
Rapid Software Prototyping Using Visual Language Techniques

Kang Zhang Guang-Lei Song Jun Kong

Department of Computer Science, University of Texas at Dallas
Richardson, Texas 75083-0688, USA
{kzhang, gxs017800, jxk019200}@utdallas.edu

Abstract

Rapid prototyping of domain-specific software requires a
systematic software development methodology and user-
friendly tools. Being both executable and easy to use, visual
languages and their automatic generation mechanisms are
highly suitable for software prototyping. This paper pre-
sents a software prototyping methodology based on the
visual language generation technology, that allows visual
prototyping languages to be specified and generated using
an expressive graph grammar formalism. Executable proto-
types and their verification and code generation are made
possible by syntax-directed computations. The paper dem-
onstrates this methodology through a prototyping example
built on our current implementation.

1 Introduction

Prototyping is an effective way to gain understanding of
the requirements, reduce the complexity of the problem and
provide an early validation of the system design. There has
been no commonly accepted executable specification lan-
guage or high-level programming language for computer-
aided prototyping of quality domain-specific software. Ex-
isting prototyping tools are either too specialized to be use-
ful in a wide spectrum of application domains, or too diffi-
cult to use by non-computing professionals. Also, few
specification or prototyping languages or tools support non-
disposable prototyping. In most cases, an accepted proto-
type has to be re-implemented in a conventional program-
ming language.

Rapid prototyping of domain-specific software requires
a systematic software development methodology and user-
friendly tools. Being both executable and easy to use, visual
languages and their automatic generation mechanisms are
highly suitable for software prototyping. As visual tools are
becoming increasingly popular for non-computing profes-
sionals and end-users, visual languages would potentially
challenge traditional specification languages for rapid soft-
ware prototyping due to their intuitiveness and ease-of-use.

Visual programming refers to a process in which the
user specifies a program in a two (or higher) dimensional

fashion [14]. Visual languages include languages where
programming is done by manipulation of visual objects,
languages designed to facilitate algorithm and program
animation, and languages for use in computer-oriented ap-
plications such as software engineering and database design
and access [3]. Different from CASE toolsets, visual lan-
guages are executable specification languages that are de-
fined by graph grammars and syntax-directed rewriting
rules, apart from being at high level [19]. This means that
prototyped domain software can also be rigorously verified
according to the provided specification. We will call the
visual languages designed for rapid software prototyping as
visual executable prototyping languages (VEPLs). This
paper presents an automatic language-generation mecha-
nism as a meta-tool for the fast generation and reuse of do-
main-specific language modules, using a graph grammar-
based approach to the specification and verification of do-
main software prototypes.

Automatic generation of VEPLs involves the generation
of a visual programming environment with a graphical user
interface tailored for the VEPL users. A VEPL generation
system enforces the definition of graph grammars and syn-
tax-directed rewriting rules according to domain require-
ments, before a VEPL is generated. The generated VEPL,
therefore, can be used to rapidly prototype high quality
domain software. The execution trace and measurements of
a domain prototype written in the VEPL may be specified
using syntax-directed rewriting rules so that the prototype
can be quantitatively and functionally analyzed. Iterative
and incremental prototyping is naturally supported by the
two-step process. The domain software could be easily re-
prototyped by visual programming in the VEPL, or, if
structural (syntactical) or behavioral (semantic) changes are
required, the VEPL could be re-generated by specifying the
grammars and rewriting rules with new and evolving fea-
tures.

The thrust of this methodology is the meta-tool capabil-
ity, i.e. a software engineer has a VEPL generator at his/her
disposal for generating any required VEPL or re-generating
a modified VEPL whenever needed. This methodology is
explained in the next section. Section 3 gives a detailed
prototyping example using this methodology. Related work

is compared in Section 4, followed by the conclusions in
Section 5.

2 Automatic Generation of Visual Executa-
ble Prototyping Languages

2.1 Design Criteria
Tools and formalisms have been created for automati-

cally generating visual languages. Most of them are special-
ized in certain aspects of visual language generation, e.g.,
for user interface generation [10], and for parsing [4][13].
Little work has been done in automatically generating de-
sired visual languages from rigorous specifications. In a
visual programming environment, users must be able to
interactively construct and manipulate reusable components
in the visual language. The graphical requirements of a
visual language include defining the reusable visual com-
ponents of the language and the control and dataflow rela-
tionships that must be maintained when these components
are connected together. The editing operations themselves
are event-driven, and appropriate interpretations of mouse
and keyboard events must be provided.

When considering the design of a visual software proto-
typing framework that supports the whole process of auto-
matic generation of VEPLs, we need to consider the follow-
ing design criteria:

• It is necessary for the VEPL generation framework to
be an executable programming environment so that
VEPLs can be automatically generated and the soft-
ware engineer is free from the general tasks in the
construction of a new VEPL. He/she needs only to
provide domain-related specifications for the desired
VEPL using an automated toolset.

• The toolset should support syntactic and semantic
specifications for effectively designing VEPLs and ef-
ficiently parsing and executing prototypes constructed
as visual programs in a VEPL.

• It is desirable for the framework to be customizable to
a wide spectrum of VEPLs, and to support an iterative
and incremental process of prototyping.

2.2. The Meta-Tool Concept
Software engineers of complex software systems typi-

cally use diagramming methods, such as UML, as concep-
tual devices to conceptualize their architectural design.
Compared with text, graphs can represent semantic and
structural information more intuitively. As shown in Figure
1, we provide a structural specification and verification
mechanism in the form of graphical production rules for

software engineers. Once a software engineer has provided
the specification through production rules, a VEPL with its
visual programming environment will be automatically
generated in the same fashion as generating textual lan-
guages using Lex/Yacc. A programmer (or user), without
any knowledge of the prototyping language syntax or the
detailed specification, will be able to use the programming
environment to construct prototypes visually on the graphi-
cal editor of the tool and run the prototypes to verify their
requirements. Once the content of each software component
(i.e. node of the graph) is provided, the system is able to
generate the final prototypical and executable programs.

��� �����	���
���
���� �
��	��
�� ���

���
��
�� ����� ���	������� ��� � ! � ����� �
��#"�
�
�� $ �&%���'�(

��� ��� ��� �)����* ���)� � �+
�!,���
��
�� �������

%�-�����
.� ��/�� �0���
��
�� ����� ���������
���� ��1+�

* ��! � �����2/.��3�
�! � 4#��� �
%������ ������� 5 67� ����� � �����

67
.�
�18��� � �)��� � �+�&������� ��� ���

*&� ��4+�+�����9���
�:�� �����9/.�
���
���� ��1;1<���=$
��>��� (

67
.�
�18��� � ����� � �+�7������� ��� ���

* ���)� ���;3������.� ! � �)��� �
��

?�@�A�B�C�D E F�G	H�G�IKJ A�L E M E B>H�D E F�G	H.N�H�E G�O�D L A�P C�E L A�Q;A�G�D O

Figure 1: The meta-tool concept

Therefore, more disciplined software development is en-
couraged by the 2-level process, i.e. the meta-tool used by
the software engineer and the visual prototypical tool by the
programmer. The development can be iterative and incre-
mental. Thus, the grammar-based specification approach
advocates a sound yet flexible design practice.

The VEPL generation framework concept is shown in
Figure 2, which illustrates four groups of specifications, to
be provided by a software engineer through three graphical
tools. Visual component specifications define a set of visual
objects (using the Visual Object Tool) representing soft-
ware components to be used in the domain VEPL. The
VOT can access software components from the component
repository by either reusing existing components or con-
structing new components using the generated VEPLs.
They can also be reused in generating VEPLs. Control and
simulation specifications provide a formal method for de-
scribing the interactive behavior of different parts of the
VEPL and how the VEPL will be executed (including how
its execution to be visualized). They also define how the
generated VEPL environment interacts with the program-
mer. Formal method specifications provide grammar rules
that determine the syntax and semantics of a VEPL and can
reason or transform a diagram for debugging, animation, or
other purposes. Control and parsing specifications are pro-
vided using the Control and Parsing Tool. With the visual
objects, control and parsing rules specified, the framework

is automatically customized into the visual programming
environment for the desired VEPL. Most of the above func-
tionality except the final code generation has been imple-
mented.

Component
Repository

Formal Method Tool
Syntax,

Semantics,
Control,
Spec.

Generic
Framework

Customizer

VEPLControl & Simulation Tool

Visual Object Tool

Figure 2: VEPL generation framework and tools

2.3. Specification and Verification Through Graph
Grammars

This section introduces the formal method approach in a
graph grammar formalism. As the specification language, a
VEPL must be expressive and generic enough in specifying
structural and semantic properties. The multi-
dimensionality of visual languages makes it difficult to
build formal grammars and compilers for them. Attempts at
developing visual grammars using textual grammars as
models have not been very successful; many existing visual
language formalisms cannot be specified and parsed effec-
tively and efficiently with existing grammars.

Graph grammars provide a theoretical foundation for
graphical languages [16]. A graph grammar consists of a set
of rules, which dictates the way of constructing a complete
graph from a variety of nodes. A graph grammar specifies
all possible legal inter-connections between individual
components, i.e. any link in a valid graph can be eventually
derived from a sequence of applications of grammar rules.
Conversely, an un-expected link signals a violation on the
graph grammar. A graph grammar can be used to “glue”
various components into a complete system.

As a context-sensitive graph grammar formalism, the
Reserved Graph Grammar (RGG) is expressive and also
efficient in parsing [18]. It is thus used as the underlying
formalism in the VEPL generation framework. In a RGG, a
graph rewriting rule as shown in Figure 3, also called a
production, where DTGS and VDB abbreviate “Dallas
TollGate System” and “Vehicle Database” respectively, as
elaborated in Section 3. A production has two graphs called
left graph and right graph (. It can be applied to another
graph (called host graph) in the form of an L-application or
R-application. A redex is a sub-graph in the host graph
which is isomorphic to the right graph in an R-application
or to the left graph in an L-application. A production's L-
application to a host graph is to find in the host graph a

redex and replace it with the right graph of the production.
A visual language is defined by all possible graphs that
have only terminal labels and can be derived using L-
applications from an initial graph (i.e. λ). An R-application
is a reverse replacement (i.e. from the right graph to the left
graph) that is used to parse a graph.

Nodes in RGGs are organized into a two-level hierarchy.
A large rectangle (Figure 3) is the first level with embedded
small rectangles as the second level called vertices. In addi-
tion to the two-level hierarchy structure of a node, the
marking mechanism, which avoids ambiguity and thus ac-
celerates parsing, makes the RGG expressive yet much
faster in execution than other graph grammar formalisms
[18]. A marked vertex is identified by a unique integer at-
tached to the vertex label. If a vertex in a right graph is
marked, it is allowed to be connected, in a host graph, to
any node outside of the redex that matches the right graph.
The marked vertex preserves its associated edges connected
to the outside of the redex during parsing. For example, the
marked vertex T in node VDB may be connected to multi-
ple TollGate nodes (as in Figure 7), which can be parsed
successfully. Parsing a TollGate connected to multiple
VDBs will fail, however, since vertex V in TollGate is un-
marked.

VDB T:1

DTGS

V

C L S
A := TollGate

Figure 3: A production rule in the RGG notation

The RGG supports syntax-directed computations by as-
sociating data and operators to nodes in productions in
terms of attributes and actions. An attribute expresses a
piece of data related to the component represented by a
node, and can be retrieved and evaluated in the process of
parsing. Different actions can be performed on different
attributes of the redex of the production to achieve the de-
sired execution effects. Writing an action code is like writ-
ing a standard exception handler in Java by treating each
attribute as an object. For example, to retrieve the payment
information for a vehicle and update the vehicle’s informa-
tion in the database system, we will attach the following
action code to the production in Figure 3:

Action(AAMGraph g) {
 If (Car.Authorized == true) {
 TollGate.ConnectDataBase();
 DataBase.UpdateInfo(Car);
 }
Therefore, a graph representing a software prototype in a

VEPL can be executable, and thus be able to simulate and
verify the system requirements. Another straightforward
and obvious use of action codes is to provide the actual
program segment and test case generation code correspond-
ing to each production. In other words, the generated proto-

type needs not be disposed after being determined to con-
form to the specification. The VEPL environment can
automatically construct, from the satisfied prototype, the
final program code in a high-level language, such as C++.

The RGG is equipped with a deterministic parsing algo-
rithm, called selection-free parsing algorithm (SFPA) [18].
Informally, the selection-free property ensures that different
orders of applications of productions result in the same re-
sult. Zhang et al. [18] proves that a failed parsing path indi-
cates an invalid graph (i.e. prototype), and thus SFPA is
efficient with a polynomial parsing complexity by only
trying one parsing path. This theoretical result allows the
RGG to be used in practical specification and execution of
visual prototyping languages.

Software verification is to check the conformance of de-
veloped programs to their specification. A graph grammar
specification assumes a graph homomorphism for every
graph (i.e. a prototype instance) that could be derived from
the specified grammatical rules. Graph grammars have been
successfully applied to the verification of inheritance rela-
tionships between classes [9], and the detection and elimi-
nation of dead code [17]. A graph, i.e. a program, in a vis-
ual language can be seen as a result derived by applying
graph rewriting rules, i.e. L-applications as described ear-
lier. The L-application steps can be animated during pars-
ing so that the user can easily understand how the verifica-
tion process proceeds, and thus preserve his/her “mental
map” rather than be presented with the final verification
result. The user may also visually detect any specification
errors during the parsing process.

3 A Prototyping Example

The RGG, serving as the underlying formalism of do-
main VEPLs, defines a VEPL in terms of node-edge dia-
grams. A node in the RGG represents a module in a proto-
type. A vertex in a node represents an interface of the mod-
ule to other modules or the outside. The link between two
vertices represents the control and dataflow between the
two modules. System designers specify the syntax and se-
mantics of the modules, interfaces, control and dataflow via
the RGG production rules. The meta-tool framework can
automatically generate a graph editor together with the
parser for the VEPL according to the specified production
rules. Prototypes written in the VEPL could be drawn ma-
nipulated, verified, and executed by a none-software-
specialist with the domain knowledge of the system re-
quirements.

Briefly there are three major steps in generating a do-
main-specific VEPL within the meta-tool framework.

1. Identify possible modules of the system by extracting
and analyzing information from system requirements;

2. Specify the production rules and syntax-directed com-
putations associated with the rules (as action code);
and

3. Automatically generate the domain specific VEPL.

The procedure could be iterative and evolutional in prac-
tice, e.g. in the second step one may find some additional
modules needed, and then go back to Step 1 and add to the
system. After Step 3, one may also go back to Step 2 to
modify the rules if some relationships between the modules
need to be added or removed. To clearly describe the proto-
typing process using the RGG, we go through an example
in the following sub-sections.

3.1 System Requirements
Generally, system requirements analysis is the first step

of the system development. A major problem with the tradi-
tional waterfall lifecycle approach is the lack of any guar-
antee that the resulting product will meet the customer’s
needs. In most cases the blame falls on the requirements
phase of the lifecycle [11]. Often users are not able to pro-
vide sufficient and accurate requirements until they observe
the behavior of the functional modules.

Many system requirements analysis tools have been de-
veloped [5], and software prototyping serves as a tool for
system requirements [11]. Requirements analysis is a proc-
ess that extracts system design elements, such as modules,
interfaces of a module, from the customer’s formal re-
quirement documents. The requirements for our prototyp-
ing example are informally given as the following.

In a road traffic pricing system, drivers of authorized
vehicles are charged at tollgates automatically. The tolls
are placed at special lanes called green lanes. A driver has
to install a device (called an EzPay) inside his/her vehicle’s
windshield in order to pass a green lane.

Each tollgate has a sensor that reads EzPay. When an
authorized vehicle passes through a green lane, the green
light is turned on, and the amount being debited is dis-
played. If an unauthorized vehicle passes through a green
lane, a yellow light is turned on and a camera takes a photo
of the vehicle’s license plate.

Assume that we will define and generate a VEPL for
prototyping the Dallas TollGate System (DTGS) meeting
the above requirements.

3.2 Identification of System Modules
The meta-tool framework provides a visual object tool

(called VOG) for system modules in the DTGS VEPL to be
specified in a container, called modules pool. It supports
top-down decomposition. As shown in Figure 4(a), eight

system modules have been identified and defined in the
VOG, based on the system requirements analysis.

(a) Modules (b) Productions

Figure 4: Visual Object Tool (VOG) and Formal Method
Tool (RuleGenerator)

DTGS is the top level module of the system, represent-
ing the entire tollgate system. VDB acts as a database sys-
tem, which manages all vehicles’ registration and updated
EzPay information. Admin is a user interface for adminis-
trators to manage information and interact with the tollgate
system, such as query and registration. TollGate provides
communication among VDB, Admin, and other modules.
According to the information collected from an approach-
ing vehicle at a tollgate, the tollgate queries the database to
decide the price and action.

EzCard stores the account information for the registered
vehicle. Sensor is the application interface to the EzCard
reader in a tollgate. It reads the approaching vehicle’s Ez-
Card and sends the read information to TollGate for proc-
essing. TollGate updates the vehicle’s account information
in VDB after processing. Light functions as an indication to
the driver to show whether the vehicle has an authorized
EzCard. Light and Camera at a tollgate receive com-
mands from the tollgate. Camera takes pictures of unau-
thorized vehicles.

Except DTGS, all other modules are considered as com-
ponent-level modules which are self-contained and perform
independent functions. If any of these modules are
available in the component repository, they can be reused
in the DTGS VEPL, rather than being redefined.

The modules may change with the progress of system
development, because one may not be able to acquire or
extract all the system requirements at the beginning, or cus-
tomers may require for additional functions. In the follow-
ing two steps, one can add, remove, or modify any neces-
sary modules in the modules pool, and re-generate the
VEPL. Therefore, the automatic generation and re-
generation capability of the meta-tool provides an iterative
and evolutionary methodology.

3.3 Rule Specification
To allow the meta-tool to generate a domain specific

VEPL, one needs to specify a set of production to define
the VEPL. Each production consists of a left graph and a
right graph. The left graph specifies the modules to be de-
composed into the modules defined in the right graph. The
connection between two nodes semantically represents a
possible control or dataflow between two modules. The
meta-tool also allows each production to be associated with
a piece of supplemental textual code that defines operations
performed on the modules in the production.

The Dallas TollGate System (DTGS) can be defined by
four production rules using the Formal Method Tool
(RuleGenerator) in the framework, as shown in Figure 4(b).
The four individual productions can each be defined within
the RuleGenerator. As an example, Figure 5 shows Produc-
tion <1> being defined with a left graph (LGraph1) and
right graph (RGRaph1). DTGS represents the whole sys-
tem, i.e. the top level of the VEPL, and is decomposed into
VDB and TollGate. In the left graph of Production <1> in
Figure 5, DTGS can be considered as an initial graph, i.e.
λ, following the convention of graph grammars.

Figure 5: A DTGS VEPL production being constructed

All the four productions and associated action codes are
listed in Figure 6. Production <2> defines the connection
between TollGate and Admin, implying that administrators
operate the tollgate system through Admin interface. Pro-
duction <3> specifies that TollGate receives the vehicle
information from Sensor, which in turn reads from Ez-
Card. Production <4> defines the relationships among
TollGate, Camera, and Light, such that Camera and
Light both receive commands from TollGate and execute
the commands.

In this example, the grammar for DTGS VEPL is in fact
context-free since each of the four productions in this ex-
ample has only one non-terminal node. This is, however,
not the limitation of the RGG, a context-sensitive graph
grammar formalism, which allows both the left and right
graphs to have multiple non-terminal nodes.

VDB T:1 DTGS TollGate V

C L S

A :=

TollGate 1:
C L S

A Admin T2 TollGate 1:
C L S

A
<2>

:=

TollGate 1:
V 4:

C
3:
L

S

2:
A

TollGate 1:
3: 4: S

2:
 Sensor

T3 E
 EZCard

S2

<3>

:=
Action(AAMGraph g) {
 Car = Sensor.DetectEZPAY();
}

TollGate 1:V
C L S

2:A

TollGate 1:
C L S

2:

 Camera

T5

Light

T4

<4>

:=

Action(AAMGraph g) {
 If (Car.Authorized == true) {
 Light.Set(“Green”);
 TollGate.Display(); }
 else
 Light.Set(“Yellow”);
}

Action(AAMGraph g) {
 If (Car.Authorized == true) {
 TollGate.ConnectDataBase();
 DataBase.UpdateInfo(Car);
 }

<1>

Figure 6: All productions defining DTGS VEPL

According to the above RGG productions defining the
DTGS VEPL, the meta-tool framework automatically gen-
erates the VEPL programming environment for prototyping
DTGS systems.

3.4 Prototyping Using the Generated VEPL
In the automatically generated VEPL programming en-

vironment, a domain programmer can draw a DTGS proto-
type as a graph and verify the configuration of the proto-
type. He/she can also execute the prototype to animate and
observe its behavior.

The prototype has a central database, VDB, which stores
the information of all the registered vehicles. Each tollgate
has to receive information from VDB for any approaching
vehicle and to determine the right action for the vehicle.
The VDB-TollGate relation is determined by Production
<1> as shown in Figure 6. Any connection between VDB
and other modules would result in a violation of the proto-
typing configuration. Therefore the VEPL programming
environment assures that the structure of the prototype
meets the requirement.

The generated VEPL programming environment pro-
vides programmers a user-friendly interface for rapidly
constructing prototypes by direct manipulation on graphic
objects. For example, via an intuitive decomposition proc-
ess, the programmer can select a module to be decomposed
and replace it with a sub-graph representing a lower level
configuration of the selected module. The relationship be-
tween the module and the sub-graph has been defined as a
production rule by the software engineer. As shown in a
snapshot of the prototyping process in Figure 7, the sub-
graphs for decomposition are displayed in the right panel.
The top two tollgates in the main drawing canvas are under
construction while the bottom one has been constructed.

Figure 7: Prototyping in DTGS VEPL

The structural correctness (i.e. syntax) of the constructed
tollgate prototype is automatically verified when the graph
representing the prototype is parsed. The correct syntax of a
constructed prototype does not, however, guarantee the
correctness of the system. Executing the prototype possibly
with animation of dynamic behavior is facilitated by the
RGG parsing mechanism and syntax-directed computa-
tions. If the software engineer specifies the action code to
perform logging or animation in each production, the gen-
erated VEPL system will be able to trace or animate the
execution of a constructed DTGS prototype.

4 Related Work

Prototypes must be constructed and modified rapidly,
accurately, and cheaply. The most primitive prototyping
tools are paper and pencil. Since Computer-Aided Proto-
typing (CAP) was first coined [12], there have been many
computer systems were developed to assist the prototyping
process. CAPS [12] uses a specification language, PSDL
(Prototype System Description Language), integrated with
a set of software tools, including an execution support sys-
tem, a rewrite system, a syntax-directed editor with graph-
ics capabilities, a software base, a design database, and a
design management system. CAPS is used for the rapid
generation prototypes by combining dataflow (with real-
time constraints) and control flows. Computer systems are
described as networks of independent tasks that communi-
cate through buffered data streams. In contrast to our solu-
tion, CAPS visualizes and executes the prototyping process
based on a textual language, PSDL, and does not utilize
formal methods during the process of prototyping. Com-
pared to textual notations, graph formalisms seem to be
more abstract, better structured and user-friendlier.

Focusing on prototyping distributed and concurrent pro-
grams, Ripple [6] has separate multilevel abstractions, in-
cluding process-oriented level: the objects of the language
are processes and operators that link processes to achieve

some form of control, function-oriented level, and imple-
mentation-oriented level. Ripple is formally defined using
algebraic semantics [1]. The formal definition of the three
abstraction levels allows transformation among the differ-
ent levels. There are three different sub-languages corre-
sponding to the three abstractions levels and are all textual
languages. Similar to Ripple, the RGG also provides two
levels of abstractions of prototyping, but has a uniform
graph formalism for specifying prototyping languages.

The recently developed SLAM [7] supports an effective
use of formal methods in the prototyping process. Equipped
with an expressive object-oriented specification language
and a development environment, SLAM is able to generate
efficient and readable code in a high level object-oriented
language such as Java and C++. A SLAM prototype is re-
usable, but SLAM cannot generate executable code from
the prototyping language.

To our knowledge, there has been no prototyping system
using graph rewriting or transformation techniques. Graph
formalisms have been widely used to improve the produc-
tivity of the software development and maintenance process
since the late 1960’ s. Using graphs instead of trees in the
data model, Klein et al. proposed the IPSEN (Integrated,
Incremental, Interactive Project Support ENvironment)
Meta Environment for the development of integrated soft-
ware development environments [8]. IPSEN uses context-
free graph grammars in its specifications and language gen-
eration tools. Graphical layout annotations and program-
mable views may be used to define additional diagrammatic
representations. For all logical aspects that are outside
scope of EBNFs, PROGRES [15] graph transformation
systems are used. IPSEN is a software development envi-
ronment for modeling and implementing software docu-
ments and their relationships rather than a prototyping sys-
tem. Although IPSEN can be used as a requirement engi-
neering tool, it cannot generate executable code.

5 Conclusions

Design and implementation of software systems become
increasingly complex. The value of prototyping in software
development is well recognized. Bernstein estimated that
for every dollar invested in prototyping, one could expect a
$1.40 return within the life cycle of the system develop-
ment [2]. This paper has presented a visual language gen-
eration methodology for rapid software prototyping. The
major advantages of the grammatical approach can be
summarized as the following:

• The meta-tool capability allows executable prototyping
languages (VEPLs) to be automatically generated ac-
cording to the specification of the domain software
characteristics. A VEPL can thus be readily created,

modified and enhanced whenever the domain needs
arise. Thus an iterative and incremental process is sup-
ported.

• Any non-disposable prototype conforming to the speci-
fications can be visually constructed through direct
manipulation by a domain programmer who needs not
to know the detailed specification. Once the prototype
is confirmed to meet the domain requirements, the full
scale prototype program can be generated.

• Verification is naturally supported. The generated
VEPL environment includes a syntax-directed visual
editor that is capable of syntactic checking and func-
tion verification of any prototype constructed in the
VEPL.

• A visual approach to specifying and prototyping do-
main software is more intuitive than the textual form.
A programmer without any knowledge of formal
methods would be able to construct well-formed do-
main software.

A main challenge in the visual language approach is the
necessity of graph grammar expertise for writing VEPL
grammars. It has been our aim to provide a semi-automatic
tool for generating production rules according to sample
VEPL prototypes and user-provided hints, and for direct
user modification. We also plan to conduct empirical stud-
ies to compare our visual approach with traditional ap-
proaches based on textual prototyping languages for their
efficiency and effectiveness in software prototyping.

6 Acknowledgement

The authors would like to thank the anonymous review-
ers for their insightful comments which have helped im-
proving the final presentation of the paper.

7 References

[1] G. Belkhouche, (1996) A formally Specified Proto-
typing System, Journal of Systems and Software,
July.

[2] L. Bernstein, (1996) Forward: Importance of Soft-
ware Prototyping, Journal of System Integration –
Special Issue on Computer Aided Prototyping, 6(1),
9-14.

[3] M.M. Burnett, (2004) Visual Language Research
Bibliography,
http://www.cs.orst.edu/~burnett/vpl.html.

[4] G. Costagliola, V. Deufemia, F. Ferrucci, and C.
Gravino, (2001) On the pLR Parsability of Visual

Languages, Proc. 2001 IEEE Symposia on Human-
Centric Computing Languages and Environments,
Stresa, Italy, 48-49.

[5] J. M. Drake, W. W. Xie, W. T. Tsai, I. A. Zualker-
nan, (1997) Approach and Case Study of Require-
ment Analysis Where End Users Take an Active
Role, Proc. 15th International Conference on
Software Engineering, Baltimore, Maryland, 17-23
May, 177-186.

[6] B. Genraci, (1993) Formal Prototyping for Concur-
rent Systems, PhD Dissertation, Tulane University,
New Orleans, Louisiana.

[7] A. Herranz, J. Moreno-Navarro, (2003) Rapid
Prototyping and Incremental Evolution Using
SLAM, Proc. 14th IEEE International Workshop
on Rapid Systems Prototyping (RSP’03), 201-209.

[8] P. Klein, M. Nagl, and A. Schürr, (1999) The
IPSEN Tools, In: H. Ehrig, etc al. (Eds.) Hand-
books of Graph Grammars and Computing by
Graph Transformation: Applications, Languages
and Tools, Vol.2, 215-264.

[9] J. Kong, K. Zhang, J. Dong, and G.L. Song, (2003)
A Graph Grammar Approach to Software Architec-
ture Verification and Transformation, Proc. 27th
Annual International Computer Software and Ap-
plications Conference (COMPSAC’03), Dallas,
USA, 3-6 November, 492-499.

[10] O. Köth and M. Minas, (2002) Structure, Abstrac-
tion, and Direct Manipulation in Diagram Editors,
In: M. Hegarty, B. Meyer, and N.H. Narayanan
(Eds.), Diagrammatic Representation and Infer-
ence, LNAI 2317, Springer, 290-304.

[11] Luqi, R. Steigerwald, G. Hughes, V. Berzins,
(1991) CAPS as a Requirements Engineering Tool,
Proc. Conference on TRI-Ada '91, San Jose, CA,
75-83.

[12] Luqi and M. Ketabchi, (1988) A Computer-Aided
Prototyping System, IEEE Software, 66--72.

[13] K. Marriott and B. Meyer, (1996) Formal Classifi-
cation of Visual Languages, Proc. International
Workshop on Theory of Visual Languages, Gubbio,
Italy.

[14] B.A. Myers, (1990) Taxonomies of Visual Pro-
gramming and Program Visualisation, Journal of
Visual Language and Computing, 1, 97-123.

[15] J. Rekers, and A. Schürr, (1997) Defining and Pars-
ing Visual Languages with Layered Graph gram-
mar, Journal of Visual Languages and Computing,
8(1), 27-55.

[16] G. Rozenberg, (Ed.), (1997) Handbook on Graph
Grammars and Computing by Graph Transforma-
tion: Foundations, Vol.1, World Scientific.

[17] I. Stuermer, (2002) A Contribution of Graph
Grammar Techniques to the Specification, Verifica-
tion and Certification of Code Generation Tools,
Electronic Notes in Theoretical Computer Science,
72(2),
http://www.elsevier.nl/locate/entcs/volume72.html.

[18] D-Q Zhang, K. Zhang, and J. Cao, (2001) A Con-
text-Sensitive Graph Grammar Formalism for the
Specification of Visual Languages, The Computer
Journal, 44(3), 186-200.

[19] Zhang, D-Q. Zhang, J. Cao, (2001) Design,
Construction, and Application of A Generic Visual
Language Generation Environment, IEEE Transac-
tions on Software Engineering, 27(4), 289-307.

