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ABSTRACT  
Most current data clustering algorithms in data mining are based 
on a distance calculation in certain metric space. For Spatial 
Database Systems (SDBS), the Euclidean distance between two 
data points is often used to represent the relationship between data 
points. However, in some spatial settings and many other 
applications, distance alone is not enough to represent all the 
attributes of the relation between data points. We need a more 
powerful model to record more relational information between 
data objects. This paper adopts a graph model by which a database 
is regarded as a graph: each vertex of the graph represents a data 
point, and each edge, weighted or unweighted, is used to record 
the relation between two data points connected by the edge. Based 
on the graph model, this paper presents a set of cluster analysis 
criteria to guide data clustering. The criteria can be used to 
measure clustering results and help improving the quality of 
clustering. Further, a customizable algorithm using the criteria is 
proposed and implemented. This algorithm can produce clusters 
according to users’ specifications. Preliminary experiments show 
encouraging results. 


1. INTRODUCTION 
Data clustering has been considered as a primary data mining 
method for knowledge discovery. There have been many 
clustering algorithms in the literature. From the perspective of 
whether graphs are used, we can categorize the clustering methods 
into graph-based and non-graph-based. Graph-based approaches 
take extra time on graph construction. It, however, has the ability 
to represent a large number of relationships between data points 
[17] while non-graph-based approaches cannot. Recently published 
graph-based approaches include: CHAMELEON [15], 
AUTOCLUST [16], Subdue [17] and Random Walk [14]. From the 
perspective of whether user inputs play a role in the cluster 
analysis, we can categorize clustering methods into automatic 
clustering and semi-automatic clustering. Automatic clustering is 
data-driven and does not accept user inputs. The representative 
automatic approach is AUTOCLUST [16]. On the other hand, many 
clustering algorithms use some parameters or thresholds to control 
the clustering process or results. They include: CHAMELEON [15], 
BIRCH [12], CLARANS [10], DBSCAN [8], STING [11], and 
Random Walk [14].  The parameters or thresholds in these 
algorithms can be regarded as channels between the clustering 
algorithm and the external environment. 
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An ideal clustering algorithm, however, should be both data-driven 
and user-centric (user-oriented). Data-driven [18] means that no 
prior information about the given dataset is needed while 
user-centric (user-oriented) aims at accepting users’ requirements. 
Although many current clustering algorithms use some parameters 
to control the clustering process and results, their parameters are 
not user-oriented but algorithm-oriented. This paper presents a 
customizable and graph-based approach to data clustering. 
Compared with current data clustering methods, this approach has 
two major features: first, it is based on graph structure analysis. 
Current clustering analyses are mainly based on distance 
computation [13]. In many applications, distance alone is not 
enough to represent all the attributes of the relation between data 
points. By modeling data with a graph, the approach proposed in 
this paper can control and measure the clustering process. As a 
result, the derived clusters can meet users’ requirements and be 
easily visualized. Second, this approach can accept users’ inputs. 
Different applications may impose different criteria. Realistically, 
we consider the user’s requirement as the basis of our clustering 
criteria. In order to suit various application domains, the approach 
needs to be customizable with criteria settings. This paper first 
proposes a set of measurement criteria for graph-based data 
clustering. Based on the set of criteria, this paper proposes a set of 
user-input parameters aiming at increasing the customizability of 
the clustering algorithms. No prior information is needed when 
setting the parameter values in order to maintain the data-driven 
property. Further, a corresponding clustering algorithm that uses 
the criteria is proposed and implemented.  


The rest of the paper is organized as follows. Section 2 reviews the 
previous work on data clustering and approximation parameters. 
Section 3 proposes a set of criteria for measuring the quality of 
clustering. Our clustering algorithm is described in Section 4. 
Section 5 reports the experimental results. Section 6 concludes the 
paper. 


2. PREVIOUS WORK ON CLUSTER   
  MEASUREMENT 
There have been many works on cluster analysis and measurement.  
Some of them are based on computational geometry, some for 
spatial database system applications, while others focus on graph 
theoretical properties.  


2.1 Computational Geometry Analysis 
Hambrusch et al. [1] defines that the ideal size (the number of 
vertices) of a cluster is c, n=cp, n is the number of total vertices in 
the given graph, and p is the number of clusters. The size of 
cluster Ci must satisfy (1- α/2)c ≤ |Ci| ≤ c(1+ α), 1≤ i≤ p, 0≤ α <1.   


Agarwal [6] proposes another definition of cluster size based on 
geometry space: the size of a cluster Ci is the maximum distance 
between a fixed-point fp, called the center of the cluster, and any 
vertex of Ci. Let S be a set of n nodes in a metric space, a 







k-clustering of S is a partition C of S into k subsets C1, C2,..., Ck.  
The size of C is the maximum size of a cluster in C.    


A functional approach [2] describes the clustering criterion as a 
function P: Φ R+. The process of finding the best clustering is to 
determine the clustering C* ∈Φ, for which P(C*) = min P(C) for 
C ∈Φ where Φ is a set of feasible clustering layouts. (what’s the 
role of R+?) 


2.2 Graph Theoretical Analysis 
A clique (or a complete graph) is a simple graph in which there is 
one edge between every pair of vertices. The purpose of node 
grouping [7] is to abstract small node-disjoint cliques or sub-graphs 
that are almost-cliques (almost complete graphs). Node-disjoint 
cliques and almost-cliques are called groups, which form sets of 
high-cohesive nodes.  


Harel and Koren[3] provides a heuristic to help deciding which 
vertices should be drawn closely. The heuristic is based on the 
observation that a nice layout of a graph should convey visually 
the relational information that the graph represents, so the vertices 
that are closely related in the graph (i.e., the graph theoretic 
distance is small) should be drawn close together. 


A very useful measure is applied in FADE [4]: the number of 
inter-cluster edges versus that of intra-cluster edges. The overall 
drawing improves if nodes connected with edges are drawn closer 
than nodes unconnected. 


2.3 Spatial Database System (SDBS) 
Ester et al. [8] proposes DBSCAN (Density Based Spatial 
Clustering of Applications with Noise) for large spatial databases.  
It is no longer based on distance but on the number of near 
neighbors of a point. DBSCAN requires that for every point p in a 
cluster C there is a point q in C so that p is inside Eps of q and Eps 
of q contains at least MinPts points. DBSCAN requires a human 
participant to determine the global parameter Eps.  The parameter 
MinPts is fixed at 4 in the algorithm to reduce the computational 
complexity. 


CLARANS (Clustering Large Applications based upon 
RANdomized Search) [10] is motivated by two well-known cluster 
analysis algorithms: PAM (Partitioning Around Medoids) and 
CLARA (Clustering LARge Applications). The key concept of 
PAM is medoid which is a representative object for each cluster. 
The quality of clustering is measured by the average dissimilarity 
between an object and the medoid of its cluster. CLARA draws a 
sample of the data set and applies PAM on the sample to 
approximate the medoids of the whole dataset. 


BIRCH (Balanced Iterative Reducing and Clustering using 
Hierarchies) [12] introduces a threshold T to limit the diameter (or 
radius) of the cluster. The larger the T is, the smaller the tree is.  
Several basic concepts like radius, diameter, and centroid are used 
in BIRCH to describe the distance properties of a cluster. 


CHAMELEON [15] proposes a more objective definition of 
similarity, which is composed of relative inter-connectivity and 
relative closeness. It needs an appropriate MINSIZE (1%~5% of 
the overall number of data points) to perform a satisfactory 
partition. 


The aforementioned cluster analyses address the quality 
measurement problem individually. None of them systematically 
measures the entire clustering quality at all the three levels: 


intra-cluster, inter-cluster, and overall clustering. This has 
motivated our work. The next section describes a set of criteria 
proposed for measuring the quality of clustering. 


3. CLUSTERING REQUIREMENTS 
Our criteria are based on a graph model. Given a graph G = (V, E), 
|V| = n is the number of vertices, |E| = m is the number of edges. A 
clustering of G partitions the vertices of G into k disjoint sets C1, 
C2, C3,... Ck. Each set Ci (1 ≤ i ≤ k) is called a cluster. |Ci| is the 
number of vertices of cluster Ci. A clustered graph is a graph with 
a recursive clustering, or partitioning, of the vertex set of G.  


Given u,v∈V, (u,v)∈E, we say that edge (u,v) is inside Ci iff both u 
and v are in Ci. The number of edges inside cluster Ci is denoted as 
Ei. The maximal possible number of edges inside Ci is denoted as 
Mi, Mi = |Ci|*(|Ci|-1)/2, when Ci is a clique. For clusters Ci and Cj, 
inter(i,j) is the number of edges between clusters Ci and Cj. Given 
u∈Ci, v∈Cj, (u,v)∈E, we say (u,v) is an edge between clusters Ci 
and Cj. The quality of a clustering result can be measured with the 
following criteria. 


1. Cohesiveness is the minimum value of ratio Ei to Mi, for the ith 
cluster Ci , denoted as a real number α, 0<α≤1.  


α =Min((Ei / Mi)),∀ i∈{1,2,….,k}, k is the number of clusters  (1) 


α is used to measure whether every cluster is a cohesive group.  
The goal is to maximize the value of α for every cluster. When 
α=1, the cluster is a clique. 


2. Coupling Bound is the biggest number of inter-cluster edges, 
represented by an integer Uinter.   


Uinter =Max(inter(i,j)),∀ i,j ∈{1,2,….,k}, i≠j, k is the number of 
clusters                                             (2) 
Uinter represents the clustering quality between every pair of 
clusters. A lower Uinter helps maintaining the natural clustering.  


3. Coupling Ratio is the ratio of the number of inter-cluster edges 
to the total number of edges in G, denoted as a real number β, 
0<β<1.   
                              k-1   k 
              β= ( ∑  ∑  (inter(i,j))) /m               (3) 


                           i=1  j=i+1 


β is used to measure an overall cohesiveness for a graph. A 
smaller β means less inter-cluster edges and more edges are inside 
clusters.  


4. Granularity is defined as the number of clusters, denoted by an 
integer k.   


k = number of clusters              (4) 
Granularity indirectly measures the flexibility and the 
applicability of a clustering result. Different applications may 
require different granularities. 


The concept of Clustering Measurement (CM) is defined as a 
4-tuple (α, Uinter, β, k), where α, Uinter, β, k are defined as above.  
CM can be used to describe the quality of a clustering result, and it 
can also be extended to represent the user’s requirements, as 
described below.   


The definition of Clustering Requirement (CR) is extended from 
CM and is a 5-tuple (α’, Uinter’, β’, Kmin, Kmax). α’ represents the 
requirement on cohesiveness; Uinter’ represents the requirement on 
coupling bound; β’ describes the requirement on coupling ratio 


  







while Kmax and Kmin are a pair of integers: the upper bound and the 
lower bound of the number of clusters. 


Given the CM, a 4-tuple (α, Uinter, β, k), of the final clustering 
result, CR describes the user’s requirements in terms of CM: 


α ≥ α’         (5) 
Uinter≤ Uinter’      (6) 
β≤ β’       (7) 
Kmax ≥ k ≥ Kmin      (8) 


In summary, the CR can be regarded as the quality level that a 
clustering algorithm must maintain, or, can represent the quality of 
a clustering result quantitatively. A high quality clustering implies 
a big α, a small β, a low Uinter and desirable Kmax and Kmin.  It is 
important to note that cohesiveness, coupling, and granularity are 
3 orthogonal measurements. For an existing clustering result they 
can be used together as a CM to measure the clustering quality 
effectively. Or they can be used together as a CR to accept the 
user’s requirements. It is possible that a clustering which meets all 
the four conditions may not exist. 


4. A HYBRID APPROACH TO 
  CLUSTERING 
Current clustering methods can be divided into two categories:  
• Clustering according to some specific requirements: it can be 


effective for some special cases but cannot be applied to all 
situations. 


• General-purpose clustering: clustering is based on some 
assumed criteria such as low coupling between clusters. It 
may be useful for some applications but may be useless for 
others.   


In this section we propose a customizable algorithm that accepts a 
CR as input and outputs a satisfactory CM. The whole algorithm 
consists of 5 steps: we first use k-core approach (detailed in 
Section 4.1) to partition the given graph. After this, we create 
corresponding matrix for each core, and then apply the Bond 
Energy Algorithm (BEA, Section 4.2) to each matrix produced. 
Then we combine all the small matrices into a big matrix. This 
matrix still represents the same graph but becomes a relatively 
“clustered” matrix. Finally we manipulate this matrix to meet the 
user’s requirements. 


 
Figure 1 The procedure of the hybrid algorithm 


Figure 1 shows five steps of the hybrid algorithm. Step 1 is the 
k-core approach: the big graph is partitioned into cores. Step 2 
creates the corresponding matrix for every main core. Step 3 uses 
the BEA to compute and rearrange the small matrix for each core.  
Step 4 combines the resulting small matrices into a big matrix.  
Step 5 accepts the user’s specifications and requirements to 
partition the matrix into clusters. 


As the first step is the k-core approach, we will discuss it first. 


4.1 The k-core Approach  
Batagelj [2] proposes a fast clustering approach based on core 


decomposition: i.e. the k-core approach. The sub-graphs it 
produces are not only easy to handle but also contain useful 
connectivity-based properties for future analysis. 


Before briefly introducing the k-core algorithm, let us firstly 
define a core (as by Batagelj [2]). Let G = (V, E) be a graph. V is 
the set of vertices and E is the set of edges. A sub-graph H= (W, E 
| W) induced by the set W is a k-core or a core of order k iff ∀v in 
W: degree (v) ≥ k and H is a maximum sub-graph with this 
property. The core of maximum order is also called the main core. 
The algorithm of finding k-core is simple: find the main core of a 
given graph first, if it is too big, do some block model analysis and 
divide it further; otherwise, consider the main core as a cluster by 
removing it from the graph. For the residual graph, the same 
procedure is repeated until all cores have been removed. 


The k-core approach’s advantage is its O(m) efficiency (m is the 
number of the edges). However, pure k-core approach may not be 
practically useful since its result totally depends on the structure of 
the input graph. The k-core approach without further clustering 
provides only one clustering result because the cores of a given 
graph are fixed. As a result, it rarely meets the user’s 
requirements.  


There are two important observations that may help: (1) the small 
cliques (K3, K4, K5) appear often in the typical structures laid out 
by graph visualization tools [5]; (2) a clique of degree k+1 can 
possibly exist only in a k-core. This implies that if a k-clique exists 
in the given graph, it must be a sub-graph of the (k+1)-core of the 
given graph. It is no doubt that cliques or nearly cliques are the 
most cohesive parts of the graph. They exist only in cores.  This 
convinces us that the k-core approach can be a good start for 
further partitioning. 


Because Step 2 is merely a process of creating the adjacency 
matrix for a graph we will skip it and explain Step 3. 


4.2 The Bond Energy Algorithm 
The bond energy algorithm (BEA), proposed by McCormick et al 
[19], is a cluster-analysis method for identifying natural groups and 
clusters in complex data arrays. It introduces the concept of 
measure of effectiveness (ME), aiming at maximizing the summed 
bond energy over all row and column permutations of an input 
array. That is, find                                                  
                                      M    N 
         max (ME) = max { ∑  ∑ ai,j [ai,j-1 + ai,j+1+ai-1,j+ai+1,j]} 
                        i=1  j=1 


for all N!M! permutations. 


Because an adjacency matrix for a graph is symmetric, we need 
only to find a row or a column permutation that creates the 
strongest “bond energy” by driving the larger matrix elements 
together. The elements of the matrix will be grouped as the way 
they should be. This is achieved by calculating the measure of 
effectiveness (ME) for each permutation by 
                                N  N 


ME =∑ ∑ ai,j(ai,j-1 +ai,j+1) 
                              i=1  j=1 


The permutation that gives the maximal ME represents a desirable 
component placement. Although finding such a permutation 
requires exponential time, a near-optimal algorithm in O(n4) time 
produces results that are close to those of exhaustive search, 
according to Zhang and Gorla [20]. Compared with other data 
grouping methods, the BEA is accurate and produces good results. 


  







More importantly, BEA can be measured and customized by 
users’ specifications and requirements. The procedure of applying 
BEA to a symmetric matrix is illustrated in Figure 2. 


 
Figure 2 The original symmetric matrix becomes a “clustered” 


matrix after applying BEA to it 


In Figure 2, M is an integer larger than any other element. For 
example, for a weighted graph, M can be any value greater than 
the maximal weight. After BEA is applied the cohesive elements 
will be placed together in the matrix. 


According to the k-core and BEA’s special properties, we adapt 
the BEA to compute each sub-graph produced by the k-core 
algorithm. The main idea of the hybrid algorithm is to divide and 
conquer as illustrated in Figure 2. We first use the k-core approach 
to partition the given graph. As a result, the size of the produced 
sub-graphs (cores) is much smaller than the original whole graph, 
and then we use BEA to group precisely the vertices inside each 
core. After the vertex grouping finishes for all the cores, we 
combine all the optimized sub-matrices into a big matrix. This 
matrix still represents the same graph but becomes a “clustered” 
matrix. Finally we manipulate this matrix to meet the user’s 
requirements. We designed a method to partition the “clustered” 
matrix. Because the Step 4 is also straightforward like Step 2, we 
will skip its explanation but explain Step 5, i.e., our matrix 
partition method in Section 4.3. 


4.3 User-Directed Partitioning 
After applying the k-core approach, creating matrix, BEA 
algorithm, and combining all the produced small matrices into a 
big one, as Steps 1, 2, 3 and 4, the resulting matrix consists of 
many “clusters”. The “clustered” matrix is illustrated in Figure 5 
(a). It is time to accept the user’s requirements and partition the 
matrix accordingly. This forms the final step of our approach.  
We now explain the process of matrix partitioning based on the 
input parameters from the user. 


Given a graph G = (V, E), n = |V|, m = |E|, for every matrix index 
i, 1<i<n, “cut at i” means partitioning the matrix at the ith column 
and ith row. A cut is acceptable only if it locates at a border of two 
clusters. Let us now analyze the relationship between the 
cohesiveness α and the coupling ratio β. According to the 
definitions of α and β, we obtain the following formula: 


      β=1-(i*(i-1)*α1+(n-i)(n-i-1)*α2)/(2*m)            (9) 


Our purpose is to minimize β, i.e., to maximize  (i*(i-1)*α1+ 
(n-i)(n-i-1)*α2)/(2*m). For cut at i, we compute the value of α for 
each of the two produced clusters. After we get the pair of α (α1 
and α2) for every cut at each matrix index, we can draw a graph 
like the bottom graph of Figure 3 (b). Then we use the formula (9) 
to compute the value of β for each pair of α. We can draw a graph 
like the top graph of Figure 3 (b), from which it is easy to see the 
smallest coupling ratio β. The minimum β means a best cut. After 


choosing the best cut, we can choose the second best cut for the 
matrix. Every cut will produce an additional cluster in each round. 
This procedure is repeated until the number of produced clusters 
meets the requirement (exceeds the Kmin). Then we judge if such a 
clustering is satisfactory, if so, the result is generated as an output; 
otherwise, choose the next cut i to partition the matrix. Repeat the 
procedure until a satisfactory clustering is found or the number of 
produced clusters exceeds Kmax. If a satisfactory clustering is 
found, the result is generated as an output. If the number of 
produced clusters exceeds Kmax, no clustering result meeting the 
requirement can be found.  


 
          (a)                       (b) 


Figure 3 (a) The “clustered” matrix and the best cut 
(b) Choosing the best cut from the “clustered” matrix 


Figure 3 (a) is the “clustered” matrix, Figure 3 (b) illustrates the 
pair of values of α for each cut (the bottom graph) and the 
corresponding value of coupling ratio β for each cut (the top 
graph). We can see that the best cut is at index 6. 


We now analyze the time complexity of each step of the algorithm. 
Our approach consists of five steps. Given the input graph of n 
vertices and m edges, first, according to Batagelj [2], k-core step 
costs O(m) in time for m edges. Second, we create the 
corresponding matrix for each produced core, which costs 
O(n2/num), num is the maximum number of cores, so the worst 
time is O(n2) when num=1. Third, after the k-core partitioning, the 
number of elements of the produced sub-graph is much smaller 
than the original graph. So the time complexity of applying BEA 
depends on the graph structure. Our experiments show that it is 
acceptable if the given graph contains many clusters. Then, we 
combine these optimized small matrices together, which costs 
O(n) for n vertices. Finally we divide the resulting matrix 
according to the user’s specification, which costs O(nlogn). 


5. EXPERIMENTS ON USER 
  REQUIREMENTS 
Our preliminary experiments are focused on the customizability.  
We use a graph of 300 vertices, and apply our algorithm with 
different user requirements. According to the CR defined in 
Section 3, the user’s requirements can be simplified into three 
classes, depending on the following emphases: 


1. intra-cluster quality, i.e., high cohesiveness. 
2. inter-cluster quality, i.e., less coupling. 
3. appropriate granularity. 


Without losing generality, three classes have 23 = 8 combinations 
of requirements. Every requirement can be one or more of these 8 
combinations. Table 1 compares the clustering results of these 8 
sets of different requirements for the same graph. 


Table 1. Experimental comparison of different user requirements 


  







Among the 8 sets of requirements, the ones in rows 5,6,7,8 require 
the produced clusters to be cohesive vertex groups, which means a 
high α (α=0.7). The ones in rows 3,4,7,8 say they need low 
coupling between the clusters, which means a low β (β=0.1) and a 
low Uinter (Uinter=5). The ones in rows 2,4,6,8 imply a strict limit 
on the scope of the number of clusters, which means a close pair 
of Kmin and Kmax. For the ones in rows 1,2,3,4,5, and 7, our 
algorithm produced satisfactory result. For the ones in rows 6 and 
8, our algorithm could not find any result meeting the user’s 
requirement. For the row 6, the number of clusters is strictly 
limited while a high cohesiveness is required; such kind of result 
does not exist in the given graph. For the strictest requirement, the 
row 8, it is not surprising that no result is found.   


6. CONCLUSIONS  
Like the process of software development, the process of 
clustering involves design and verification. The basic purpose of 
clustering is to distinguish two nodes if the cohesiveness between 
them cannot exceed a pre-specified threshold. We believe that 
both how to customize a clustering and how to measure it relate to 
the clustering criteria directly or indirectly. This paper has 
proposed a set of criteria for measuring data clustering quality and 
presented a customizable algorithm that finds the most appropriate 
clusters according to the user-supplied parameters. A flexible 
mechanism has been proposed for the user to express his/her 
requirements through input parameters. A graph-based partitioning 
clustering model is established with this mechanism. This 
approach not only helps large database clustering but also provides 
effective graph visualization of the resulting clusters. Furthermore, 
our algorithm is of high efficiency if the graph contains many 
clusters. Further study is ongoing to observe if the time 
complexity of our algorithm is proportional to n, the number of 
graph vertices, i.e., the data points. Future work also includes the 
application of the algorithm on Web data mining. 
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