

A Customizable Hybrid Approach to Data Clustering
 Yu Qian Kang Zhang

Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75083-0688, USA
qianyu_cs@yahoo.com

ABSTRACT
Most current data clustering algorithms in data mining are based
on a distance calculation in certain metric space. For Spatial
Database Systems (SDBS), the Euclidean distance between two
data points is often used to represent the relationship between data
points. However, in some spatial settings and many other
applications, distance alone is not enough to represent all the
attributes of the relation between data points. We need a more
powerful model to record more relational information between
data objects. This paper adopts a graph model by which a database
is regarded as a graph: each vertex of the graph represents a data
point, and each edge, weighted or unweighted, is used to record
the relation between two data points connected by the edge. Based
on the graph model, this paper presents a set of cluster analysis
criteria to guide data clustering. The criteria can be used to
measure clustering results and help improving the quality of
clustering. Further, a customizable algorithm using the criteria is
proposed and implemented. This algorithm can produce clusters
according to users’ specifications. Preliminary experiments show
encouraging results.

1. INTRODUCTION
Data clustering has been considered as a primary data mining
method for knowledge discovery. There have been many
clustering algorithms in the literature. From the perspective of
whether graphs are used, we can categorize the clustering methods
into graph-based and non-graph-based. Graph-based approaches
take extra time on graph construction. It, however, has the ability
to represent a large number of relationships between data points
[17] while non-graph-based approaches cannot. Recently published
graph-based approaches include: CHAMELEON [15],
AUTOCLUST [16], Subdue [17] and Random Walk [14]. From the
perspective of whether user inputs play a role in the cluster
analysis, we can categorize clustering methods into automatic
clustering and semi-automatic clustering. Automatic clustering is
data-driven and does not accept user inputs. The representative
automatic approach is AUTOCLUST [16]. On the other hand, many
clustering algorithms use some parameters or thresholds to control
the clustering process or results. They include: CHAMELEON [15],
BIRCH [12], CLARANS [10], DBSCAN [8], STING [11], and
Random Walk [14]. The parameters or thresholds in these
algorithms can be regarded as channels between the clustering
algorithm and the external environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SAC 2003, Melbourne, Florida, USA
© 2003 ACM 1-58113-624-2/03/03...$5.00

An ideal clustering algorithm, however, should be both data-driven
and user-centric (user-oriented). Data-driven [18] means that no
prior information about the given dataset is needed while
user-centric (user-oriented) aims at accepting users’ requirements.
Although many current clustering algorithms use some parameters
to control the clustering process and results, their parameters are
not user-oriented but algorithm-oriented. This paper presents a
customizable and graph-based approach to data clustering.
Compared with current data clustering methods, this approach has
two major features: first, it is based on graph structure analysis.
Current clustering analyses are mainly based on distance
computation [13]. In many applications, distance alone is not
enough to represent all the attributes of the relation between data
points. By modeling data with a graph, the approach proposed in
this paper can control and measure the clustering process. As a
result, the derived clusters can meet users’ requirements and be
easily visualized. Second, this approach can accept users’ inputs.
Different applications may impose different criteria. Realistically,
we consider the user’s requirement as the basis of our clustering
criteria. In order to suit various application domains, the approach
needs to be customizable with criteria settings. This paper first
proposes a set of measurement criteria for graph-based data
clustering. Based on the set of criteria, this paper proposes a set of
user-input parameters aiming at increasing the customizability of
the clustering algorithms. No prior information is needed when
setting the parameter values in order to maintain the data-driven
property. Further, a corresponding clustering algorithm that uses
the criteria is proposed and implemented.

The rest of the paper is organized as follows. Section 2 reviews the
previous work on data clustering and approximation parameters.
Section 3 proposes a set of criteria for measuring the quality of
clustering. Our clustering algorithm is described in Section 4.
Section 5 reports the experimental results. Section 6 concludes the
paper.

2. PREVIOUS WORK ON CLUSTER
 MEASUREMENT
There have been many works on cluster analysis and measurement.
Some of them are based on computational geometry, some for
spatial database system applications, while others focus on graph
theoretical properties.

2.1 Computational Geometry Analysis
Hambrusch et al. [1] defines that the ideal size (the number of
vertices) of a cluster is c, n=cp, n is the number of total vertices in
the given graph, and p is the number of clusters. The size of
cluster Ci must satisfy (1- α/2)c ≤ |Ci| ≤ c(1+ α), 1≤ i≤ p, 0≤ α <1.

Agarwal [6] proposes another definition of cluster size based on
geometry space: the size of a cluster Ci is the maximum distance
between a fixed-point fp, called the center of the cluster, and any
vertex of Ci. Let S be a set of n nodes in a metric space, a

k-clustering of S is a partition C of S into k subsets C1, C2,..., Ck.
The size of C is the maximum size of a cluster in C.

A functional approach [2] describes the clustering criterion as a
function P: Φ R+. The process of finding the best clustering is to
determine the clustering C* ∈Φ, for which P(C*) = min P(C) for
C ∈Φ where Φ is a set of feasible clustering layouts. (what’s the
role of R+?)

2.2 Graph Theoretical Analysis
A clique (or a complete graph) is a simple graph in which there is
one edge between every pair of vertices. The purpose of node
grouping [7] is to abstract small node-disjoint cliques or sub-graphs
that are almost-cliques (almost complete graphs). Node-disjoint
cliques and almost-cliques are called groups, which form sets of
high-cohesive nodes.

Harel and Koren[3] provides a heuristic to help deciding which
vertices should be drawn closely. The heuristic is based on the
observation that a nice layout of a graph should convey visually
the relational information that the graph represents, so the vertices
that are closely related in the graph (i.e., the graph theoretic
distance is small) should be drawn close together.

A very useful measure is applied in FADE [4]: the number of
inter-cluster edges versus that of intra-cluster edges. The overall
drawing improves if nodes connected with edges are drawn closer
than nodes unconnected.

2.3 Spatial Database System (SDBS)
Ester et al. [8] proposes DBSCAN (Density Based Spatial
Clustering of Applications with Noise) for large spatial databases.
It is no longer based on distance but on the number of near
neighbors of a point. DBSCAN requires that for every point p in a
cluster C there is a point q in C so that p is inside Eps of q and Eps
of q contains at least MinPts points. DBSCAN requires a human
participant to determine the global parameter Eps. The parameter
MinPts is fixed at 4 in the algorithm to reduce the computational
complexity.

CLARANS (Clustering Large Applications based upon
RANdomized Search) [10] is motivated by two well-known cluster
analysis algorithms: PAM (Partitioning Around Medoids) and
CLARA (Clustering LARge Applications). The key concept of
PAM is medoid which is a representative object for each cluster.
The quality of clustering is measured by the average dissimilarity
between an object and the medoid of its cluster. CLARA draws a
sample of the data set and applies PAM on the sample to
approximate the medoids of the whole dataset.

BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies) [12] introduces a threshold T to limit the diameter (or
radius) of the cluster. The larger the T is, the smaller the tree is.
Several basic concepts like radius, diameter, and centroid are used
in BIRCH to describe the distance properties of a cluster.

CHAMELEON [15] proposes a more objective definition of
similarity, which is composed of relative inter-connectivity and
relative closeness. It needs an appropriate MINSIZE (1%~5% of
the overall number of data points) to perform a satisfactory
partition.

The aforementioned cluster analyses address the quality
measurement problem individually. None of them systematically
measures the entire clustering quality at all the three levels:

intra-cluster, inter-cluster, and overall clustering. This has
motivated our work. The next section describes a set of criteria
proposed for measuring the quality of clustering.

3. CLUSTERING REQUIREMENTS
Our criteria are based on a graph model. Given a graph G = (V, E),
|V| = n is the number of vertices, |E| = m is the number of edges. A
clustering of G partitions the vertices of G into k disjoint sets C1,
C2, C3,... Ck. Each set Ci (1 ≤ i ≤ k) is called a cluster. |Ci| is the
number of vertices of cluster Ci. A clustered graph is a graph with
a recursive clustering, or partitioning, of the vertex set of G.

Given u,v∈V, (u,v)∈E, we say that edge (u,v) is inside Ci iff both u
and v are in Ci. The number of edges inside cluster Ci is denoted as
Ei. The maximal possible number of edges inside Ci is denoted as
Mi, Mi = |Ci|*(|Ci|-1)/2, when Ci is a clique. For clusters Ci and Cj,
inter(i,j) is the number of edges between clusters Ci and Cj. Given
u∈Ci, v∈Cj, (u,v)∈E, we say (u,v) is an edge between clusters Ci
and Cj. The quality of a clustering result can be measured with the
following criteria.

1. Cohesiveness is the minimum value of ratio Ei to Mi, for the ith
cluster Ci , denoted as a real number α, 0<α≤1.

α =Min((Ei / Mi)),∀ i∈{1,2,….,k}, k is the number of clusters (1)

α is used to measure whether every cluster is a cohesive group.
The goal is to maximize the value of α for every cluster. When
α=1, the cluster is a clique.

2. Coupling Bound is the biggest number of inter-cluster edges,
represented by an integer Uinter.

Uinter =Max(inter(i,j)),∀ i,j ∈{1,2,….,k}, i≠j, k is the number of
clusters (2)
Uinter represents the clustering quality between every pair of
clusters. A lower Uinter helps maintaining the natural clustering.

3. Coupling Ratio is the ratio of the number of inter-cluster edges
to the total number of edges in G, denoted as a real number β,
0<β<1.
 k-1 k
 β= (∑ ∑ (inter(i,j))) /m (3)

 i=1 j=i+1

β is used to measure an overall cohesiveness for a graph. A
smaller β means less inter-cluster edges and more edges are inside
clusters.

4. Granularity is defined as the number of clusters, denoted by an
integer k.

k = number of clusters (4)
Granularity indirectly measures the flexibility and the
applicability of a clustering result. Different applications may
require different granularities.

The concept of Clustering Measurement (CM) is defined as a
4-tuple (α, Uinter, β, k), where α, Uinter, β, k are defined as above.
CM can be used to describe the quality of a clustering result, and it
can also be extended to represent the user’s requirements, as
described below.

The definition of Clustering Requirement (CR) is extended from
CM and is a 5-tuple (α’, Uinter’, β’, Kmin, Kmax). α’ represents the
requirement on cohesiveness; Uinter’ represents the requirement on
coupling bound; β’ describes the requirement on coupling ratio

while Kmax and Kmin are a pair of integers: the upper bound and the
lower bound of the number of clusters.

Given the CM, a 4-tuple (α, Uinter, β, k), of the final clustering
result, CR describes the user’s requirements in terms of CM:

α ≥ α’ (5)
Uinter≤ Uinter’ (6)
β≤ β’ (7)
Kmax ≥ k ≥ Kmin (8)

In summary, the CR can be regarded as the quality level that a
clustering algorithm must maintain, or, can represent the quality of
a clustering result quantitatively. A high quality clustering implies
a big α, a small β, a low Uinter and desirable Kmax and Kmin. It is
important to note that cohesiveness, coupling, and granularity are
3 orthogonal measurements. For an existing clustering result they
can be used together as a CM to measure the clustering quality
effectively. Or they can be used together as a CR to accept the
user’s requirements. It is possible that a clustering which meets all
the four conditions may not exist.

4. A HYBRID APPROACH TO
 CLUSTERING
Current clustering methods can be divided into two categories:
• Clustering according to some specific requirements: it can be

effective for some special cases but cannot be applied to all
situations.

• General-purpose clustering: clustering is based on some
assumed criteria such as low coupling between clusters. It
may be useful for some applications but may be useless for
others.

In this section we propose a customizable algorithm that accepts a
CR as input and outputs a satisfactory CM. The whole algorithm
consists of 5 steps: we first use k-core approach (detailed in
Section 4.1) to partition the given graph. After this, we create
corresponding matrix for each core, and then apply the Bond
Energy Algorithm (BEA, Section 4.2) to each matrix produced.
Then we combine all the small matrices into a big matrix. This
matrix still represents the same graph but becomes a relatively
“clustered” matrix. Finally we manipulate this matrix to meet the
user’s requirements.

Figure 1 The procedure of the hybrid algorithm

Figure 1 shows five steps of the hybrid algorithm. Step 1 is the
k-core approach: the big graph is partitioned into cores. Step 2
creates the corresponding matrix for every main core. Step 3 uses
the BEA to compute and rearrange the small matrix for each core.
Step 4 combines the resulting small matrices into a big matrix.
Step 5 accepts the user’s specifications and requirements to
partition the matrix into clusters.

As the first step is the k-core approach, we will discuss it first.

4.1 The k-core Approach
Batagelj [2] proposes a fast clustering approach based on core

decomposition: i.e. the k-core approach. The sub-graphs it
produces are not only easy to handle but also contain useful
connectivity-based properties for future analysis.

Before briefly introducing the k-core algorithm, let us firstly
define a core (as by Batagelj [2]). Let G = (V, E) be a graph. V is
the set of vertices and E is the set of edges. A sub-graph H= (W, E
| W) induced by the set W is a k-core or a core of order k iff ∀v in
W: degree (v) ≥ k and H is a maximum sub-graph with this
property. The core of maximum order is also called the main core.
The algorithm of finding k-core is simple: find the main core of a
given graph first, if it is too big, do some block model analysis and
divide it further; otherwise, consider the main core as a cluster by
removing it from the graph. For the residual graph, the same
procedure is repeated until all cores have been removed.

The k-core approach’s advantage is its O(m) efficiency (m is the
number of the edges). However, pure k-core approach may not be
practically useful since its result totally depends on the structure of
the input graph. The k-core approach without further clustering
provides only one clustering result because the cores of a given
graph are fixed. As a result, it rarely meets the user’s
requirements.

There are two important observations that may help: (1) the small
cliques (K3, K4, K5) appear often in the typical structures laid out
by graph visualization tools [5]; (2) a clique of degree k+1 can
possibly exist only in a k-core. This implies that if a k-clique exists
in the given graph, it must be a sub-graph of the (k+1)-core of the
given graph. It is no doubt that cliques or nearly cliques are the
most cohesive parts of the graph. They exist only in cores. This
convinces us that the k-core approach can be a good start for
further partitioning.

Because Step 2 is merely a process of creating the adjacency
matrix for a graph we will skip it and explain Step 3.

4.2 The Bond Energy Algorithm
The bond energy algorithm (BEA), proposed by McCormick et al
[19], is a cluster-analysis method for identifying natural groups and
clusters in complex data arrays. It introduces the concept of
measure of effectiveness (ME), aiming at maximizing the summed
bond energy over all row and column permutations of an input
array. That is, find
 M N
 max (ME) = max { ∑ ∑ ai,j [ai,j-1 + ai,j+1+ai-1,j+ai+1,j]}
 i=1 j=1

for all N!M! permutations.

Because an adjacency matrix for a graph is symmetric, we need
only to find a row or a column permutation that creates the
strongest “bond energy” by driving the larger matrix elements
together. The elements of the matrix will be grouped as the way
they should be. This is achieved by calculating the measure of
effectiveness (ME) for each permutation by
 N N

ME =∑ ∑ ai,j(ai,j-1 +ai,j+1)
 i=1 j=1

The permutation that gives the maximal ME represents a desirable
component placement. Although finding such a permutation
requires exponential time, a near-optimal algorithm in O(n4) time
produces results that are close to those of exhaustive search,
according to Zhang and Gorla [20]. Compared with other data
grouping methods, the BEA is accurate and produces good results.

More importantly, BEA can be measured and customized by
users’ specifications and requirements. The procedure of applying
BEA to a symmetric matrix is illustrated in Figure 2.

Figure 2 The original symmetric matrix becomes a “clustered”

matrix after applying BEA to it

In Figure 2, M is an integer larger than any other element. For
example, for a weighted graph, M can be any value greater than
the maximal weight. After BEA is applied the cohesive elements
will be placed together in the matrix.

According to the k-core and BEA’s special properties, we adapt
the BEA to compute each sub-graph produced by the k-core
algorithm. The main idea of the hybrid algorithm is to divide and
conquer as illustrated in Figure 2. We first use the k-core approach
to partition the given graph. As a result, the size of the produced
sub-graphs (cores) is much smaller than the original whole graph,
and then we use BEA to group precisely the vertices inside each
core. After the vertex grouping finishes for all the cores, we
combine all the optimized sub-matrices into a big matrix. This
matrix still represents the same graph but becomes a “clustered”
matrix. Finally we manipulate this matrix to meet the user’s
requirements. We designed a method to partition the “clustered”
matrix. Because the Step 4 is also straightforward like Step 2, we
will skip its explanation but explain Step 5, i.e., our matrix
partition method in Section 4.3.

4.3 User-Directed Partitioning
After applying the k-core approach, creating matrix, BEA
algorithm, and combining all the produced small matrices into a
big one, as Steps 1, 2, 3 and 4, the resulting matrix consists of
many “clusters”. The “clustered” matrix is illustrated in Figure 5
(a). It is time to accept the user’s requirements and partition the
matrix accordingly. This forms the final step of our approach.
We now explain the process of matrix partitioning based on the
input parameters from the user.

Given a graph G = (V, E), n = |V|, m = |E|, for every matrix index
i, 1<i<n, “cut at i” means partitioning the matrix at the ith column
and ith row. A cut is acceptable only if it locates at a border of two
clusters. Let us now analyze the relationship between the
cohesiveness α and the coupling ratio β. According to the
definitions of α and β, we obtain the following formula:

 β=1-(i*(i-1)*α1+(n-i)(n-i-1)*α2)/(2*m) (9)

Our purpose is to minimize β, i.e., to maximize (i*(i-1)*α1+
(n-i)(n-i-1)*α2)/(2*m). For cut at i, we compute the value of α for
each of the two produced clusters. After we get the pair of α (α1
and α2) for every cut at each matrix index, we can draw a graph
like the bottom graph of Figure 3 (b). Then we use the formula (9)
to compute the value of β for each pair of α. We can draw a graph
like the top graph of Figure 3 (b), from which it is easy to see the
smallest coupling ratio β. The minimum β means a best cut. After

choosing the best cut, we can choose the second best cut for the
matrix. Every cut will produce an additional cluster in each round.
This procedure is repeated until the number of produced clusters
meets the requirement (exceeds the Kmin). Then we judge if such a
clustering is satisfactory, if so, the result is generated as an output;
otherwise, choose the next cut i to partition the matrix. Repeat the
procedure until a satisfactory clustering is found or the number of
produced clusters exceeds Kmax. If a satisfactory clustering is
found, the result is generated as an output. If the number of
produced clusters exceeds Kmax, no clustering result meeting the
requirement can be found.

 (a) (b)

Figure 3 (a) The “clustered” matrix and the best cut
(b) Choosing the best cut from the “clustered” matrix

Figure 3 (a) is the “clustered” matrix, Figure 3 (b) illustrates the
pair of values of α for each cut (the bottom graph) and the
corresponding value of coupling ratio β for each cut (the top
graph). We can see that the best cut is at index 6.

We now analyze the time complexity of each step of the algorithm.
Our approach consists of five steps. Given the input graph of n
vertices and m edges, first, according to Batagelj [2], k-core step
costs O(m) in time for m edges. Second, we create the
corresponding matrix for each produced core, which costs
O(n2/num), num is the maximum number of cores, so the worst
time is O(n2) when num=1. Third, after the k-core partitioning, the
number of elements of the produced sub-graph is much smaller
than the original graph. So the time complexity of applying BEA
depends on the graph structure. Our experiments show that it is
acceptable if the given graph contains many clusters. Then, we
combine these optimized small matrices together, which costs
O(n) for n vertices. Finally we divide the resulting matrix
according to the user’s specification, which costs O(nlogn).

5. EXPERIMENTS ON USER
 REQUIREMENTS
Our preliminary experiments are focused on the customizability.
We use a graph of 300 vertices, and apply our algorithm with
different user requirements. According to the CR defined in
Section 3, the user’s requirements can be simplified into three
classes, depending on the following emphases:

1. intra-cluster quality, i.e., high cohesiveness.
2. inter-cluster quality, i.e., less coupling.
3. appropriate granularity.

Without losing generality, three classes have 23 = 8 combinations
of requirements. Every requirement can be one or more of these 8
combinations. Table 1 compares the clustering results of these 8
sets of different requirements for the same graph.

Table 1. Experimental comparison of different user requirements

Among the 8 sets of requirements, the ones in rows 5,6,7,8 require
the produced clusters to be cohesive vertex groups, which means a
high α (α=0.7). The ones in rows 3,4,7,8 say they need low
coupling between the clusters, which means a low β (β=0.1) and a
low Uinter (Uinter=5). The ones in rows 2,4,6,8 imply a strict limit
on the scope of the number of clusters, which means a close pair
of Kmin and Kmax. For the ones in rows 1,2,3,4,5, and 7, our
algorithm produced satisfactory result. For the ones in rows 6 and
8, our algorithm could not find any result meeting the user’s
requirement. For the row 6, the number of clusters is strictly
limited while a high cohesiveness is required; such kind of result
does not exist in the given graph. For the strictest requirement, the
row 8, it is not surprising that no result is found.

6. CONCLUSIONS
Like the process of software development, the process of
clustering involves design and verification. The basic purpose of
clustering is to distinguish two nodes if the cohesiveness between
them cannot exceed a pre-specified threshold. We believe that
both how to customize a clustering and how to measure it relate to
the clustering criteria directly or indirectly. This paper has
proposed a set of criteria for measuring data clustering quality and
presented a customizable algorithm that finds the most appropriate
clusters according to the user-supplied parameters. A flexible
mechanism has been proposed for the user to express his/her
requirements through input parameters. A graph-based partitioning
clustering model is established with this mechanism. This
approach not only helps large database clustering but also provides
effective graph visualization of the resulting clusters. Furthermore,
our algorithm is of high efficiency if the graph contains many
clusters. Further study is ongoing to observe if the time
complexity of our algorithm is proportional to n, the number of
graph vertices, i.e., the data points. Future work also includes the
application of the algorithm on Web data mining.

7. REFERENCES:
[1] S. E. Hambrusch, C-M. Liu, and H-S. Lim, Clustering in

Trees: Optimizing Cluster Sizes and Number of Subtrees,
Journal of Graph Algorithms and Applications, Vol. 4, No. 4,
pp.1-26 (2000).

[2] V. Batagelj, A. Mrvar, and M. Zaversnik, Partitioning
Approaches to Clustering in Graphs, Proc. GD’1999, LNCS,
pp. 90-97 (2000).

[3] D. Harel and Y. Koren, A Fast Multi-scale Method for
Drawing Large Graphs, Proc. GD’2000, LNCS, pp. 183-196
(2001).

[4] A. Quigley and P. Eades, FADE: Graph Drawing, Clustering,
and Visual Abstraction, Proc. GD’2000, LNCS, pp. 197-210
(2001).

[5] J. May-Six, Vistool: A Tool For Visualizing Graphs, PhD
Thesis, The University of Texas at Dallas (2000).

[6] P. K. Agarwal and C. M. Procopiuc, Exact and
Approximation Algorithms for Clustering, Proc. 9th
ACM-SIAM Symp., Discrete Algorithms (1998).

 α β Uinter Kmax Kmin Clusters
Exist?

1 0.3 0.2 10 20 2 Yes
2 0.3 0.2 10 10 7 Yes
3 0.3 0.1 5 20 2 Yes
4 0.3 0.1 5 10 7 Yes
5 0.7 0.2 10 20 2 Yes
6 0.7 0.2 10 10 7 No
7 0.7 0.1 5 20 2 Yes
8 0.7 0.1 5 10 7 No

[7] J. May-Six and I. G. Tollis, Effective Graph Visualization Via
Node Grouping, Proc. IEEE Symposium on information
Visualization 2001, pp. 51-58 (2001).

[8] M.Ester, H. P. Kriegel, J.Sander, and X.Xu, A Density-Based
Algorithm for Discovering Clusters in Large Spatial
Databases with Noise, Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining (KDD-96), AAAI Press, pp.
226-231 (1996).

[9] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, Clustering for
Mining in Large Spatial Databases. KI (Artificial
Intelligence), Special Issue on Data Mining, ScienTec
Publishing, pp. 18-24 (1998).

[10] R. T. Ng and J. Han, Efficient and Effective Clustering
Methods for Spatial Data Mining, Proc. 20th Int. Conf. on
Very Large Data Bases, Morgan Kaufmann, pp. 144-155
(1994).

[11] W. Wang, J. Yang, and R. Muntz, STING: A Statistical
Information Grid Approach to Spatial Data Mining, Proc.
23rd Int. Conf. on Very Large Data Bases, Morgan Kaufmann,
pp. 186-195 (1997).

[12] T. Zhang, R. Ramakrishnan, and M. Linvy, BIRCH: An
Efficient Data Clustering Method for Very Large Databases,
Proc. ACM SIGMOD Int’l Conf. on Management of Data,
ACM Press, pp.103-114 (1996).

[13] M. S. Chen, J. Han and P. S. Yu, Data Mining: An Overview
from Database Perspective, IEEE Transactions on Knowledge
and Data Engineering, IEEE Computer Society Press, Vol. 8,
No.6, pp. 866-883 (1996).

[14] D. Harel and Y. Koren, Clustering Spatial Data Using
Random Walks, Proc. 7th Int’l Conf. Knowledge Discovery
and Data Mining (KDD-2001), ACM Press, New York, pp.
281-286 (2001).

[15] G. Karypis, E. Han, and V. Kumar, CHAMELEON, A
Hierarchical Clustering Algorithm Using Dynamic Modeling,
IEEE Computer pp. 68-75, 32 (1999).

[16] V. Estivill-Castro and I. Lee, AUTOCLUST: Automatic
Clustering via Boundary Extraction for Mining Massive
Point-Data Sets, 5th Int’l Conf. on Geocomputation, Geo
Computation CD-ROM: GC049, ISBN 0-9533477-2-9
(2000).

[17] I. Jonyer, L. B. Holder and D. J. Cook, Graph-Based
Hierarchical Conceptual Clustering, Proc. of the Thirteenth
Annual Florida AI Research Symposium (2000).

[18] A. K. Jain, M. N. Murty, and P. J. Flynn, Data Clustering: A
Review, ACM Computing Surveys, Vol.31, No. 3, pp. 264-323
(1999).

[19] W. T. McCormick, P. J. Sweitzer, and T. W. White:
Problem decomposition and data reorganization by a
clustering technique. Oper. Res., (September-October),
pp. 993-1009 (1972).

[20] K. Zhang and N. Gorla, Locality Metrics and Program
Physical Structures, Journal of Systems and Software,
54 (2000), pp. 159-166 (2000).

		1. INTRODUCTION

		2. PREVIOUS WORK ON CLUSTER

		MEASUREMENT

		2.1 Computational Geometry Analysis

		2.2 Graph Theoretical Analysis

		2.3 Spatial Database System (SDBS)

		3. CLUSTERING REQUIREMENTS

		4. A HYBRID APPROACH TO

		CLUSTERING

		4.1 The k-core Approach

		4.2 The Bond Energy Algorithm

		4.3 User-Directed Partitioning

		5. EXPERIMENTS ON USER

		REQUIREMENTS

		6. CONCLUSIONS

		7. REFERENCES:

