  process.   Other  novel  enhancements 
are introduced independently to each system.

As VEGGIE is a merging of the SubdueGL and 
SGG software, they require a standardization of terms, 
concepts,  and structures.   Since they both  deal  with 
graph  data,  VEGGIE  endeavors  to  find  a  common 
ground based on a graph formalism.  There are many 
formalisms  for  graph  structures,  but  one  formalism, 
GraphML,  promises  to  become  dominant  in  the 
standards community as many competing formalisms 
have been unified under its specification.  GraphML is 
an XML specification for representing graphs of broad 
applicability  and  allows  for  general  data  extensions 
under  the  guise  of  XML  attributes  as  well  as  a 
specifically  defined  “data”  tag.   As  such,  the 
SubdueGL and SGG applications are refactored using 
the GraphML specification.

4.1 Supporting GraphML

Much of the refactoring is a simple updating of 
terminology.  The SubdueGL system referred to graph 
nodes as “vertices”,  but the SGG system referred to 
them  as  “nodes”.   As  GraphML  refers  to  them  as 
“nodes”,  they  are  standardized  as  such  in  both 
systems.  A “vertex” notation is used in SGG, but it 
refers  to  edge  connecting  endpoints  within  a  node. 
These endpoints  are called “ports” in GraphML and 

are  standardized  as  such.   GraphML  also  supports 
hyper-edges.  Currently, VEGGIE does not recognize 
hyper-edges.   As  they  are  a  grouping  of  standard 
edges, this could be implemented.  This has been left 
for future work as there is little perceived gain.

Aside  from  terminology,  VEGGIE  implements 
several structural and visual changes.  The GraphML 
formalism specifies data storage.  The file types use 
the XML specification for GraphML.  Data extensions 
as  XML  attributes  are  added  to  most  GraphML 
elements.  Data extensions as specified data types are 
added for any node type attributes and any production 
rule action code and spatial specifications.

4.2 The Type editor

The Type editor is refactored from SGG's Node 
Type  editor.   As  an  enhancement,  edge  types  were 
added.  In the display tree, two tree nodes appear in 
the editor's type tree to support the two different type 
lists: one for node types and the other for edge types. 
Node  types  contain  a  name,  category,  ports,  and 
attributes.   The  categories  were  changed  to  the 
traditional  terms,  “Terminal”  and  “NonTerminal”. 
Edge types contain a name and a directed attribute that 
specified  whether  the edge is  directed or  undirected 
from its source node to its target node.

Another  enhancement  is  default  types.   Default 
types cannot be added, renamed, or removed by users. 
All  default  names  are  denoted  with  surrounding 
brackets  as  users  are  restricted  to  starting  a  name 
identifier with alphanumeric characters.  One default 
node  type  is  generated  with  the  name  identifier 
“{Root}”  and  specified  as  a  non-terminal.   This 
default node type serves to specify the final node on 
the  LHS  of  the  final  production  rule.   The  parser 
recognizes the node with this default node type as the 
validating  criteria  when  there  is  one  and  only  one 
remaining node derived from parsing a graph dataset. 
For  each  node  type,  a  default  port  is  automatically 
generated with the identifier “{<NodeType>}” where 
“<NodeType>” is  the name identifier  for  each node 
type.   For  example,  the  default  port  name  for  the 
“{Root}” node type is “{{Root}}”.  Two default edge 

Figure 1: The VEGGIE Type editor



types are automatically generated in the edge type list. 
One  is  generated  with  the  identifier  “{E}”  and 
specified as undirected.  The other is generated with 
the identifier “{D}” and specified as directed.  There 
are  two  purposes  for  maintaining  default  elements. 
The first is to allow users to create simple grammars 
and graphs from the default elements with a minimum 
of  effort  in  the  Type  editor.   The  second,  more 
important purpose, is to allow a less restrictive loading 
of graph data into the editors—defaults are used when 
edge data is not fully qualified:

1. For an edge, if a node port is not specified for 
a node, the default node port is used.

2. For an edge without a name, a default edge 
connects the nodes—the “{E}” default edge 
for  unspecified  or  undirected  edges and the 
“{D}” default edge for directed edges.

3. For a node, a default port with the given node 
type name is guaranteed.  A node without a 
node  type  name  is  given  the  name 
“<BAD#>”  and  its  default  port  is  named 
“{<BAD#>}” where # is an enumeration for 
the currently malformed node.

Type specifications are stored separately from the 
grammars and graphs that use them.  They are used to 
specify nodes and edges used in grammars and graphs. 
Therefore, a single type specification can be used for 
multiple grammars.

4.3 The Grammar editor

The refactored  Grammar  editor  incorporates  the 
node type changes and the edge type enhancements. 
In addition, the visual interface is updated in several 
important ways.  The LHS and RHS display areas are 
essentially graph editors (see section 4.4 below).  The 
graphs  are  related  to  represent  a  production  rule. 
When nodes and edges are added, the user specifies its 
type from the currently loaded type specification.  The 
action code and spatial specifications are supported as 
per SGG.

A grammar  is  a  list  of  production  rules.   It  is 
stored separately from the type specifications, graphs, 
and  the  parsing   system.   Therefore,  a  variety  of 
grammars  can  be  used  to  parse  any given  graph  as 
long as the types used are contained in the current type 
specification.

4.4 The Graph editor

The refactored Graph editor allows for the adding 
and removing of nodes and edges.  Node and edges 
are automatically given an integer identifier indicating 
an instance of their respective types.  Node ports are 
used to connect edges and are selected during the edge 
adding  process.   The  display  area  is  also  fully 
scrollable allowing for large visual representations of 
graphs.

In  SGG,  an  invalid  parse  generally  produced  a 
malformed  partial  parse  tree  for  display.   As  an 
enhancement,  VEGGIE  displays  a  corrected  partial 
parse tree for review.  The partial parse tree shows all 
the parsing  done  to the point  of  failure  with  all  the 
proper links between production rules containing the 
nodes they used.  This provides important feedback to 
the user for possible corrective actions or to identify 
aberrations within a graph.

The  addition  of  edge  types  has  a  significant 
impact  on  the  parsing  algorithm.   Edges  were 
previously  considered  undirected,  type  independent 
entities.   Therefore,  the  parser  represented  the  edge 
information  as  node  adjacency  lists  with  port 
connection  information.   Representing  typed  edges 
with  directive  information  (directed  or  undirected) 
complicates the parsing process, but not significantly. 
Edge  type  and  directive  information  provides 
constraint  conditions  that affect  the parsing runtime. 
During the parser's search process, the port connection 
information  is  used  to  match  connected  production 
nodes  to  connected  graph  nodes.   When  additional 
edge  information  is  provided,  the  matching  process 
reduces the possible matching candidates as the search 
is constrained to a more limited edge set.  The original 
edge matching code compared the end nodes' type and 
port  connections  between host  graph and production 
rule.  The modified code includes comparing the edge 
type  and  directive  information.   As  the  port 

Figure 4: Parsing results for a graph

Figure 3: The VEGGIE Graph editor

Figure 2: The VEGGIE Grammar editor



connection information is essentially an edge list for 
each port of a node, the edge directive information is 
coded to identify the edge as  undirected between the 
nodes,  directed to the target node,  or  directed from 
the source node.

Graphs  are  nodes  and  their  connecting  edges. 
Nodes are simple instances of node types.  Edges are 
instances  of  edge  types  connecting  two  nodes  via 
ports.   A  graph  is  stored  separately from  any  type 
specification and grammar.   Therefore,  a graph may 
be  related  to  a  variety  of  grammars  as  long  as  the 
types  used  are  contained  in  the  current  type 
specification.

4.5 Supporting SubdueGL

A refactored version of SubdueGL is integrated as 
a  subsystem  of  VEGGIE.   To  support  SubdueGL 
functionality,  several  changes  and enhancements  are 
incorporated.   To support  the supervised learning of 
SubdueGL  via  its  negative  graph  function,  an 
additional  Negative  Graph  editor  is  added.   The 
Negative Graph editor is identical to the Graph editor 
in every respect.   Both graph editors have access to 
the  same  inference  function  that  implements  the 
SubdueGL subsystem.  As a system validation check, 
the Graph editor must contain a nonempty graph while 
the  Negative  Graph  editor  is  allowed  to  contain  an 
empty graph for unsupervised learning.

To  support  the  predefined  substructures 
functionality  of SubdueGL, production rules may be 
predefined  in  the  Grammar  editor.   Any  production 
rules that exist in the Grammar editor are interpreted 
as  predefined  substructures  that  compress  the 
combined positive and negative graph dataset through 
R-applications.  This allows the user to preprocess the 
graph data before the induction process begins.

VEGGIE supplies  data  to  SubdueGL subsystem 
by translating the SGG graph dataset into a SubdueGL 
dataset.  The work related to translation highlights the 
structural  differences  in  each  system.   The  SGG 
system  uses  node  ports  to  connect  edges  while 
SubdueGL  does  not.   Therefore,  the  SubdueGL 
subsystem is modified to accept and use ports.  Most 
of  these  modification  relate  only  to  edge  matching 
processes.

5. Context-sensitive induction

VEGGIE  is  intended  to  be  a  context-sensitive 
reinforcement  machine  learning  system.   As  such, 
VEGGIE must be context-sensitive in both its parsing 
and inference processes.  Context-sensitive parsing is 
provided  by  the  original  SGG  system.   However, 
SubdueGL is not context-sensitive.  Previous work [1] 
has  shown  the  usefulness  of  combining  the  two 
systems  and  proposed  future  work  for  context-

sensitive  induction.   VEGGIE  realizes  these  two 
objectives  by  combining  the  systems  and  extending 
the  SubdueGL  subsystem  with  novel  work  for 
context-sensitive induction.

Useful  context-sensitive  induction  could  include 
user  provided  contextual  information  to  direct  the 
induction process.  The contextual information could 
target a particular contextual domain such as a spatial 
domain  constrained  to  the  major  two  dimensional 
vector directions as specified by the SGG formalism 
(N, S, E, W, NE, NW, SE, SW), an expanded three 
dimensional  formalism,  or  some  other  fuzzy spatial 
context.   However,  the  SGG system allows  for  the 
specification  of  general  context-sensitivity  without 
formal domain constrains.  Therefore, the novel work 
extends the induction process in VEGGIE to include 
general context-sensitive induction.

5.1. The context-sensitive inference problem

Context-sensitivity in graph grammars is defined 
as allowing the LHS of a production rule to contain 
one or more non-terminals and zero or more terminals. 
To ensure a halting condition during parsing, a size-
increasing constraint  on the production  rules  can be 
imposed  as  per  RGG+[9].   To  ensure  proper  node 
assignments (non-terminals, terminals, and their edge 
connections), the rules must provide node context and 
port  marking  information  describing  the  embedding 
relationship  between  LHS and  RHS  nodes.   In  the 
SGG  system,  a  production  rule's  LHS  and  RHS 
respective  nodes  are  given  contextual  markers  that 
inform the parser about node and edge reassignments. 
Ports  are  given  contextual  markers  that  inform  the 
parser  about  edge  connection  reassignment.   These 
issues impose problems for an induction process that 
is required to infer context-sensitive production rules.

To create a context-sensitive production rule, the 
induction  process  must  identify  substructures  within 
the  host  graph  that  cannot  be  simply  reduced  to  a 
single  non-terminal  as  is  done  for  context-free 
grammars.   These  substructures  must  contain  some 
property  that  challenges  the  induction  of  a  context-
free production rule.  To ensure the halting condition, 
an  inferred  context-sensitive  production  rule  must 
reduce two or more RHS nodes to a single LHS non-
terminal node.  This ensures that the LHS size is less 
than  the  RHS  size—a  requirement  of  the  halting 
condition.

Non-terminal  nodes  are  generated  during  the 
induction process.   As they are not  predefined node 
types, they are added by the induction system.  These 
non-terminals are free of multiple port definitions as a 
context-free  induction  system  only  relies  on  the 
default  ports.   However,  for  context  sensitive  rules, 
marking  plays  an  important  role  in  replacing  RHS 
substructure in a host graph with LHS substructures—



the  embedding issue.   Marking is used on ports and 
nodes in the definition of production rules to maintain 
edge connections outside an instance in the remaining 
host graph.

5.2. Inferring context-sensitive grammars

Previous  work  for  inferring  context-sensitive 
graph grammars [2] was limited to matching general 
predefined  patterns  within  the  host  graph.   These 
general  patterns  consisted  of  chain  and star  patterns 
containing nodes and directed edges of general type. 
As chain patterns of size M and star patterns of size N 
can be limited, the method highlights pattern growth 
through the recursive use of production rules.

However,  the  work  did  not  address  pattern 
overlap.   Two  patterns  may  overlap  by  sharing 
common nodes and edges within the host graph.  The 
chain  and  star  productions  were  limited  to 
unconnected  nodes  on  the  LHS,  therefore,  patterns 
only  overlapped  on  nodes.   Furthermore,  only  end 
nodes could modify chains to produce longer chains 
and stars only added edges between a central node to 
the other nodes.  Therefore, overlap was a trivial chain 
extension  problem  for  chains  and  a  trivial  chain 
connecting problem for stars.

Within  SubdueGL,  overlapping  instances  of 
discovered  substructures  can  be  identified  when  the 
instance  overlap parameter  is  used.   Overlapping 
instances  are  then  considered  non-overlapping  and 
compressed as any other instance.  This is unsuitable 
for generating a general context-free production rule 
as  the  parsing  system  fails  on  the  induction  graph 
since individual instances are identified, but they are 
ignored  as  recursive  instances  sharing  a  common 
overlapping structure.

To  handle  basic  context-free  overlapping 
instances, a node recursion parameter is used to allow 
instances  sharing  a  single  node  to  specify  node 
recursive  production  rules.   An  edge  recursion 
parameter  is  also allowed,  but  the instances  are  not 
considered overlapping as the edge is not  shared by 
the  instances—it  connects  the  instances.   For  node 
recursion,  there  is  only  one  node  shared  between 
multiple  instances,  so  there  is  no  requirement  to 
provide  embedding  information.   A  single  non-
terminal with its default port suffices to replace each 
instance's  overlapping  node  as  well  as  an  entire 
instance.   The  result  is  a  context-free  recursive 
production  rule.   However,  embedding  information 
can be applied to the production rule by copying the 
ports  of  the  overlap  node  to  the  new  non-terminal 
node and marking all ports between the overlap node 
and its non-terminal.

Expanding the instance overlap and single node 
recursion  provides  a  mechanism  to  infer  context-
sensitive production rules.  When the overlap between 

instances is a substructure consisting of one or more 
nodes,  each  of  the  overlap  nodes  form  new  non-
terminal  nodes  with  identical  ports  that  require 
marking  to  resolve  their  embedding  requirements  in 
the host graph.  Consider the example graph in figure 
5.   The  dotted  oval  shows  the  overlap  of  three 
instances of a common substructure.

The  resulting  recursive  production  rule  could  be  as 
shown in figure  6.  Embedding marks are not shown 
in this simple example.

It  is  noteworthy  to  mention  that  a  context-free 
solution  could  be  applied.   The  overlap  could  be 
reduced  to  a  single  non-terminal  node  before  a 
recursive rule is constructed.   However,  overlapping 
structures  embody  a  contextual  reference  between 
common  instances.   Context  can  be  lost  using  this 
approach  as  embedding  information  between  the 
overlap  and  non-overlap  areas  is  undefined. 
Therefore,  the  reduction  process  cannot  preserve 
structural  context  within  the  recursive  instances.   A 
context-sensitive solution is required.

The process  for  constructing  a context-sensitive 
solution  relies  on  the  mapping  of  instances  to  their 
shared  overlapping  substructure.   As  multiple 
instances may overlap, the system must ensure that the 
shared substructure applies to all concerned instances. 
The  mapping  provides  the  required  embedding 
information to mark ports for context preservation.

Chains of overlapping instances are also possible 
and must be captured in the resulting production rules. 
In  this  case,  overlapping  and non-overlapping  areas 
can  be  reinterpreted  and  exchanged  producing  a 
“chicken-or-egg” problem when constructing the rule. 
A solution is to let both versions compete for the best 
compression value with ties broken arbitrarily.

6. Conclusion and Future Work

VEGGIE provides a context-sensitive parsing and 
induction  environment—the  first  of  its  kind  for  the 
visual  computing  domain.   SGG  provides  a  graph 
formalism and parsing system.  SubdueGL provides a 
graph grammar induction system.  GraphML provides 
a comprehensive data format and file structure.  As a 
reinforcement  machine  learning  environment, 

Figure 6: Two context-sensitive production rules
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VEGGIE extends  artificial  intelligence  in  the  graph 
grammar  domain.   The  graph  grammar  induction 
process  provides  a  mechanism  for  quickly 
constructing visual languages from example graphs.

Context-sensitive induction is extended from the 
context-free  induction  of  overlapping  single  node 
recursive production rules.  Overlap between instances 
of  common substructures  provides  a  connection 
context  between  those  instances.   Mapping  the 
substructure  defined  by the  overlap  to  the instances 
provides  the  means  for  extracting  embedding 
information used in a production rule.

As VEGGIE is a new tool, few tests on real world 
examples have been applied.  Comprehensive tests are 
planned  for  data  related  to  bioinformatics,  social 
networks, and adaptive web interfaces [3].  However, 
some  initial  evaluation  of  VEGGIE  has  been 
performed.   Tests  were  conducted  on  the  examples 
provided  in  previous  work  [1]  and  previous 
SubdueGL examples.   The  grammar  induction  tests 
validate  the  grammar  construction  process.   The 
grammar parsing tests were equal to the results of the 
previous  work's  tests.   Accuracy  of  the  induced 
grammars  was  preserved  when  the  parser  was  used 
against representative graphs of the grammars.

A  future  goal  of  VEGGIE  is  to  find  context 
between  different  substructures.   Overlapping 
instances  of  differing substructures  also  provides  an 
opportunity  for  connection  context.   Finding  these 
overlaps  are  problematic  as  this  assumes  the 
substructures have previously been inferred from the 
graph dataset.   As each inferred substructure affects 
later  inference  processing,  a  different  approach  to 
grammar induction may be required.

SubdueGL  and  SGG  both  have  a  isomorphic 
subgraph  matching  function.   SubdueGL  uses  its 
function to find substructures in the dataset to apply 
compression.  SGG uses its function to find grammar 
instances in the dataset for parsing resolution.  As both 
functions share common applicability, they should be 
code compatible.  However, they both take different 
approaches to matching subgraphs.  A future goal of 
VEGGIE is to reduce both of these functions  into a 
single process.
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