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ABSTRACT 
Extracting accurate land use and land cover information from 
remote sensing data is a challenging problem due to the gap 
between theoretically available information in remote sensing 
imagery and the limited classification ability based on spectral 
analysis. Traditional classification techniques based on spectral 
analysis of single pixel usually produce “noisy” results that 
contain many wrongly classified pixels. This paper presents a 
novel post classification method to detect the pixels that are 
wrongly classified and reassign them to correct fields in spatial 
context. The strategy is demonstrated through the classification of 
a benchmark digital aerial photograph. The experimental results 
show that the proposed approach can produce a more accurate 
classification than previous approaches.  
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1. INTRODUCTION 
Remote sensing imagery provides a huge amount of data about 
earth surface for global and detailed analysis. Mining useful 
information from remote sensing data would help GIS and earth 
science researchers significantly. Among the mining approaches 
commonly used in GIS and remote sensing area, automatic 
classification of the remotely sensed image is the most widespread 
analysis approach and in many cases a preliminary step for further 
analysis. While many digital image processing techniques have 
been applied to classify remotely sensed data, the extraction of 
land use and land cover information from the data is still a 
challenging problem [2, 18]. Traditional classification techniques 
classify land cover/use on a basis of spectral distribution of the 
pixels within an image, whereby each pixel is associated with the 
most similar spectral class. Since pixels of the same land 
use/cover class may not have similar spectral property, methods 
based on spectral analysis can produce results that are “noisy” due 
to the high spatial frequency of the land covers. Moreover, the 
popular classification algorithms are based on single pixel 
analysis, producing a geometric outline of land covers that does 
not correspond to real spatial entity representation such as fields, 
roads, and streams [4]. Such problems become more severe as 

modern remote sensing devices are increasing the spatial 
resolution to meet the requirements on accuracy and provide more 
detailed information for the study area. As the image resolution 
becomes finer and the number of pixels used to represent single 
object increases, more noise will be produced in the classified 
image. For example, images taken by IKONOS satellite can have 
a resolution of 1m, which is much smaller than the sizes of the 
objects under study such as urban, forest, and water. As a result, 
per-pixel-based classifiers using only spectral information can 
produce a large amount of “salt and pepper” noise pixels both 
inside and outside the objects in the classified image, which 
decreases the classification accuracy significantly.  

To solve such problems, recent effort [10, 14] has been made 
to discover and utilize other implicit image information to allow a 
more accurate classification, among which spatial contextual 
information, characterized by the distribution of pixels of the 
objects being studied, is the most related information to the shape 
and outline of the objects. According to the way to integrate 
spatial contextual information, there are two categories of 
classification approaches [3]: per-field classification and object-
based classification. Per-field classification requires priori 
information about boundaries of objects in the image, which limits 
its applications to many areas [18]. In contrast, object-based 
classification does not need GIS input. Object-based classification 
usually starts with an initial step of grouping neighboring pixels 
into meaningful areas/objects through advanced image 
segmentation techniques [2, 5]. Then the classification is 
performed on the generated objects instead of pixels. Therefore, 
results of object-based classification rely highly on the correctness 
of object generation step. If the object is generated incorrectly or 
inaccurately, the later classification becomes meaningless. Further, 
because an object usually consists of a large number of pixels, 
when it receives a wrong classification, the statistics of the area 
represented by that object-class can be seriously affected and a big 
area may be wrongly classified.  

To avoid drawbacks of the aforementioned approaches, this 
paper presents a novel method to remove noise pixels produced by 
per-pixel-based classification. Through transforming each image 
pixel into a spatial data point, the problem becomes a spatial data 
cleaning problem and advanced spatial mining methods can be 
applied. The idea is based on the observation that although 
spectral analysis would produce noisy classification results, the 
majority of pixels of each field in the image are classified 
correctly, which provides desirable contextual information for 
later spatial analysis. Further, the pixels that are wrongly 
classified into a field appear inconsistent with other pixels of the 
same field on spatial distribution. Conducting spatial analysis on 
each classified field could distinguish from others the pixels that 
are wrongly classified. Then each wrongly classified pixel can be 
reassigned to its most related field in spatial context. Compared 
with previous approaches, such a strategy has three advantages:  
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 The classification does not require prior GIS knowledge. 
 There is no risk of classifying big areas wrongly 

because the basic unit to be classified is pixel instead of 
object. 

 Noise pixels produced by per-pixel-based spectral 
analysis can be merged into correct fields, which 
facilitate a transition from pixel-based to object-based 
image interpretation.  

Figure 1 illustrates the whole procedure of the approach, 
which consists of three steps: 1) image classification based on 
spectral analysis, 2) post classification smoothing of each 
classified field, and 3) combining the fields into the final result. 
Step 1 uses existing spectral analysis methods to classify the given 
image into several land use/cover fields. Step 2 discovers noise 
pixels from each classified field and reallocates them to correct 
fields. In Step 3, all fields are combined together to constitute the 
final classification result. 

Figure 1. The three steps of the proposed approach. 
Among the three steps, Step 2 is the key step of the post-

classification procedure. It accepts a classified field as input and 
outputs a “clean” field. Step 2 can be divided into four stages: 

 Mapping each classified field to a spatial data set, in 
which each data point corresponds to an image pixel at 
the same position.  

 Modeling spatial dependency among data points with 
the connections of a k-mutual neighbor graph [8] 
constructed on the spatial data set. 

 Separating the data points into noise and true data 
through partitioning the k-mutual neighbor graph with 
the k-core algorithm [13].  

 Reassigning noise points to appropriate data sets. The 
class ID of the noise point is determined by the majority 
voting on the class IDs of its k-nearest neighbors. After 
all noise points have been reallocated, resulting data sets 
are mapped back to image fields. 

Figure 2. The stages 2 and 3 of the second step to discover 
noise points. 
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In summary, the contributions of this paper include:  
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The rest of the paper is organized as follows. Section 2 

provides a 
clarifies the motivation of our work. Section 3 explains the 

spatial noise removing method. Section 4 classifies a benchmark 
digital aerial photograph and presents a comparison between 
several representative post-classification methods. Discussion is 
conducted in Section 5. Section 6 concludes the paper. 

 
2. RELATED WORK 
The idea of using post-classifica
pixels is not new. Since 1980s th
approaches [16, 17] to noise elimination through a moving 
window and majority logical filter. The basic idea of majority 
filter is straightforward. Given a moving window with a size n x n, 
where n is a user-defined threshold, the classified image is divided 
into many small squares with n x n pixels as the window moves. 
Then the class ID of each pixel in the moving window will be 
determined by majority voting on the class IDs of the n x n pixels 
so that the minority can be removed as noise. Although majority 
filter is easy to implement, its weaknesses are apparent. First, the 
size of neighborhood for the filter has to be very large for noise to 
be sufficiently removed, while a large size neighborhood may 
alter the boundaries between classes and create zigzag bounding 
polygons. Moreover, a loss of meaningful information in 
classified data is shown because of the geometric and dimensional 
non-correspondence of real objects with the moving window 
implementation matrix. Finally, such methods need extensive 
editing operations on classified images in order to be stored in 
GIS databases [4]. 

The latest progress on post-classification smoothing in 
literature is the size

egions that have an area less than a user-defined threshold are 
selected as noise. If a noise region has the same color as 
background, it is called “interior noise”. Otherwise, it is “exterior 
noise”. The task of size-based removal is to merge interior noise 
into corresponding fields and remove exterior noise. Size-based 
noise removal can preserve more details of the field boundary 
than majority filter. It, however, still has two drawbacks. The first 
drawback is due to the threshold on region size. Some small-size 
regions may not be noise while some big-size regions may be. 
Further, the region group operation puts pixels of the same 
spectral class into the same region only if they are neighbors, 
which is a too strict condition in some cases. For example, pixels 
may occupy a big area without neighboring to one another, given 
they are interleaved. In such a case size-based filter would regard 
all pixels as noise and remove the whole region.  

Unlike the aforementioned approaches, the post-
classification method introduced in this paper do

e pixels but map them to spatial data points to take advantage 
of spatial mining techniques. While significant research progress 
has been made in the field of spatial data mining, there is little 

 



                

work that can be applied to process remote sensing imagery. One 
of the major reasons is the lack of an appropriate mapping 
between images and spatial data sets. An image before 
classification contains various kinds of information such as 
texture, size, shape, color, and etc. It is very difficult, if not 
impossible, to transform all the information to a spatial data set 
that contains data points with two coordinates only. To process 
spectral and spatial information separately, the proposed approach 
first classifies image pixels based on spectral information. After 
classification, spatial properties of pixels of the same class can be 
mapped to spatial coordinates directly. Thus each class becomes a 
spatial data set and the advanced spatial analysis methods can be 
applied to discover patterns or outliers from this class. This 
provides us a chance for effective spatial contextual noise removal. 
 
3. SPATIAL NOISE DISCOVERY AND 
REMOVAL 
The key issue of post-classification is how to discover and remove 
noise pixels. This section will introduce the spatial noise 
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removing method, which has been described as Step 2 in the 
whole procedure shown in Figure 1. As designed in Section 1, 
Step 2 is a stand-alone process that accepts classified fields from 
existing advanced classification methods and outputs the fields 
with noise removed. As depicted in Figure 2, Step 2 consists of 
four stages. The first stage is a direct mapping from pixels to data 
points through constructing a 2-D coordinate system for the given 
image. For rectangular images, the x-axis is along the bottom edge 
of the image while the y-axis along the left side edge, as 
illustrated in Figure 3 (a). For images of irregular shapes, the 
bottom edge and left side edge of its bounding rectangle is used as 
the axes, as illustrated in Figure 3 (b). Each image pixel becomes 
a 2-D data point in the coordinate system and the whole image 
becomes a spatial data set. It is important to note that although the 
bounding rectangle of an image is not unique and the definitions 
of bottom and side edge depend on how we put the image, the 
distances between the data points in the generated spatial data set 
is unchanged for the same image. Thus the later stage will not be 
affected because it uses only distance information to construct a k-
mutual neighbor graph on the data set, which will be introduced in 
Section 3.1. Section 3.2 will apply the k-core algorithm [13] to 
partition the graph to detect outliers while Section 3.3 will 
reallocate the discovered noise points to correct fields. 

Figure 3. Mapping from a (a) rectangular, (b) irregular imag
(shown in grey) to a spatial data set. 

 
ual Neighbor Graph 

to model the spatial dependency betwe
illustrated in Figure 4 (b), each vertex of a k-mutual neighbor 
graph represents a data item. For each pair of data items, only if 
both data items are among the k-most similar data items of each 

other, can there be an edge between the two corresponding 
vertices. In this paper, we refer to data items as points on a 2-D 
space ℜ2 and the similarity of two data points is measured by the 
Euclidean distance between them. Such a similarity definition has 
a solid theoretical foundation [6] and follows Tobler’s first law of 
geography: everything is related to everything else but nearby 
things are more related than distant things [15]. 

    (a)                                (b)                  
Figure 4. (a) A 2D data set; (b) its 4-mutual neighbor

e advantages of representing data using a k-
utual neighbor graph include: first, data points that are far apart 

re completely disconnected from the graph. Second, the 
constructed graph is able to represent the natural density 
dynamically. In a dense region, the neighborhood radius of a data 
point is determined narrowly, and in a sparse region, the 
neighborhood radius becomes wide. Third, the number of graph 
edges is linear to the number of vertices. The first two advantages 
decide the graph structure can be used to distinguish noise and 
true data while the last one guarantees the efficiency of operations 
to be performed on the graph. 

 
3.2 The K-core Algorit
The sk of noise discovery from
accomplished through partitioning the

ta

into small sets of vertices called cores. The notion of a core was 
introduced by Seidman [13]. Let G = (V, E) be a graph, V is the 
set of vertices and E is the set of edges. A sub-graph Hk= (W, E | 
W) induced by the set W is a k-core or a core of order k iff ∀ v in 
W: degree (v) ≥ k and Hk is the maximum sub-graph with this 
property. The core of maximum order is also called the main core.  

The algorithm for determining the core hierarchy is simple: 
from a given graph G=(V, E), recursively delete all vertices of 

ees less than k and lines incident with them, the remaining 
graph is the k-core. Known as the k-core algorithm, it costs only 
O(m) time, where m is the number of edges for the given graph 
[13]. The k-core algorithm has previously been used to produce 
layouts for very big graphs [1] and generate spatial clusters [11, 
12], in which its efficiency and effectiveness have been verified. 
To avoid confusion, we will hereafter use kc as the k used in k-
core algorithm and km as the k used in k-mutual graph. For a k-
mutual graph with n vertices and m edges, we have m ≤ km n/2 if n 
is the number of vertices1, so applying k-core algorithm to a k-
mutual graph requires only linear time.  

A sketch map of the core hierarchy is shown in Figure 5. 
Given a dataset D, suppose the corresp

V, E), |V|=n and |E|=m. Let k=0, 1, 2, …, x and apply the k-
core algorithm to G. The set of cores obtained are denoted by H0, 
H1, ..., Hx-1, Hx for k=0, 1, 2, …, x, respectively, where Hi 
represents the core of order i. The higher the order is, the darker 

 
1 Given a data set, the corresponding k-nearest neighborhood graph G=(V, 
E), and the k-mutual neighborhood graph G’=(V’, E’), we have |V|=|V’|, 
|E’|≤ |E|≤ k|V|, and |E|+|E’|=k|V|, so |E’|≤ k|V’|/2. 

 



                

the area is. To understand the concept of core-ID, let Sx = Hx, Sx-1 
= Hx-1 – Hx ,…, S1 = H1 –H2, S0 = H0 – H1, and Sx = Hx is the main 
core, a core-ID of a vertex is i if and only if the vertex belongs to 
Si. 
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 An example sketch map of core hi
rd to justify why core decomposition

 removal. According to the definition of the core, each ve
core of kc must have a degree greater than or equal to kc even 

after all other cores with orders smaller than kc have been 
removed, i.e., removing the cores of smaller orders will not 
decrease or affect the quality of the cores of bigger orders. While 
the connectivity of a k-mutual graph reveals the density 
distribution, removing cores of small orders matches the natural 
rule that removing noise should not decrease or affect the density 
of true data. 

 
3.3 Reallo

really remove noise pixels becaus
final classification result. Noise pixels should be reallocated to the 
fields they belong to. The reallocation scheme is based on a 
central concept in statistical pattern recognition, called nearest 
neighbor consistency [7]: an element is consistent with its k-
nearest neighbors. Ding and He [6] further extend this concept to 
data clustering: for any element in a cluster, its k-nearest 
neighbors should also be in the same cluster. Similarly, this paper 
extends the concept to image classification: if a pixel belongs to a 
field, its k-nearest neighbors should belong to the same field too. 
Based on the nearest-neighbor consistency, if the k-nearest 
neighbors of a pixel do not belong to a class, the pixel should not 
belong to the class either. The more nearest neighbors are in the 
field, the more possible the pixel belongs to the field. Thus the 
class ID of each noise point can be decided easily by majority 
voting on the class IDs of its k-nearest neighbors in all data sets. 
Such a strategy is supported by our experimental studies, as 
presented in the following section. 
 
4. APPLICATION TO CL
This section will evaluate the effectiveness of the three-st
strategy through the classification of a benchmark ae
photograph used by Jensen et al. [9], as shown in Figure 6 (a). 
Section 4.1 will introduce the classification system we use while 
Section 4.2 will compare the final result with two other 
representing approaches. 
 
4.1 The Classificat
Je
extract rural and urban land use and land c
a back-propagation neural network. The system successfully 
shows a well-trained image interpreter can produce better 
classification results than the approaches using traditional 
statistical methods. The system, however, still relies on the per-
pixel-based classification. Since pixels of the same field may not 

have similar spectral property, the produced classification result is 
“noisy”, as shown in Figure 6 (b). 

   (a)           (b) 
Figure 6. (a) Digital National Aerial Photography Program 

(NAPP) image (1x1m) of Jacksonville Beach, FL. 
e ral analy

post-classification. 

.2 Experimental Results 
ch field are discovereAfter nois

“clean” fields are combined to the fin
a comparison between the results pr
filter, (b) size-based filter, and (c) our approach. Among the three 
approaches, our approach preserves most details of boundaries of 
geographic fields. Figure 7 (a) shows a significant information 
loss produced by focal majority filter due to the fixed-size moving 
window. Figure 7 (b) circles several small regions of wetland that 
are removed wrongly by size-based filter due to the surrounding 
water. Section 2 has explained why they are removed: 1) the size 
threshold used in the size-based filter removes all small regions as 
noise while some of them are actually true data; 2) the pixels 
belong to the same region may not be connected. Many wetland 
pixels are separated from main body by surrounding rivers. 
Removing such pixels would cause inaccurate boundaries of both 
wetland and water.  

 
5. DISCUSSION 
Extracting land use a
resolution data with visua
digitization into GIS d
proposed automatic classification approach may help ease the 
burden. According to Jensen et al. [9], the potential time saving 
could be more than 50 percent using the automatic classification. 
For the post-classification procedure proposed in this paper, a 
good selection of kc can reduce the running time significantly. A 
too big kc would cause too many points to be reallocated while a 
too small kc would cause noise pixels remained in the field. While 
the core decomposition is a fast procedure that requires only linear 
time with regard to the number of pixels, the reallocation cost is 
much higher due to the distance computation performed between 
each noise pixel and all other pixels. The more noise pixels 
discovered, the slower the procedure would be. Current setting 
allows users to participate in the kc selection through a 3D 
visualization [11, 12] so that the whole post-classification process 
is optimized. Although such a strategy requires a little expertise to 
judge noise pixels from true data, the 3D visualization makes user 
intervention quite effective and efficient. To make the whole 
approach automatic, prior knowledge about noise distribution is 
needed, which could be a topic of our future research.  

 



                

(a)    (b)    (c) 
Figure 7. The post-classification result of (a) focal majority filter, (b) size-based filter, and (c) our approach. 

 
6. CONCLUSION 
Recent availability of multispectral imagery with very fine spatial 
resolution has been increasing the lag between the large amount of 
image/spatial data produced and the limited classification ability. 
Traditional classification methods based on spectral analysis 
cannot extract land use and land cover information accurately. A 
successful approach must take spatial contextual information into 
consideration. This paper presents a novel post-classification 
approach that can remove noise pixels produced in spectral 
analysis so that the overall accuracy of the classification is 
improved. Compared with previous approaches, the proposed 
method has significant advantages on the quality of classification 
results. Future work will focus on two directions: how to evaluate 
the classification accuracy automatically and how to integrate the 
proposed method with more classification systems.  
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