Available online at www.sciencedirect.com
= f Journal of

*.” ScienceDirect Visual Languages

RS 1L Journal of Visual Languages and Computing & Computing
ELSEVIER 17 (2006) 508-527

www.elsevier.com/locate/jvic

AutoGen: Easing model management through two
levels of abstraction ™

Guanglei Song®*, Jun Kong®, Kang Zhang®

2Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083-0688, USA
®North Dakota State University, USA

Abstract

Due to its extensive potential applications, model management has attracted many research
interests and gained great progress. To provide easy-to-use interfaces, we have proposed a graph
transformation-based model management approach that provides intuitive interfaces for manipula-
tion of graphical data models. The approach consists of two levels of graphical operators: low-level
customizable operators and high-level generic operators, both of which consist of a set of graph
transformation rules. Users need to program or tune the low-level operators for desirable results. To
further improve the ease-of-use of the graphical model management, automatic generation of low
level of operators is highly desirable. The paper formalizes specifications of low- and high-level
operators and proposes a generator to automatically transform high-level operators into low-level
operators upon specific input data models. Based on graph transformation theoretical foundation,
we design an algorithm for the generator to automatically produce low-level operators from input
data models and mappings according to a high-level operator. The generator, called AutoGen,
therefore eliminates many tedious specifications and thus eases the use of the graphical model
management system.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: Model management; Graph transformation; Graph grammar; Visual programming; Schema
interoperation

*The work is partially supported by the National Science Foundation under Grant no. I1S-0218738.
*Corresponding author.
E-mail addresses: gxs017800@utdallas.edu (G. Song), jun.kong@ndsu.edu (J. Kong), kzhang@utdallas.edu
(K. Zhang).

1045-926X/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jv1c.2006.10.004

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2006.10.004
mailto:kzhang@utdallas.edu
mailto:kzhang@utdallas.edu

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 509
1. Introduction

With the advance of Internet applications, interoperation among different formats is
becoming critically important. Many approaches have been intensely researched to provide
systematic solutions for manipulating heterogeneous data sources, such as peer-to-peer
data management [1]. Manipulating enormous heterogeneous schemas, however, has been
relatively a forgotten research area. These heterogencous schemas, such as XML Schemas
[2], RELAX [3], SOX [4], ER models, SQL schemas and so on, are used to define data
sources, called meta-data or data models. Traditional approaches to manipulating these
data models are manually specified or designed case by case for specific domains, i.e.
object-at-a-time. Information engineers have to put much effort to program specifically for
the data model applications concerning data migration, data integration and translation.
Such processes are time-consuming and error-prone, and eliminate the possibility of reuse.

To reduce the programming effort, Model Management [5] is introduced to reconcile the
painful process of manipulating heterogeneous data models. According to the vision paper
[5], model-related applications can be composed by a sequence of atomic operations on
data models, such as Merge, Match and so on. These atomic operations are defined as
generic operators such that they treat data models as high-level data structures and
therefore can be re-used in various domains. A model management system provides a set of
high-level programming interfaces for applications to implement the atomic operations to
save programming effort. Model management is the first effort to organize and generalize
these operators to a systematic architecture. Conceptually, these model management
operators have been applied to solve many classic meta-data problems successfully [6] and
the first textural prototype system has been developed [7].

Given the operators provided by a model management system, users need to write a
program to combine a series of operators to fulfill a specific task. Each execution process
of a specific operator is transparent to the user and not customizable. Many usage
scenarios, such as the motivating example of Melnik et al. [8], however have demonstrated
that user interventions are constantly required and customizability is highly desirable for
model management operators. Existing operators, however, are defined by text and
transparent to users, and their implementations are hard-coded in the system. Little work
has been done to improve the customizability and user interfaces of model management
operators.

To improve the expressiveness and customizability of model management operators, we
recently proposed a graphical model management framework [9] based on a graph
grammar formalism, i.e. the Reserved Graph Grammar [10,11]. We also presented
graphical definitions and representations of data models and mappings. Many data
models, including ER models and UML models, are represented by graphs and others,
including XML Schemas and SQL schemas, can easily be translated into graphs [7]. With
intuitive representations for designers to communicate with each other, graphs are natural
representations for data models. Graph transformation, as the theoretical foundation
of visual programming languages, is capable of formally defining how graphs should be
built and how they evolve [9]. The framework defines operations on data models through
a set of graph transformation rules. These transformation rules are declarative and
customizable.

The framework provides two levels of graphical operators, i.c. low level for end-to users
or adjust and high-level operators for domain-experts to program. The two tier architecture

510 G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527

provides interfaces for both domain experts and end-users for their distinct requirements.
A low-level operator consists of a set of graph transformation rules that defines operations
on specific data models. Through low-level operator, users can customize and tune the low-
level operator for desired results. A high-level operator consists of a set of generic rules,
and can be applied to a set of data models. Domain experts program such high-level
operators and provide them to end-users for generic use in a domain. The two levels of
graphical operators are defined in two different abstraction levels of information. Low-
level operators describe the operation specific to data model instances, ¢.g. an XML
schema, while high-level operators define the general guidance for operations among a set
of data models, such as RELAX schemas.

Manually defining a low-level operator, which consists of a set of specific graph
transformation rules, from the scratch is time-consuming. The syntax-directed guidance
for drawing the specific rules is provided by the framework to ease the process, while the
framework however has no automatic mechanism to ease the programming process
through the translation from a high-level operator to a low-level operator.

This paper presents formal specifications for high- and low-level operators. High-level
operators are defined by a set of generic rules and low-level operators are defined by a set of
specific rules. Based on the formal specifications, this paper proposes an automatic
generation mechanism for generating low-level operators to save the programming effort.
To realize the automatic generation process, we present a generator that transforms a high-
level operator (generic rules) into a low-level operator (specific rules) according to input
data models so that the user’s effort in programming specific rules is minimized. The paper
makes the following contributions to the research community:

e formal specifications for high- and low-level operators;
e formal definition of a generator for generating specific rules; and
® an automatic generation algorithm for the generator.

The remaining of the paper is organized as follows: Section 2 introduces the Reserved
Graph Grammar formalism. Section 3 presents the graphical model management,
including graphical data models, mappings and operators on them. Section 4 presents
the formal specifications for the generator and the automatic generation mechanism,
followed by the two illustrative examples in Section 5. Section 6 compares the work with
related works and Section 7 concludes the paper.

2. The reserved graph grammar formalism

As a context-sensitive grammar, the RGG formalism is powerful in expressing various
types of diagrams, with a parsing complexity of polynomial time under a non-ambiguous
condition [10-12]. It is expressed in a node-edge format, similar to a “box and line”
drawing [13] but devised to suit automatic analysis through graph reasoning. In an RGG,
nodes are organized into a two-level hierarchy, where a large rectangle representing the
node itself is the first level with embedded small rectangles as the second level called
vertices. For example, inside the left dashed box of Fig. 1, a node Item has two vertices, i.e.
P and C. In a node, each vertex is uniquely identified. The name of a node distinguishes the
node’s type, similar to the type of variables in conventional programming languages.
A node can be viewed as a module, a procedure or a variable, etc., depending on the

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 511

T T g —Avertex |TTTTTTTTTTTTR
T e
i ffem ! [tem '
‘\A 1

1 node 1
: : . : < :
i e =

1 1
' P d ! P i
E Title E : Name :
i H P i N
| [P —— * ______ 1 I_ _____ * ______ 1

Left graph Right graph

Fig. 1. An example rule.

domain requirement and granularity. Edges are used to denote relationships between
nodes. A vertex functions as the point attached to an edge. Edges are used to denote
communications or relationships between nodes [14].

Based on nodes and edges, the RGG offers a formal approach to specifying the
evolution of graphs, called host graphs. In general, a graph grammar consists of a set of
graph rewriting rules, each having two graphs that are called left graph and right graph.
A simple RGG rule is shown in Fig. 1, where a left graph is inside the left dashed box and a
right graph is inside the right dashed box.

In the RGG, the application of a rule to a host graph, i.e. a graph transformation,
replaces a sub-graph in the host graph that matches the right graph of the rule by the left
graph [11]. The rewriting rule shown in Fig. 1 describes the transformation from the node
Name to Title. The RGG uses the marking technique, which classifies vertices as marked
and un-marked ones, to address the embedding issue, i.e. building connections between the
replacing sub-graph and the surrounding of the replaced sub-graph in the host graph.
A marked vertex is identified by a unique integer, and preserves its associated edges
connected to nodes outside a replaced sub-graph.

The RGG is equipped with a deterministic parsing algorithm, called selection-free
parsing algorithm (SFPA) [10]. A graph grammar must satisfy the selection-free condition
in order to use SFPA. Informally, the selection-free property ensures that different orders
of applications of rewriting rules result in the same result. We developed an algorithm to
automatically check whether a graph grammar satisfies the selection-free condition [15].
Though it is unclear how this condition limits the application scope, it is interesting to note
that even grammars for some complicated graphs satisfy the condition [16]. We proved
that a failed parsing path indicates an invalid graph, and thus SFPA is efficient with a
polynomial parsing complexity by only trying one parsing path [15].

3. Model management by graph grammars

A model management environment offers operators that generalize the transformation
operations for various metadata applications as follows [6]:

e Match—takes two models as input and returns a mapping between them.
o Compose—takes a mapping between models 4 and B and a mapping between models B
and C, and returns a mapping between 4 and C.

512 G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527

e Diff—takes a model 4 and a mapping between 4 and some model B, and returns the
sub-model of A that does not participate in the mapping.

® ModelGen—takes a model A, and returns a new model B that expresses A in a different
representation (i.e. data model).

® Merge—takes two models 4 and B and a mapping between them, and returns the union
C of 4 and B along with mappings between C and 4, and C and B.

These operators are applied to models and mappings as a whole, rather than to their
individual elements. The operators are generic in the sense that they can be utilized for
different kinds of models and scenarios. This paper focuses only on Merge operator and
the same principle can be applied to ModelGen, Diff and Compose. Match [17] is
however out of the scope of this paper and intense research has been done recently.
Each of these operators is a major topic in the research community [5] and the visual
operators in this paper present improvement due to full utilization of graphical
presentations.

Graphs offer intuitive means for describing data models. Operators on data models
define the conceptual transformations of input data models and can therefore be defined
by graph transformation rules. The graphical representation of operators and their
transformation are intuitive, and ideally match the interactive nature of model manage-
ment operations.

3.1. Graphical data models

Similar to ER models, we represent a data model by a node—edge diagram, where a node
represents an object, element or entity and an edge represents the relationship between two
nodes.

A data model, or a schema, is represented by a graph G, which consists of a set of nodes
N, and a set of edges E: N x N. Each node or edge may have a name, which composes a set
of labels L. The graph for a data model can be defined as the following:

Definition 1. A host graph of a data model is G = (N, E, L, F), where N is the node set, E is
the edge set: N x N and F'is a function F: NUE— L, L is a set of labels.

A host graph represents a simple data model, e.g. an XML schema. As shown in Fig. 2,
the graph defines an element Lists with three child elements, e.g. Title, Bids, and Price, and
the element Bids has two child elements, Date and Amount. The XML schema is
instantiated in a set of XML files encoding online bid items of different names and prices.
Every node in Fig. 2 represents an element with vertex P linking to the parents and C
linking to the children and K linking to the attributes or keys.

We use a graph grammar to define the syntax of such graphs. As shown in Fig. 3, a
graph grammar defines the syntax of graphs for the XML schema, which is simplified to fit
in the paper as an illustration. The graph grammar consists of 4 rules, and the ith rule is
marked with {i). Rule (1) specifies that a schema consists of at least one root Element.
Rule (2) defines that Element can have any number of child elements. Rule {3 defines
that each Element can have many attributes. Rule <4 specifies each Element can have
a key.

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 513

Date Amount
[c][x [c][x]
Fig. 2. A data model by a graph.
<I> P<2> Lp]
7] ! Ele'_|ment
A = Element| } Ekleﬁlem - ‘Crl -
ralnf =
: [cal [k]
___________________________ i EI('-:ﬂTnt
H c [k
<3> Le] Fmmmm e
Element | ! 4]
(2] Cilict] | <> Element
Element | := . P [ca] [X]
[l [x 1 | Element =
Er | L [cifk [E]
Attribute i Key
]

Fig. 3. Some rules for XML schemas.

3.2. Graphical mappings

A mapping, Map 45, defines how models 4 and B are related [18]. Based on the graphical
representation of data models, the graph is a straightforward choice for the representation
of mappings. Many proposals use graphical metaphors to represent schema mappings like
in Rondo [7], and Clio [19]. These proposals represent a mapping as a set of lines
connecting the elements of two data models. Such a representation is simple but not as
powerful as SQL view [20] or as a data model [6]. SQL view can represent powerful
semantic similarity of elements in two data models, but the SQL view is not generic and
cannot represent mappings among heterogeneous data sources other than relational
databases, such as XML schemas. On the other hand, mappings are structural instead of
flat bi-directional, and thus cannot be described by those simple two-way correspondences.
The mapping structure described by Bernstein et al. [5] is an appropriate compromise, and
is generic yet powerful.

Similarly, we represent mappings as special data models. As shown in Fig. 4, a mapping
itself is represented as a data model. A graph representing a mapping is called a mapping
graph. Each mapping graph consists of edges and nodes, representing relationships and

514 G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527

]
HighBid
. = b]
Date Amount ~=q0] = R} Y] = [R}* User BDate Quantity
€1 | [ClE] [c] [l [CE [[EE L €K

Fig. 4. A mapping graph.

elements, respectively. A mapping graph has two relationship types, i.e. has-a and refer-to,
and two element types, i.e. mapping and referral. A mapping element specifies how the two
referenced models’ elements are related, such as equality using a node “ =" in Fig. 4.
A referral element is a reference to the element of the two corresponding models, such as
Lists in Fig. 4. A dashed line denotes the refer-to relationship between a mapping element
and a referral element.

Solid lines in Fig. 4 between two referral elements, for example the link between nodes
Lists and Title, are defined by corresponding model graphs rather than the mapping graph.
The mapping graph in Fig. 4 shows these links only to illustrate structure of data models
and the links are not part of the mapping graph.

Since a mapping is treated as a special case of data models, which are represented by
graphs, the syntax of mappings is also defined by a graph grammar as for a regular data
model. The graph grammar for mapping graphs is defined in our previous work [9].

So far both types of inputs, i.c. data models and mappings, are represented by graphs,
which are further defined by a graph grammar. Given the fact that outputs of opera-
tions on them are also data models and mappings, operations on them are considered as
graph transformations from input graphs to output graphs as described in the next
section.

3.3. Graphical operators

Each model management operator has specific semantics for how to manipulate
the inputs, e.g. data models and mappings. Since the inputs and outputs of the
operators are all represented by graphs, it is straightforward to describe an operator by a
set of graph transformation rules. The RGG has been enhanced to easily define
graph transformations [16], and then adapted to represent the model management
operators [9].

We take merge as an example operator to illustrate the transformation process. Merge
has been a hot research topics for many years [18] and complex enough to verify the idea.
The input of operator merge is S = (A4,B, M,p), which consists of three graphs
representing model 4, model B, and the mapping between 4 and B. After applying
merge to S, output 7 consists of five graphs, i.e. T = (4, B, C, M|, M>), where A, B are
copies of input graphs, C represents the output model, M; and M, represent mappings
between C and A, and between C and B, respectively. The output data model C retains all

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 515

<I> [P
L] ME [R
Pl = - [c] -
RE1 /\
[c][x] o ~
RE1 RE2
cllx
<2> E <as T
. Pl : [ea] . Pl
. : RE2 = RE2
: c][X [c1[k]

[p:1]
B - e
[c][x
Lists ltems
[c][x [c][x]

Fig. 6. A specific rule for merge.

non-duplicated information in models 4 and B. It collapses the redundant information
declared by input mapping M 4p.

The semantics of the merge operator can be generally defined by a set of graph
transformation rules. We consider the rules to be generic, since they can be applied to
different data models but cannot be easily customized.

For the mapping described in Fig. 4, we can define a set of rules as shown in Fig. 5. ME
is a mapping element, and RE is a referral element. Subscripts 1 or 2 denotes the origin of
the element, for example, RE; represents an element from Model 1. Concentrating on
input and output data models, the rules simplify the operator by removing some
transformations, such as output mappings, which specify the mapping relationship
between input elements and output elements. Since the output elements are copied from
input elements, the mapping between them can be easily replicated from the copying
process. Rule < 1) shows that two mapped elements RE; and RE, can be merged into one
element RE;. Rules (2} and {3) define that an unmapped element from inputs 1 or 2
should be copied to the output.

Comparing to an algorithm for the same operator, the graph transformation rules
intuitively and declaratively specify results, and therefore a user with little domain
knowledge can manipulate the rules to meet specific requirements. But the generic rules are
not tailored for the input data models and mappings, and hard to customize.

Therefore the concept of specific rules is introduced as shown in Fig. 6 for users to
customize the result by tuning the rules rather than results. The specific rule in Fig. 6
defines that Lists and Items are mapped together via the mapping element “ =", and
should be merged together to be a single node Lists in the output graph. A user can simply

516 G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527

change the concrete correspondence between Lists and Items nodes to adjust the result.
The change made to the specific rule does not change other elements and mappings because
the rule is specific to the nodes. For example, if one wants to use Lists rather than Items as
an element of the merged data model, he/she could simply change the node Lists in the left
graph of a production to Items.

After applying the merge operator of either generic rules or specific rules, the input
model graph will be translated into an output model graph.

4. A generator for specific rules

As described in Section 3, both generic and specific rules play important rules in visual
model management and present the two levels of operators for different users. This section
presents formal specifications for the operators and introduces a generator for automatic
generation of specific rules from generic rules.

4.1. Automatic generation overview

Generic rules are at a high level and can be applied to many input data models and
mappings, while specific rules are customizable. To take advantages of both types of rules,
we propose a mechanism for automatic generation of specific rules from generic rules. The
idea is to automatically generate a set of rules specific to the input data models with
detailed names and relationships based on the same transformation principle as that of
generic rules. The generation process will be covered in more detail in Section 4.4.

As shown in Fig. 7, upon inputs the two types of transformation rules are executed
through two types of transformers, respectively, and produce results. The two types of
transformers will be discussed in Section 4.3.

Data Models Mappings
IF IF s - -";7’

8-~ T

5 5 |

M == |
Generic Rules Specific Rules l

ol g | L |

-

S 1 Aunto Generate g = bl %

Users

Data Models Mappings Customize

.f -v Yo~ L

Fig. 7. Overview of automatic generation process.

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 517

The set of generic rules for an operator, such as the example in Fig. 5, defines the
principle for manipulating input data models and mappings between them, i.e. collapse
mapped elements into one output element and copy un-mapped elements for the merge
operator example in Fig. 5. Through a transformer, generic rules can be applied to specific
input data models directly.

The specific rules for an operator, which is specific to the inputs, are also used by a
transformer to translate input data models and mappings to another set of data models
and mappings. As shown in Fig. 7, contrary to generic rules, specific rules are customizable
and users are given opportunities to tune the results.

Both types of transformation rules are necessary for users to manipulate data models
and mappings and construct model-related applications. The original design however lacks
a proper transition from generic rules to specific rules in case the user demands a set of new
specific rules to be generated from existing generic rules. As shown in the middle of Fig. 7,
the automatic generation of specific rules bridges the gap between specific rules and generic
rules. Upon input data models and mappings, a generator, to be discussed in Section 4.3, is
proposed to automatically generate specific rules according to generic rules.

With the automatic generation mechanism, the two level graphical operators can be used
in a typical scenario: the graphical generic rules are designed and tested by model
management and domain experts and end-users can simply apply the generic rules to
specific inputs and adjust results via automatically generated specific rules. The automatic
generation mechanism eases the usage of the model management system.

4.2. Preliminaries

As defined in Section 3, a host graph, i.e. graphical representation of a data model or
mapping, is denoted by G (E, N, L, F), where G E denotes the edge set E of a graph G, GN
denotes the node set of a graph G, the label set used for the graph G is called L and GF
denotes the function FEUN— L. Each node in the graph is defined by n = (s, V, /), where
seN is a node, and [: V— L defines labels of vertices. n V' denotes all the vertices of
node n.

Two nodes n; and n, are isomorphic to each other, denoted by n; ~n», iff they have the
same vertex labels (including nodes) [10], i.e.

A ((f - mV = mV)AVv e n V(nl(v) = nl(f(v) A nys = f(n5)).

The definition indicates that two nodes with the same vertex and node labels are
isomorphic to each other. Two graphs G; and G, are isomorphic, iff 3 1 G; — G», where f'is
a mapping such that

Vne GIN :n= f(n)and Ve = (v}, 1) € G1E : f(e) = (f(v1),f(1v2)) € GLE.

The redex is a sub-graph of a host graph that is isomorphic to the right graph. Two
graphs are isomorphic if they have the same structure and nodes have the same labels.

The parsing algorithm that matches two nodes with the same labels, i.e. isomorphism, is
called label-based parsing algorithm.

Specific rules explicitly define the transformation based on node labels so that users are
able to customize. The label-based parsing algorithm is employed to parse specific rules.
The parsing algorithm searches in the host graph for a redex of the right graph of a specific

518 G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527

rule by comparing labels of nodes rather than types and replaces the redex by the left
graph. Node types are used by the parsing algorithm for generic rules and will be discussed
in detail in Section 4.3. Therefore, the parsing algorithm does not match the node *“ =" in
a host graph with the node ME in the right graph due to distinct labels of the two nodes.
The parsing algorithm searches and replaces to produce output data models and mappings

until no more redex is found.

4.3. Generator definitions

When a generic rule is applied to a host graph, the transformer needs to match a node in
the host graph with a node of the same type in the right graph. For example ““ = " in Fig. 4
is of ME type in Fig. 5, and the transformer needs to match the node ““ = with ME and
perform transformation according to the generic rule. As discussed in Section 4.2, the
label-based parsing algorithm is not applicable to the translation against generic rules.
A new transformer that translates against generic rules is needed. This section also
introduces a generator that outputs a set of specific rules, rather than a new data model
graph, upon input models according to generic rules.

Generic rules define the transformation based on the syntax definition of data models
rather than a specific data model, therefore a match between a subgraph of the host graph
and a right graph can only be found via node types that have one-to-many
correspondences. We add a type to each node in the generic rules and a type definition
for each node of a host graph besides the label.

A host graph is therefore defined as G' = (V, E, C, L, F, M), where C is a set of node
types and M: V— C is a function defining the type of each node. With this extension, a
node in the host graph for the automatic generation of specific rules is defined as follows:

Definition 2. n = (s, ¢, V,[) is a node on the label set L, where V'is a set of vertices, s is the
node itself and c is the type of the node and /- V- L is an injective function of mapping
from V to L.

The node n; is homomorphic to node n,, called n~n,, if they have the same vertex
labels, i.e. n; V' = n,V and they have the same type, i.e. nyc = nyc.

Definition 3. Two graphs G| and G, are homomorphism, iff 3 /- G; — G, is a mapping such
that

Vn e GIN :n=f(n)and Ve = (v],10) € G1E : f(e) = (f(v1),f (1)) € GLE.

The parsing algorithm that searches for a redex by finding a homomorphism of the right
graph of a rule is type-based parsing algorithm, which is used to parse and translate a host
graph against generic rules.

For a generic rule, a redex is a subgraph of the host graph that is homomorphic to the
right graph of the rule. During the parsing process, the parsing algorithm for generic rules
searches for a homomorphism of the right graph of a generic rule in the input host graph.
A homomorphism is a sub-graph of the host graph, i.e. type-based redex. The parsing
algorithm replaces the redex with the left graph and continues to search for the next redex
until no more redex exists.

Fig. 8 illustrates a redex of rule 1 in Fig. 5 against the host graph in Fig. 4. The node
“ =" 1in the host graph is homomorphic to node ME of the right graph, i.e. “ =" ~ME,

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 519

[P]
E| = |E
C
[P] [P]
Lists Ttems
Cll k Cll k
N / ~
A redex
P:1
E|ME[E
P:l c P:1
RE, RE,
[Cl[x [Clix
The right graph

of a genericrule

Fig. 8. A redex of the right graph of a generic rule.

because the type of the node ““ = ”” is ME and has the same vertices as those in ME. Similar
principle applies, RE; is homomorphic to Items and RE, is homomorphic to Items. The
subgraph (““ = 7, Items, Lists) has the same edges as those of the right graph. According to
the Definition 3, the subgraph (*“ =, Items, Lists) is homomorphic to the right graph of
Rule <1} and therefore is a redex for the rule.

A high- or low-level operator, e.g. Merge or ModelGen, is defined by a set of rules as
follows: OP = R, where R is a set of transformation rules such that Vr € R : r = (LG, RG),
where LG and RG are left and right graphs.

The input to a model management operator consists of one or more data models and
mappings, each of which is represented by a graph. The transformer parses a single host
graph rather than a set of graphs against transformation rules and the input graphs need to
be converted into a single host graph before being parsed by the transformer. Regarding all
model management operators, possible combinations of input model graphs and mapping
graphs include two data models only, one mapping with one or two data models, and two
mappings. If the input consists of two data models, the conversion process simply copies
model graphs into one host graph. In this case, the conversion combines a mapping graph
with the corresponding model graphs. With two mappings, a host graph is produced from
the union of two input mappings in the same fashion as converting two data models. The
conversion process is defined as follows:

Given two model graphs or mapping graphs G, (Vy,E;, Cy, Ly, F;,M;) and G,
(Vz, E2, Cz, L2, F2, Mz), their union G = G]UG2 is defined as: G = (V]U V2, EIUEz,
C\UGC,, LiUL,, F, M), where F and M are new functions such that F: ViUV,UE\UE,—
LIULz and M: VIU Vz—) CIUC2.

Further, the new functions F and M are defined as

Fl(x)...xe V]UEl,
F(X): Fz(x)...xe VzUEz,

Ml(x)...xe Vl,

and M(x) = {Mz(x)...xe Vs.

Similarly, a mapping graph G,, can be combined with two corresponding data models G,
and G, based on referral elements of G,, to elements related in G; and G».

520 G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527

Given a mapping graph G, (V,,, E,., C, Ly, Fry M) and its corresponding data model
graphs Gy (V1, E1, Cy, L, Fi1, My) and G> (V>, E>, C», L», F>, M>), their union G is defined
as:. G=(V,E,C,L,F,M), where V=Vul,JVv,, E=EUEVUE,, C=CUCUC,,
L=L,UL,UL,, and F and M are new functions such that F: V,UV,UV,UE\UE,UE,,—
L\UL,UL,, and M: V\UV,UV,,— CUCUC,,. Similar to the union of model graphs, the
union of vertices of a mapping graph and a model graph is also regarded as a regular union
except that a referral element of a mapping graph is considered as the same node of the
corresponding element in model graph.

Further, the new functions F and M are defined as

Fl(x)...xe V1UE1, Ml(x)...xe Vl,
F(x)= Fr(x)...xe Vo UE,, and M(x) = M](X)...XG Vy,
F,x)...xeV,UE,, My (x)...x € V.

By the union operations, input data model graphs and mapping graphs are preprocessed
to become a single unconnected graph, which is regarded as the input host graph to a
transformer.

A generator is introduced to reconcile the transition from generic rules to specific rules
and ease the effort in programming a set of specific rules. We call the generator AutoGen,
which is a new atomic operator in visual model management system.

AutoGen takes data models and/or mappings as an input graph G and a set of generic
rules GR and produces specific rules SR for the corresponding generic rules, i.e.
SR = AutoGen(G, GR).

Depending on the type of operator defined by the generic rules, the AutoGen requires
necessary input data models or mappings correspondingly. For example, an input data
model and a mapping are required for the generic rules of ModelGen operator, while
AutoGen requires two input data models and a mapping for merge. AutoGen employs a
generation algorithm to parse the inputs against generic rules. The generation algorithm is
described in details in the Section 4.4.

4.4. A generation algorithm

We base the generation algorithm on the SFPA for the RGG [11]. The generation
algorithm has two modules, i.e. redex searching and redex application, as illustrated in
Fig. 9. It is a sequence of applications, which is modeled as recognize-select-execute, and
proceeds as follows:

1. make a copy of the host graph;

2. search in the host graph for a redex of the right graph of a generic rule;

3. replace the redex by the left graph of the rule and generate a new specific rule; and
4. repeat steps 2 and 3 until the host graph is empty or no redex is found.

Particularly, in search of a redex in the host graph for a generic rule, the algorithm
employs the FindRedex algorithm as shown in Fig. 10 to find the redex. The algorithm
searches in the host graph to match a node in the right graph of a generic rule. Once a node

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 521

SpecificRuleSet Generation (HostGraph host, GenericRule GR)

{

1: outputgraph = host;
2: SpecificRuleSet SRS;
3: while host graph is not empty do
4: {
5: matched = false;
6: for all r € GR
7: {
8: Redex rex = FindRedex (host, r);
9: If (rex is not empty)
10: {
11: SpecificRule SR = ApplyRedex (host, outputgraph, r, rex);
12: SRS.add (SR) ;
13 Matched = true;
14: }
15: }
16: if (matched == false)
17: {
18: print (“Invalid”) ;
19: exit (0) ;
20: }
21: }
22: Return SRS;
1

Fig. 9. The AutoGen algorithm.

FindRedex (HostGraph host, Rule r)
{

1: rightGraph = r.rightGraph;

2: Init redex;

3: while (true)

4: {

5: nl = searchNode (host, rightGraph) ;
6: If (nl!=null)

7: {

8: el= searchEdge (host, rightGraph, nl);
9: if (el!=null)

10: {

11: redex.addNode (nl) ;

12: redex.addEdge (el) ;

13: } else redex.delete(nl);
14: } else return null;

15: if (redex.equal (rightGraph))

16: break;

17: }

18: return redex;

Fig. 10. Finding a redex.

is identified, the algorithm proceeds to all the neighboring nodes until the subgraph is fully
matched or no more nodes can be matched. In the former case, a redex of the current rule
is returned. In the latter case, the algorithm returns no redex.

Once the algorithm finds a redex, an application of the rule is performed by the
ApplyRedex algorithm shown in Fig. 11. Lines 1 and 2 delete the redex and embed the left
graph of the rule into a copy of the host graph. Line 3 deletes the replaced part of the
subgraph in the original host graph to validate the input host graph against generic rules.

522 G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527

SpecificRule ApplyRedex (HostGraph host, HostGraph outputGraph,
Rule r, Redex rex)
{
outputGraph.delete(rex),
and host.insert (r.leftGraph) ;
Graph sub = host.delete(rex) ;

New rl;
rl.createRightGraph (rex) ;
rl.createLeftGraph (sub) ;
return rl;

0 ~J 0 Ui WN

Fig. 11. Creating a specific rule.

After embedding the left graph, the algorithm creates a new specific rule, which encloses
the embedded subgraph as the left graph and the redex as the right graph.

After applying generic rules to a host graph, the algorithm produces a set of specific
rules. The automatic generation mechanism bridges the gap between generic rules and
specific rules, and presents users a set of customizable rules towards the data model
(the output specific rules). After users’ adaptation, the specific rules may become incon-
sistent and cannot be applied to any input data models or mappings. With the
specific rule’s customizability, users may adjust the specific rules to produce desirable
results.

5. Illustrative examples

This section presents two examples to illustrate how AutoGen generates specific rules for
two operators Merge and ModelGen.

5.1. A merge example

When AutoGen takes generic rules of the merge operator as the input rules, the input
host graph contains two model graphs and their mapping graph.

The mapping graph in Fig. 4 describes a mapping between two data models. It is
produced by combining the two corresponding model graphs and the mapping graph as
described in Section 4.3. Therefore this mapping graph is the input host graph to AutoGen
for the merge operator. Upon its input, AutoGen produces a set of specific rules as
described in Section 4 according to generic rules.

The generic rules of a merge operator illustrated in Fig. 5 are considered the other input
to AutoGen. After parsing the input host graph according to the generic rules, AutoGen
produces a set of specific rules shown in Fig. 12. Each of the 7 specific transformation rules
describes a mapping as the right graph and an output graph as the left graph.

The user can easily customize these rules for distinct purposes. For example the user can
rename the left graph of rule (1) to Lists so that the specific rules will produce output
data model with a root named Items rather than Lists.

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 523
<I> i <2>
P:1 E P:1
(2] - [@=rE : [p2] = [= [
Lists - [c] i Titl - [<]
[C1[x] E [€1[x]
[P2] [P3] : [p2] [P3]
Lists ltems " Titl Name
[C1[x] [C1[x | [C1[x [C1[x]
3> Y s
[P:1] : 20}
[p2] - 1] = [X] : [p2] = L] = [&]
Bids - [c] | Price - [c]
c1[x E [c]1[X
[F3] Enl [2] =
Bids Bids , Price HighBid
[C1[x] [C1x] [C1[x] [C1[X]
.. S S
<5> L <6>
[P:1] | [P:1]
P2 _ L] = i P2 o L] =
Ilﬁ, B - <] - ' Amount - - [<] -
[c][X 1 C|[K
[P2] [P:3] | [p2] [P3]
Date BDate H Amount Quantity
[C1[x] 1] [C1[X] [c1[x]
<7> - i
(2] - ol |
User User \
[C1[¥ [C1[X] "

<1>] E <2>
[F1] o =
P:1 C ' . =
RE2 = , ' I.;E—;, o |T||E
[€1[X] %] ; [€1[¥]
RE2 ; [P] Lr]
[c1[x] RE1 RE2
............................. [C1[x] [C1[x]
3 [P:1] e e e e e e o]
=] = [&] + <4>
[p1] ¢ ;
RE1 = E =
K |£| ! RE? = IF@,
RE1 : [C1[X [c]1[x]
[

Fig. 13. Generic rules for the ModelGen operator.

5.2. A ModelGen example

When AutoGen takes generic rules for the ModelGen operator as the input rules, the
input host graph contains a model graph and a mapping graph. AutoGen generates a set of
specific rules for the ModelGen operator.

524 G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527

<1> E <2>
1] E]
P2] _ L] = [R ! [P2] _ L] =
Iltems - :||T||: ! Name - :llTlE
[[x] : [[X]
(2] (3] E [P2] [P3]
Lists ltems ! Title Name
[C][x CE [Cl[® [C][X
s Vs
[p:1] i [p1]
(7] . @m=[= 7] . @m=@
Bids = C , HighBid = C
[P2] [P3] [P2] [p3]
Bids Bids I Price HighBid
o] [K CE [c]] [Cl[x
s Co<es
] i]
[P2] - (L] = [E] | [P2] - L] = [X]
BDate - c H Quantity - [
[c1[x] ' [c1]
[p2] [p3] | [p2] [p3]
Date BDate H Amount Quantity
[C1[® CE [C1[® [C1[x
__
<7 2] -]
User User i
[C1[X] cl[x :

Fig. 14. Generated specific rules for the ModelGen operator.

The ModelGen operator can be described by a set of generic rules in Fig. 13. We take the
mapping graph shown in Fig. 4 as our example input. The input host graph of the
ModelGen operator is the result of combining a data model graph with a mapping graph
as discussed in Section 4.3. The example mapping graph without links in the right model
graph is the input to AutoGen. The input host graph includes a data model and a mapping
between the data model and another data model, which will be generated from the
ModelGen operator. The generic rules for a ModelGen operator illustrated in Fig. 14 are
considered the other input to AutoGen. After parsing the input host graph according to
the generic rules, AutoGen produces a specific ModelGen operator as shown in Fig. 14.
The specific operator in Fig. 14 consists of 7 rules that are specific to the input data model
shown in Fig. 4. Each rule outputs an element for result data model. For example, rule
{1 produces element Items from the mapping between Items and Lists. Rules (2>-{6)
similarly output elements for output data model based on mappings. Rule (7) generates
element User for output data model from input element User, because User is a new
element from output data model without mapping.

For specific input host graphs, the default generated specific rules will produce the same
results as results of generic rules. By tuning the specific rules, users can customize the
results to meet domain specific requirements.

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 525
6. Related work

Many general purpose graph grammars and visual systems have been proposed, some of
which are used to represent and manage data models [21-23]. One of the best known graph
grammars is Schiirr’s Layered Graph Grammar (LGG) [24,25], which can be used to
specify an ER data model. Schiirr also proposed the Triple Graph Grammar [26] to
represent and support the specification of interdependencies between graph-like data
structures. Different from our approach, the TGG specifies the translation from input
graphs to output graphs in a generic fashion and does not consider mappings between
input graphs. Our approach explicitly defines the relationships between input graphs that
represent data models, and construct graph transformation rules for each operator based
on the mappings such that the operators are customizable.

Many graph grammars, including LGG, match graphs by types or a parameterized
mechanism, similar to the homomorphism in this paper. The rules in these grammars are
considered generic, since they can be applied to multiple inputs. It is however hard to
customize these rules for specific applications. Apart from generic rules, we also provide
customizable specific rules [9], which can be automatically generated by AutoGen. Jahnke
and Zundorf presented varlet, a database reverse engineering environment based on
triple graph grammars [27]. The varlet environment supports the analysis of legacy
database systems, and translation of any relational schema into a conceptual object-
oriented schema. It concentrates on the translation of data instances rather than on
data models.

More recent work of Wermelinger and Fiadeiro [28] focuses on software architecture
reconfiguration using an algebraic approach, i.e. category theory. Consistency of model
evolution based on real-time UML is further investigated by Engels et al. [29]. Bézivin et al.
[30] proposes a declarative translation language for model management of software
architecture. These approaches are applied to software architectures. This paper however
concentrates on the manipulation of data models, such as SQL schemas, XML Schemas,
rather than software architectures.

Much progress in model management research has been made. For example, match has
been implemented in Cupid [20,31], Clio [32], and so on [17]. Merge is also implemented by
Pottinger and Bernstein [18] based on the BDK algorithm [33], and data integration project
Clio [32] based on a query language specific to databases or XML schemas. Rondo [7], as the
first prototype of generic model management system, implements a complete set of operators
defined by Bernstein et al. [5] and extends with some new atomic operators. Rondo provides
textual interfaces for users to program rather than a visual and interactive presentation
supported by graph grammars. This paper does not define a set of generic rules for complex
situations, such as semantics conflicts and complex mappings. The rules in Fig. 5 are only
illustrated as a prototype for demonstrating the principle. One of our future works is to write a
set of more powerful generic rules to be able to solve these hard problems.

7. Conclusion

This paper has formalized inputs and outputs of visual model management operators by
defining the basic concepts of visual model management operators. Based on the formal
definitions, this paper has proposed an automatic mechanism, called AutoGen, for
generating specific rules from generic rules upon input data models and mappings.

526 G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527

AutoGen employs a new algorithm to generate output specific rules. The automatic
process eliminates the need for manually designing specific rules and yet provides users
with customizable operators for tuning the results.

Given the automatic process, the graph transformation-based model management
provides two seamless levels of operators. Such a model management architecture provides
generic operators and customizable specific operators for users to manipulate data models.
It further allows users to construct data model-related applications with minimum effort.
The approach greatly eases the usage of model management systems and enhances their
applicability.

Acknowledgments

The authors would like to thank the Guest Editors and the anonymous reviewers for
their insightful and constructive comments that have helped us to significantly improve the
presentation.

References

[1] P.A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J.M., L. Serafini, I. Zaihrayeu, Data management for
peer-to-peer computing: a vision, in: Proceedings of the Fifth International Workshop on the Web and
Databases, Madison, WI, June 2002, pp. 89-94.

[2] H.S. Thompson, D. Beech, M. Maloney, N. Mendel-Sohn (Eds.), XML Schema Part 1: Structures. W3C
Document, April 2000.

[3] M. Makoto, RELAX (REgular LAnguage Description for XML). Internet Document, April 2000, <http://
www.xml.gr.jp/relax/ .

[4] A. Davidson, M. Fuchs, M. Hedin, M. Jain, J. Koistinen, C. Lloyd, M. Maloney, K. Schwarzhof, Schema for
object-oriented XML 2.0, W3C Document, July 1999.

[5] P.A. Bernstein, A. Halevy, R.A. Pottinger, A vision for management of complex models, SIGMOD Record
29 (4) (2000) 55-63.

[6] P.A. Bernstein, Applying model management to classical meta data problems, in: Proceedings of the 2003
CIDR Conference, Asilomar, CA, January 2003, pp. 209-220.

[71 S. Melnik, E. Rahm, P.A. Bernstein, Rondo: a programming platform for generic model management,
in: Proceedings of the SIGMOD 2003 Conference, San Dieago, CA, June 2003, pp. 193-204.

[8] S. Melnik, P.A. Bernstein, A. Halevy, E. Rahm, Supporting executable mappings in model management,
in: Proceedings of the SIGMOD 2005 Conference, Baltimore, MD, June 2005, pp. 167-178.

[9] G.L. Song, K. Zhang, J. Kong, Model management through graph transformation, in: Proceedings of the
2004 IEEE Symposium on Visual Languages and Human-Centric Computing (VL-HCC’04), Rome, Italy,
September 2004, pp. 26-29.

[10] D.Q. Zhang, Generation of visual programming languages, Ph.D. Thesis, Macquarie University, 1998.

[11] K. Zhang, D.-Q. Zhang, J. Cao, Design, construction, and application of a generic visual language
generation environment, IEEE Transactions on Software Engineering 27 (4) (2001) 289-307.

[12] D.Q. Zhang, K. Zhang, Reserved graph grammar: a specification tool for diagrammatic VPLs, in:
Proceedings of the 13th IEEE Symposium on Visual Languages, Capri, Italy, 23-26 September 1997,
pp. 284-291.

[13] R. Allen, D. Garlan, Formalizing architectural connection, in: Proceedings of the 16th International
Conference on Software Engineering, 1994, pp. 71-80.

[14] J. Kong, K. Zhang, X.Q. Zeng, Spatial graph grammars for graphical user interfaces, ACM Transactions on
Computer-Human Interaction (2005).

[15] D.Q. Zhang, K. Zhang, J. Cao, A context-sensitive graph grammar formalism for the specification of visual
languages, The Computer Journal 44 (3) (2001) 187-200.

[16] K. Zhang, D.Q. Zhang, Y. Deng, Graphical transformation of multimedia XML documents, Annals of
Software Engineering 12 (1) (2001) 119-137.

http://www.xml.gr.jp/relax/
http://www.xml.gr.jp/relax/

G. Song et al. | Journal of Visual Languages and Computing 17 (2006) 508-527 527

[17] E. Rahm, P.A. Bernstein, A survey of approaches to automatic schema matching, The VLDB Journal 10
(2001) 334-350.

[18] R.A. Pottinger, P.A. Bernstein, Merging models based on given correspondences, in: Proceedings of the 29th
VLDB Conference, Berlin, Germany, 2003, pp. 826-873.

[19] T. Milo, S. Zohar, Using schema matching to simplify heterogencous data translation, in: Proceedings of
Very Large Databases (VLDB), New York, August 1998.

[20] J. Madhavan, A.Y. Halevy, Composing mappings among data sources, in: Proceedings of the 29th VLDB
Conference, Berlin, German, September 2003, pp. 572-583.

[21] P. Bottoni, S.-K. Chang, M.F. Costabile, S. Levialdi, P. Mussio, Defining visual languages for interactive
computing, IEEE Transactions on Systems, Man and Cybernetics, Part A 32 (6) (1997) 773-783.

[22] P. Bottoni, S.-K. Chang, M.F. Costabile, S. Levialdi, P. Mussio, Modeling visual interactive systems through
dynamic visual languages, IEEE Transactions on Systems, Man and Cybernetics, Part A 32 (6) (2002)
654-669.

[23] G. Rozenberg, E. Welzl, Boundary NLC graph grammars—basic definitions, normal forms, and complexity,
Information and Control 69 (1986) 136-167.

[24] G. Engels, C. Lewerentz, M. Nagl, W. Schafer, A. Schiirr, Building integrated software development
environments Part 1: tool specification, ACM Transactions on Software Engineering and Methodology 1 (2)
(1992) 135-167.

[25] J. Rekers, A. Schiirr, Defining and parsing visual languages with layered graph grammars, Journal of Visual
Languages and Computing 8 (1) (1997) 27-55.

[26] A. Schiirr. Specification of graph translators with triple graph grammars, in: International Workshop on
Graph-Theoretic Concepts in Computer Science, Herrsching, Germany, Spinger, Berlin, June 1994.

[27] J. H. Jahnke, A. Zudorf, Using graph grammars for building the varlet database reverse engineering
environment, Technical Report tr-ri-98-201, University of Paderborn, 1998.

[28] M. Wermelinger, J.L. Fiadeiro, A graph transformation approach to software architecture reconfiguration,
Science of Computer Programming 44 (2002) 133-155.

[29] G. Engels, R. Heckel, J.M. Kiister, L. Groenewegen, Consistency-preserving model evolution through
transformations, in: UML’02, Lecture Notes in Computer Science, vol. 2460, Springer, Berlin, 2002,
pp. 212-227.

[30] J. Bézivin, E. Breton, G. Dupé¢, P. Valduriez, The ATL transformation-based model management
framework, Research Report No. 03.08, Université de Nantes, September 2003.

[31] J. Madhavan, P.A. Bernstein, E. Rahm, Generic schema matching using cupid, in: Proceedings of the 27th
VLDB Conference, Rome, Italy, September 2001, pp. 49-58.

[32] R.J. Miller, M.A. Hernandez, L.M. Haas, L. Yan, C. Ho, R. Fagin, L. Popa, The Clio project: managing
heterogeneity, SIGMOD Record 30 (1) (2001) 78-83.

[33] P. Buneman, S.B. Davidson, A. Kosky, Theoretical aspects of schema merging, in: Proceedings of the Third
International Conference on Extending Database Technology, Vienna, Austria, March 1992, pp. 152-167.

	AutoGen: Easing model management through two levels of abstraction
	Introduction
	The reserved graph grammar formalism
	Model management by graph grammars
	Graphical data models
	Graphical mappings
	Graphical operators

	A generator for specific rules
	Automatic generation overview
	Preliminaries
	Generator definitions
	A generation algorithm

	Illustrative examples
	A merge example
	A ModelGen example

	Related work
	Conclusion
	Acknowledgments
	References

