

Journal of Visual Languages and Computing (2001) 12, 217}220
doi:10.1006/jvlc.2000.0201, available online at http://www.idealibrary.com on

Issues in Visual Parallel and Distributed Program
Development

(Panel Discussion at the VL’2000 Workshop on Parallel and

Distributed Programming)

Participants

Philip Cox (Dalhousie University, Canada), Holger Giese (University of Muenster,
Germany), Bertrand Ibrahim (University of Geneva, Switzerland), Roland Huegl (Uni-
versity of Linz, Austria), SuTe Lei (Macquarie University, Australia), Katharina Mehner
(University of Paderborn, Germany), Stephan Philippi (University of Koblenz,
Germany), James Webber (University of Newcastle upon-Tyne, UK), Guido Wirtz
(University of Meunster, Germany), Yijun Yu (University of Ghent, Belgium), Kang
Zhang (University of Texas at Dallas, U.S.A.)

1. Introduction

AT THE END OF THE ONE-DAY WORKSHOP on Visual Methods for Parallel and Distributed
Programming, the workshop participants discussed the state-of-the-art and future of
visual languages and technology in the context of parallel and distributed programming.
The discussion started with two questions.

z Besides the topics covered in the presented papers—what are the areas that visual
techniques are especially well-suited for parallel and distributed programming?

z Which are the most promising applications to bring visual techniques to wider
practical use?

The panel discussion evolved as summarized below.

2. Usefulness of Visual Approaches

In general, visual approaches can be more intuitive, especially in the high-level program
design. People, however, may have claimed too much in visual solutions. If a visual
method works just for the design stage, then one should just claim that visual approach
helps in the design stage and general parallel modeling (Giese). We should focus on
proper application domains, where performance is critically important and visual design
of parallel/distributed programs may have the greatest impact on the performance (Yu).

1045-926X/01/040217#04 $35.00/0 (2001 Academic Press

218 K. ZHANG AND G. WIRTZ

As reported by an empirical paper (by Stankovic, Kranzlmueller and Zhang in this
issue), it is interesting that even though people acknowledge the usefulness of visual
approaches in parallel programming and the results show that visual languages do help
in understanding and design, people are still used to programming using text. Visual
methods should at least be useful for understanding, teaching and learning of paral-
lel/distributed programming (Lei). Though it is possible for a visual language to support
completely visual specifications of a parallel program, it is not cost-effective to write
lower levels details, such as statements, graphically (Cox, Lei, Zhang).

In programming generally, textual languages with a complex syntax are typically used
to encode multidimensional structures (algorithms, data arrays, etc.), and that appro-
priate visualization can make these structures more concrete. This principle should apply
to languages for parallel/distributed programming (Cox).

2.1. How to Write Big Programs that can be Distributed
Nicely to a Distributed Processing Environment?
Can Visual Languages Help? (Wirtz)

There have not been many uses of visual languages in distributed programming and
systems. Applications of visual languages in the areas such as Web design will certainly
help end-users (Lei). Extending visual programming approaches to distributed comput-
ing is a matter of how to load computational nodes to remote processors in a distributed
processing environment (Ibrahim). One thing that visual languages could help is to
specify process-processor mapping, for example, how to submit computing jobs in
a grid-based allocation representation to achieve load-balancing (Webber).

A visual language that allows the user to specify the configuration of a distributed
system (e.g. whether on a tightly coupled multiprocessor system, a local area network or
wide area network) will be particularly desirable (Cox). Some existing hardware descrip-
tion languages are very useful (Wirtz). But the main challenge is how to specify dynamic
load balancing at run-time (Ibrahim).

Visual languages could also be used to specify software patterns, like what an architect
does his/her job when designing a new building architecture. Familiar software patterns
include those that perform operations on some composite objects such as linked lists,
binary trees, etc. There are many other typical patterns in parallel and distributed
programs, like loop dependencies, data distribution and communications (Yu).

2.2. How can Parallelization be Automatically Done? (Cox)

Best parallelization should be done automatically, and completely invisible to the user
(Ibrahim). This is, however, difficult at the present.

Many people have asked about whether Prograph can be parallelized, for example,
with the capability of automatic analysis of parallelism. It is, therefore, apparent that
there is a strong need in the community for automatic parallelization in visual parallel
programming languages or environments. B. Lanaspre at the University of Southam-
pton, UK, has investigated automatic methods for dispatching parallel tasks according
to data types used by these tasks (in ‘Static Analysis for Distributed Prograph’, Ph.D.
thesis, 1998) (Cox). This work, as an example, could be applied to visual parallelizing
tools.

PARALLEL AND DISTRIBUTED PROGRAM DEVELOPMENT 219

2.3. At Which Stages (Design, Construction, Debugging and
Performance Tuning) Visual Languages or Visualization are
Most Useful? (Zhang)

Visual approaches should be useful in all the mentioned stages (Webber, Cox, Ibrahim).
It is certainly true that visual methods are very useful in almost any science and
engineering domains, even social science areas. Using graphs to visualize abstract
concepts or to provide analog representations of real work phenomenon has been
a common practice when people approach the design, modeling and analysis of any
systems, whether on a paper or on drawing machine. People have largely acknowledged
the usefulness of visual approaches using graphs (Wirtz).

The question then is at what level in high-performance computing it is desirable to
use visual methods for specifications, given that we would like almost everything to
be done automatically. If parallelization can be done nicely and parallelizing compilers
are powerful enough, do we really need visual specifications (Ibrahim)? It is of
course doubtful that parallelizing compilers can be so powerful. One obstacle, for
example, that could prevent automatic parallelization is the consistency issue. It is
desirable for a parallel programmer to be able to specify at least how much consistency
should be maintained before parallelization. Of course, end-users are not expected to be
able to provide such specifications (Webber).

3. Current Problems

The consistency issue is not simple. When the coefficient matrix of linear equations
obeys a strict condition on its spectral radius, parallel execution of the asynchronous
iterative solver can neglect the data dependencies yet can still converge to sequential
results in the sense of epsilon range. To understand such a phenomenon, visualizing
consistency semantics at the algorithmic level rather than programming level is highly
desirable and needs also be supported (Yu).

End-users should not be expected to be able to conduct explicit parallel programming
(Wirtz). Automatic parallelization tools are extremely limited. A way forward may be to
separate parallelism in specific domains, such as string search.

How to parallelize a computation that involves a large number of objects? (Cox).
Perhaps a good approach is to treat them as abstract data types and use them to specify
what to do in the computation, rather than how to do (Ibrahim).

People in the parallel and distributed programming community have used various types of
graph formalisms to visualize parallel software design, construction, debugging, and perfor-
mance tuning. Different graphs are used in different development stages. A major challenge
is to find a graph formalism that is not only generally intuitive and appeals to the scientific
and engineering community, but also supportive across all the development stages (Zhang).

4. Future

4.1. Can Interface Heavy Software for End-users be Automated
Using Visual Languages? (Cox)

Creating complex software, including the functionality of rotating and rendering images,
can be challenging. Companies like Adobe surely needs some kind of visual tools to help

220 K. ZHANG AND G. WIRTZ

writing such complex software. It will be very desirable to have a language that these
companies can easily extend or customize to suit their needs. Tools aiming at producing
such languages are very important (Cox).

We may look for what visual languages and visualization can help or represent
intuitively while text cannot, such as data types, pointers, and object patterns (Webber).
It is generally not a good idea to convert from visual programs to the text and then
parallelize the text for fast processing (Webber and Cox).

4.2. Would it be Possible to Have a Commonly Accepted Visual
Formalism to Represent and Support Parallel Programming
(as MPI for Message Passing)? (Zhang)

Dataflow may be a good candidate. Dataflow graphs have been used in parallel program
design, analysis and even debugging. But dataflow alone is not good as a visual tool since
the traditional dataflow languages have to use things like multiplexors to select data
streams, which make dataflow graphs difficult to read (Cox). Certain control flow
features may have to be used to convey such information as execution order of parallel
programming components.

There is a need for parallel visual programming tools that allow users to visually
specifiy both the levels at which parallelization can apply, and features that are
parallelizable. So the users are relieved from having to learn parallel programming at
lower levels (Ibrahim).

The success of visual approaches to parallel and distributed programming in the
future will be largely dependent on how well the visual formalisms used could represent
intuitively key issues in parallel/distributed programs, such as parallelism, commun-
ication and load-balancing. There is clearly a trend in high-performance computing
research and industry that high productivity of parallel/distributed software increasingly
relies on visual development tools that have user-friendly interface (Zhang).

KANG ZHANG AND GUIDO WIRTZ

		1. Introduction

		2. Usefulness of Visual Approaches

		3. Current Problems

		4. Future

