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Abstract

Dynamic con#guration is a desirable property of a distributed system where dynamic mod-
i#cation and extension to the system and the applications are required. It allows the system
con#guration to be speci#ed and changed while the system is executing. This paper describes a
software platform that facilitates a novel approach to the dynamically con#gurable programming
of parallel and distributed applications and systems. This platform is based on a graph-oriented
model and it provides support for constructing recon#gurable distributed programs. We describe
the design and implementation of a dynamic con#guration manager for the graph-oriented dis-
tributed programming environment. The requirements and services for dynamic recon#guration
are identi#ed. The architectural design of a dynamic con#guration manager is presented, and
a parallel virtual machine-based prototypical implementation of the manager, on a local area
network of workstations, is described.
c© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Programming on a distributed system for high-performance computing has been rec-
ognized as a much more di<cult task than programming on a centralized system.
In addition to important techniques such as task scheduling, remote invocation, inter-
process communication and synchronization, con#guration management of a distributed
system has attracted much attention from researchers in recent years [5,11,16,17,27,28].
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The software of a distributed system is constructed from collections of functional
components that are bound together to interact and cooperate with each other. The soft-
ware con6guration of a distributed system is performed by the instantiation and binding
of software components as well as through the allocation of components to hardware
systems [18,30]. The consolidation of software components is an inherent characteristic
of a distributed system that oDers a Eexible environment to make modi#cations and
extensions to the system. Computers can be added to a distributed system when they
are required. Similarly, software components can be recon#gured Eexibly within the
system. For example, system recon6guration is required for various purposes, such as
the dynamic creation and replacement of instances of software components, evolution
of a system with new functionality, and fault tolerance.

There are two approaches to system con#guration management: static or dynamic.
In the static approach, a distributed application is built statically by loading the system
components onto the hosts in a distributed system. All system components should be
con#gured at the same time. If a modi#cation is required, the system must #rst be
stopped, the con#guration is then respeci#ed, and #nally the system is rebuilt. ADA
[1] is an example of a programming language that is limited to static con#guration
management. This limitation is found because the component and con#guration pro-
gramming are not separated.

Dynamic con#guration management refers to the ability to change a system’s con-
#guration while the system is running. When recon#guration is required, a request is
submitted to the con#guration manager. The system con#guration will be updated ac-
cordingly at run-time. Unlike the static approach, the entire system does not need to
be rebuilt and only the part involved in the recon#guration is modi#ed. Thus, dynamic
con#guration management allows a new con#guration to be adopted on-line, while part
of the system may continue to execute. This Eexibility is de#nitely a desirable prop-
erty for a large distributed system, especially when it would be either infeasible or
uneconomic to shut down the entire application or system in order to change part of
it.

In this paper, we study dynamic con#guration management in a graph-oriented dis-
tributed programming environment. We describe an integrated software platform, called
distributed implementation of graphs (DIG) [7], which is based on a graph-oriented
programming model. It provides a structural abstraction for recon#gurable distributed
applications. As a tool for distributed programming, DIG provides a high-level logi-
cal graph construct and a collection of software facilities that support graph-oriented
distributed programming. Graphs have been used in some programming languages as
distributed data structures [10,29,32]. In contrast, in our model, graphs are used mainly
as a distributed program structure, which consists of a collection of programming prim-
itives that directly support computation and communication in a distributed program.
Graphs can be used for naming, grouping, and con#guring distributed tasks. They can
also be used as a distributed computing framework for implementing uniform message
passing and process coordination. Graph-oriented programming allows a programmer
to concentrate on the logic of the application without having to be concerned with the
low-level details associated with implementing and maintaining the underlying com-
munication and coordination [8].
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The graph-oriented model, underlying the DIG environment, facilitates a novel ap-
proach to dynamic con#guration management. The management mechanism, which is
presented in this paper, provides a collection of programming primitives that can be
invoked from a graph-oriented distributed application to dynamically modify and ex-
tend its structure and functionality. Dynamic con#guration activities can be initiated by
any distributed process in the system. Dynamic con#guration is achieved by executing
a sequence of primitives (which is called a con#guration plan). A dynamic con#gura-
tion manager is responsible for validating the con#guration plan and coordinating the
distributed processes to execute the plan.

The rest of this paper is organized as follows. Section 2 discusses the research that is
related to dynamic con#guration management of distributed systems. Section 3 brieEy
describes the graph-oriented distributed programming model. Section 4 presents the
dynamic con#guration management in the graph-oriented model. Section 5 describes
the dynamic con#guration manager and its prototypical implementation. Section 6 con-
cludes the paper with a discussion of future work.

2. Related work

The most important issues in dynamic recon#guration include the properties of a
program, the programming languages used and the underlying supporting environment,
which facilitates arbitrary and unpredictable dynamic changes to distributed applica-
tions and systems. There has been much discussion about whether the description of
the con#guration should be included in the program or whether there should be a sep-
arate language to describe this aspect. Most existing programming systems integrate
the description of the logical program structure into the programming languages (e.g.,
ADA [1], CSP [13,31], and SR [2,3]). Consequently, the interconnections among the
program components are embedded at the programming level; hence, they do not sup-
port unpredictable changes in the con#guration. Although some programming languages
do support dynamic interconnections by allowing name passing [2] and some permit
the dynamic creation of software components [1], they do not have any provision for
accommodating unpredicted interconnections and unknown component types [19].

The distributed programming language and associated system that is called ARGUS
[6] permits a large degree of dynamic recon#guration. However, it does not enforce
su<cient separation between the component programming and the con#guration. The
statements about the con#guration are embedded in the component programs. Such an
approach makes it di<cult to validate changes in the con#guration.

The con6guration programming approaches [4,5,14,15,17,22,25,30] use con#guration
languages and associated environments to describe, construct and manage distributed
software. They are based on the idea of separating the activities associated with com-
ponent programming and the system con#guration. They advocate having a dedicated
con#guration language that is separate from the language for component programming.
Con#guration languages specify the structure of a system as a set of components and
their interconnections. Early systems [4,20] provide structuring mechanisms but they
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lack eDective mechanisms for describing dynamic changes. They usually do not have
the capability to program the con#guration. The recon#guration in these systems re-
quires either a user’s intervention or some additional mechanisms. The CONIC toolkit
[24] provides two languages: a programming language that is used to program the
functional modules and a con#guration language that is used to specify the static con-
#guration of the system. It also allows the speci#cation of the mapping of the logical
structure to the physical structure. The con#guration language is a declarative language
that is used only to describe the structure of a system. It is di<cult to specify an
unpredicted (not preplanned) recon#guration [23]. Although CONIC supports on-line
recon#guration by allowing the submission of a new con#guration, it cannot be used
for some kinds of recon#guration. For example, it cannot be used in fault tolerant
systems because this kind of recon#guration requires the intervention of an operator.

Con#guration languages have been extended to describe dynamic changes in the con-
#guration. Darwin is a con#guration language that is used for structuring parallel and
distributed programs that are deployed in the REX environment [24]. It is an extension
of the CONIC environment, which is described above. In addition to representing the
static structures of software and hardware, Darwin is able to represent structures that
undergo dynamic changes.

Durra is a language for describing structures that is used for developing real-time
distributed programs [4]. It provides a con#guration language that can specify the
preplanned recon#guration of a system, which depends on the current con#guration
and the occurrence of certain events (usually in temporal expressions). A preplanned
recon#guration is speci#ed by a temporal expression and a set of pairs of con#gurations
that consist of an expected con#guration and a new con#guration. The system assumes
that the expected con#guration matches the current con#guration of the system when
the temporal expression is satis#ed. As the conditions for a recon#guration are speci#ed
in temporal expressions, it is not possible to specify more sophisticated conditions for
a recon#guration. Above all, the mechanism for specifying the recon#guration becomes
very cumbersome once the system allows a large number of possible con#gurations.

Dynamic recon#guration raises several issues in con#guration management that are
related to the preservation of the consistency and integrity of applications [18,26,23].
To ensure that a change is performed in a safe manner, which results in a consistent
state for the modi#ed system, the con#guration management system needs to determine
a “safe” recon#guration in which a component has to be aware of the fact that it is
being recon#gured. In Surgeon [15], with certain restrictions, software components can
be prepared to perform a recon#guration that involves replacement and replication.
ARGUS [6] can support the replacement of a module without much participation from
an application.

3. The graph-oriented distributed programming model

Distributed implementation of graphs (DIG) is an integrated software platform that
is based on a graph-oriented distributed programming model to provide support for
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constructing recon#gurable distributed programs. In a graph-oriented distributed model,
a distributed program is de#ned as a collection of local programs (LPs) that can execute
on multiple processors. The LPs represent the parallel computations. The communica-
tion between LPs is via message passing.

A graph-oriented distributed program is de#ned as a logical graph, G(V; E), where
V is a #nite set of vertices and E is a #nite set of edges. Each edge of the graph links
a pair of vertices in V . A graph is directed if each edge is unidirectional. A graph is
weighted if every edge is associated with a weight value. A graph is associated with
a distributed program, which consists of a collection of LPs at the vertices with the
messages that pass along the edges of the graph. Each vertex is bound to an LP and
each edge denotes the relationship between a pair of LPs. The graph can represent a
logical structure that is independent of the real structure of a distributed system, which
can be used to reEect the properties of the underlying system. For example, the weight
on each edge may denote the cost or delay in sending a message from one site to
another site within the system.

A DIG-based program consists of a collection of LPs, which are built using the
graph construct, and a main program. A graph construct consists of a directed con-
ceptual graph (DGraph), an LP-to-vertex mapping, and an optional vertex-to-processor
mapping. A graph construct is speci#ed as follows:

• A conceptual graph: in which vertices represent the LPs of a distributed program
and edges represent the relationships between LPs.

• A LP-to-vertex mapping: showing the binding of LPs to the vertices.
• An optional vertex-to-processor mapping: specifying the mapping of the logical

graph to the processors of the underlying system. If this mapping is omitted, the
run-time system will automatically decide the mapping.

Using the graph construct that is de#ned above, an application programmer can
create an instance of a graph construct using the following steps:

Step 1: DGraph template declaration and instantiation.
A DGraph is a template for a logical graph that is de#ned in the model. It de#nes a

construct as a conceptual graph describing the logical relationships between LPs, and
it instantiates a graph instance and associates a name with the instance. The structure
of a DGraph is a general type of logical graph, which is described as a list of vertices
connected with edges. The language description (given below) de#nes the structure of
a DGraph in Backus–Naur Form.

¡DGraph-template¿ ::= DGraph DGraph-name ‘=’ {{¡set-of -vertices¿};
{¡list-of -edges¿}}
¡set-of -vertices¿ ::= ¡range-of -vertices¿|¡vertex-list¿
¡range-of -vertices¿ ::= ¡vertex no¿::¡vertex no¿
¡vertex-list¿ ::= ¡vertex-list¿; ¡vertex no¿|¡vertex no¿
¡list-of -edges¿ ::= ¡list-of -edges¿; {vertex no; vertex no}|e

A DGraph is the type identi#er denoting the de#nition of a graph construct. The
DGraph-name is an identi#er of a graph construct. The vertex no is an integer identi#er
of a vertex.
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Step 2: DIG mapping.
Map LPs to the conceptual vertices of a graph and the vertices to the underlying

processors. The LP-to-vertex mapping is de#ned as a set of (vertex no, LP no) pairs.

¡LV -mapping¿ ::= LVMAP LV -map-name ‘=’ {¡vertex-lp-pair¿}
¡vertex-lp-pair¿ ::= ¡vertex-lp-pair¿; {¡vertex no¿; ¡LP no¿}|e

LVMAP is the type identi#er of an LP-to-vertex mapping. LV-map-name is the name
of a mapping instance. The LP named in LP no is mapped to the vertex identi#ed by
vertex no.

The vertex-to-processor mapping is optional in the graph construct, which is speci#ed
by a set of (vertex no, processor no) pairs, in a similar form to the LP-to-vertex
mapping.

¡VP-mapping¿ ::= VPMAP VP-map-name ‘=’ {¡vertex-processor-pair¿}
¡vertex-processor-pair¿ ::=¡vertex-processor-pair¿; {¡vertex no¿;

¡processor no¿}|e
VPMAP is the type identi#er of a vertex-to-processor mapping. VP-map-name is the
name of a mapping instance. The vertex named in vertex no is mapped to the processor
identi#ed by processor no.

Step 3: DIG construct binding.
Given the declaration of a graph construct and its mappings, a graph instance can

be created by binding the mappings to the graph. The CreateDIG function is used for
this purpose.

CreateDIG

(DGraph-name; LV -map-name; VP-map-name; DIG-instance-name);

DIG-instance-name is the identi#er of a #le that speci#es all of the information about
the newly created instance. This information is useful in establishing the operating
context for the LPs. LV-map-name is the name of an LP-to-vertex mapping and VP-
map-name is the name of a vertex-to-processor mapping. The local operating context
is created by

SetUpLocalDIG (DGraph-name; DIG-instance-name; myvid);

The myvid argument is the identi#er of an instance of an LP. As a result of a call to
the SetUPLocalDIG function, a local representation of the distributed instance of a con-
ceptual graph is created and the information required by the communication protocols
is generated.

Programming based on a graph-oriented model includes creating the graph construct
and writing program code for the LPs using the graph primitives. A programmer can
#rst de#ne a graph construct that speci#es the structure of a distributed program and
then write code for the LPs. The programmer has enough Eexibility to exploit the
semantics of the graph construct to deal with diDerent aspects of distributed program-
ming in an identical way. In this way, the programmer is saved from the burden of
writing dedicated program codes for implementing message passing and task mapping,
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Fig. 1. A graph of a hypercube and its spanning tree.

and he=she can concentrate on designing the structure and the logic of the distributed
program instead.

The following example explains the basic approach for using our graph-oriented
distributed programming model. Our example is the computation of a global sum that
is based on a hypercube, as shown in Fig. 1(a).

The hypercube is speci#ed as the graph construct that is given below:

(1) Conceptual graph:

DGraph hypercube= { {0::7};
{{0; 1}; {0; 2}; {0; 4}; {1; 3}; {1; 5}; {2; 3}; {2; 6};
{3; 7}; {4; 5}; {4; 6}; {5; 7}; {6; 7}} };

This declaration de#nes a graph construct named hypercube. The #rst com-
ponent of the de#nition, {0:::7}, speci#es all vertices in the graph. The second
component speci#es all edges, where each edge is de#ned as a pair of adjacent
vertices.

(2) LP-to-vertex mapping:

LVMAP LVM= { {0; “Coordinator”}; {1; “Participant”};
{2; “Participant”}; {3; “Participant”};
{4; “Participant”}; {5; “Participant”};
{6; “Participant”}; {7; “Participant”}} };

This declaration speci#es a mapping that is named LVM, which maps between the
vertices and the LPs. In our example, there are two types of LPs: the Coordinator
receives and distributes the global sum, and the Participant calculates and submits the
partial sums for a vertex and then collects the #nal global sum from the Coordinator.
One approach to compute the global sum is based on deriving a spanning tree from
the hypercube, as shown in Fig. 1(b), and then performing the calculation based on
that tree [7]. This is an e<cient algorithm because the number of messages that are
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sent between the processes is the minimum. The following text describes the program
codes of the Coordinator and Participant.

Coordinator()
{

float global sum;
MESSAGE message, re message;
int myvid;

SetUpLocalDIG(hypercube, “GlobalSum”, myvid);
SpanningTree(hypercube, myvid, hypercube st);
PrepareMessage(message, myvid, “GLOBALSUM”, No Data);
SendToChildren(hypercube st, message);
global sum = my value;
while (ReceiveFromChildren(hypercube st, re message, “PARTIALSUM”))
global sum = global sum + re message.data;

PrepareMessage(message, myvid, “RESULT GLOBALSUM”, global sum);
BroadcastMessage(hypercube st, message);

}

Participant ()
{

float partial sum, global sum;
MESSAGE message, re message;
int myvid;

SetUpLocalDIG(hypercube, “GlobalSum”, myvid);
partial sum = my value;
ReceiveMessage(hypercube st, re message, “GLOBALSUM”);
If ( !IsLeaf(hypercube st, myvid) ) {
PrepareMessage(message, myvid, “GLOBALSUM”, No Data);
SendToChildren(hypercube st, message);
While (ReceiveFromChildren(hypercube st, re message, “PARTIALSUM”))
partial sum = partial sum + re message.data;

}
PrepareMessage(message, myvid, “PARTIALSUM”, partial sum);
SendToParent(hypercube st, message);
ReceiveMessage(hypercube st, re message, “RESULT GLOBALSUM”);
global sum = re message.data;

}

The spanning tree can be derived automatically using the SpanningTree() primitive
in the Coordinator, which is then implemented by the underlying support system of the
DIG model. Each LP starts by creating a local operating context for its computation.
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This is done by calling the primitive SetUpLocalDIG(DGraph-name, DIG-instance-
name, myvid). Each LP has a unique identi#er called myvid. The myvid identi#er is
bound to a processor ID in the vertex-to-processor mapping. The PrepareMessage()
primitive is used to compose a message by assigning it the ID of the sender, a mes-
sage type and some other parameters. A call to SendToChildren() with a given message
causes that message to be sent over every edge emanating from a given vertex. Receive-
FromChildren() collects the messages from all edges emanating from a given vertex;
one message is collected per edge.

The vertex-to-processor mapping, VPM, can also be speci#ed in the graph con-
struct. This mapping is optional. However, if it is missing, a default mapping will be
generated. Given the conceptual graph and the LP-to-vertex mapping, the function Cre-
ateDIG(hypercube, LVM, “GlobalSum”) can be called to combine the graph declaration
and the mapping and produce an instance, called GlobalSum, of the graph construct.

A rich set of primitives is provided for performing various operations on the graphs.
The operations on the graphs can be categorized into several classes [8], including
communication among the vertices, subgraph generation, graph update and query. Us-
ing the graph-oriented model, a programmer can simply invoke such operations and
base the calculation on the resulting subgraph and use of the primitives (such as Send-
ToChildren, ReceiveFromChildren, SendToParent, and ReceiveFromParent).

The program code that is shown here is based on the C language. However, the
programming language, which is used to encode the graph construct, is not important.
Our model is applicable to other programming languages.

The realization of a graph-oriented model depends on the DIG, which provides a
logical abstraction of the underlying operations. Also, the following functions need to
be implemented:

Distribution of a graph: This is the representation of a graph in a distributed en-
vironment. A graph can be either directed or undirected. The distribution of a graph
can be implemented on the processors in three ways: centralized, partitioned, and repli-
cated. Implementations of the operations on the graph will vary for diDerent forms of
distribution of the graph.

Mapping: This is the method for mapping a graph to the underlying processors of
a network. If a user speci#es the mapping, the solution is straightforward. Otherwise,
the run-time system will need to explore task-scheduling techniques to map the graph
to the processors so that it makes e<cient use of resources and=or speeds up the
computations of the system.

Operations on a graph: These are the required operations on a graph and the dis-
tributed implementation of those operations needs to be designed.

Our graph-oriented programming model supports message passing and other useful
inter-process communication (IPC) abstractions (such as ports, binding and group com-
munication) that are used in many existing systems. In addition to the graph-oriented
communications, the model also allows a programmer to exploit the graph construct to
deal with other aspects of distributed computing. For example, a graph can be modi#ed
dynamically to reEect the recon#guration of the system. In the rest of this paper, we
focus on the properties and operations in our model for the dynamic con#guration of
a system.
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4. Dynamic con guration management in the graph-oriented model

4.1. Dynamic con6guration model

With DIG, a programmer can construct a distributed program using a logical graph.
Both the structure of the graph and the structure of the underlying distributed system
can be changed dynamically. Furthermore, the mapping of LPs to physical processors
can also be changed dynamically. In this section, we describe the model in DIG for
dynamic con#guration. A dynamic con#guration model speci#es the methodology for
dynamic recon#guration and the required properties of the system components and
the con#guration system. The dynamic con#guration model is actually built on the
graph-oriented programming model and it provides special primitives and functions for
con#guration.

To achieve dynamic recon#guration, the design of software components, the pro-
gramming language and the supporting environment must possess special properties
[19,23]. The term software component refers to a part of the software of a distributed
system. A component type is the program code that is executed by a component in-
stance [23]. Many component instances may be created from a particular component
type. A component encapsulates its local data and functions, and it can communicate
with other components through well-de#ned interfaces. In our con#guration model, the
instances of software components correspond to the LPs that are described as part of
the graph-oriented programming model. The components can be coded in a conven-
tional programming language such as C. The DIG system is implemented as a set of
library routines for a conventional programming language. An LP has a format that
consists of the statements of the language and additional DIG functions. The invocation
of a function that is implemented by an LP is done by passing messages that contain
the speci#ed function name.

The systems that can accommodate recon#guration usually have the properties of
modularity and context independence. Context independence means that all interac-
tions of a software component with its environment are explicitly described in the
interface of that component [18]. In particular, the information about the con#guration
should be separated from the components. A software component is required to be con-
text independent to ensure uniformity in its behavior in diDerent con#gurations. This
separation of the con#gurative information from the components of the system pro-
vides Eexibility for the software recon#guration being manipulated at run-time, thereby
minimizing the inEuence on the components’ uniformity. Therefore, when a change
in the con#guration occurs, the components do not need to stop execution, and only
the separate con#gurative information has to be updated. In the following text, this
con#gurative information is referred to as con6guration speci6cation.

The components should support modularity of the software. That is, the components
can be written and compiled independently. All of the statements in the program code
within a component should only refer to local objects and not refer to any shared
objects, since such a reference would limit the Eexibility of adding and removing
components. The direct naming of component modules and communication entities must
be avoided in any component, since it would limit the Eexibility of the recon#guration.
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Instead, the names of components and communication entities should be speci#ed in the
con#guration speci#cation. Otherwise, when recon#guration is needed, a programmer
would have to stop an application and then edit the program code and compile it, thus
making dynamic recon#guration impossible.

A con#guration speci#cation is usually written in a special language called the con-
6guration language, which is also used to write the speci#cation for a recon#guration
of a system. This language should also allow the speci#cation of unplanned recon#g-
urations to be made while the system is executing.

The graph-oriented distributed programs exhibit the properties that are described
above. Based on the graph-oriented model, our approach to dynamic recon#guration is
to incorporate the con#guration speci#cation into the program design, eliminating the
dependency of the code on the con#gurative information. Both the software components
and their con#guration are speci#ed using a conventional programming language that
is extended with library primitives. The con#guration speci#cation contains the de#ni-
tion of the context, a description of the interconnections among LPs and the optional
allocation of the LPs to processors. Recon#guration is also described using the same
language. The modularity of the speci#cation [19] is achieved by the logical graph
construct. The communication and synchronization between the LPs are programmed
in terms of the logical graph (using functions such as SendToChildren, ReceiveFrom-
Children, SendToParent, and ReceiveFromParent) rather than by indicating the explicit
identi#ers of the LPs. For dynamic recon#guration, this approach allows the IPC in-
terface (each provided at a particular vertex) to be decoupled from the actual LPs
that respond to the messages. Each LP at a vertex refers internally to its peers during
communication using only local names that will remain unchanged under diDerent con-
#gurations of the system. Furthermore, the mapping of a logical vertex to a physical
processor is performed by the underlying support system and the mapping is transparent
to an application.

Dynamic con#guration occurs for two main reasons: operational and evolutionary
requirements [23]. The requirement for operational changes, such as dynamic expansion
of worker processes (e.g., in a tree structure) in a master–slave paradigm, can be
programmed into a distributed program because this requirement is indicated at the time
the program is designed (see the #rst example in Section 5.2). However, evolutionary
changes, such as expanding or adding new functionality or handling load imbalance and
faults, cannot be predicted when a program is developed. The main diDerence between
the two requirements lies in whether the con#guration speci#cation of a distributed
program has to be modi#ed at run-time to reEect the recon#guration of the system. For
the operational requirement, the con#guration speci#cation remains unchanged, whereas
for the evolutionary requirement, the operations for con#guration must be applied to the
original speci#cation to change its contents and also applied to change the distributed
program.

Our model supports both operational and evolutionary changes. We have anticipated
an incremental dynamic con#guration process that can deal with an arbitrary unpre-
dicted modi#cation and an extension to the functionality without rebuilding the entire
system. In DIG, a recon#guration can be speci#ed as a structural modi#cation to the
system by specifying the replacement, addition and reconnection of components. For
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example, we could expand the size of the hypercube dynamically by adding more
vertices to the logical graph and by binding appropriate instances of the LPs to the
vertices. The following primitives are provided for dynamic con#guration:

1. int AddVertex(int vertex no, char ∗graph name); // add a vertex to a graph.
2. int DelVertex(int Vertex no, char ∗graph name); // delete a vertex from a graph.
3. int AddEdge(int start vertex, int end vertex, char ∗graph name); // add an edge

between two vertices in a graph.
4. int DelEdge(int start vertex, int end vertex, char ∗graph name); // delete the edge

between two vertices from a graph.
5. int MapLptoVertex(int LP no, int vertex no, char ∗graph name); // map a local

program to a vertex.
6. int UnMapLptoVertex(int LP no, int vertex no, char ∗graph name); // remove the

mapping of a local program to a vertex in a graph.
7. int MapVertextoHost(int vertex no, char ∗hostname); // map a vertex to a processor.
8. int UnMapVertextoHost(int vertex no, char ∗hostname); // remove the mapping of

a vertex to a host.

In evolutionary changes, the sequence of operations to change a system can be
applied progressively. Accordingly, the state of the con#guration has to be considered
and modeled. The operations must be speci#ed in the context of the con#guration states,
which can be maintained in a (con#guration) database by the dynamic recon#guration
manager.

4.2. A framework for dynamic con6guration management

Because of the varied relationships among the interactions of the components and the
requirements for consistency, a dynamic con#guration management system is needed
to support the required dynamic changes to distributed applications and systems. Fig. 2
shows our framework for dynamic recon#guration. The shaded area shows the workEow
of the dynamic recon#guration on a distributed system. The requests for recon#guration
are sent to the validation module, which checks the validity of the requests. The valida-
tion module needs to inquire about the con#gurative information that is maintained in
the con#guration speci#cation database. If the sequence of requests is valid, the recon-
#guration module will update the corresponding graph construct and the con#guration
speci#cation.

An essential component of dynamic con#guration management is dynamic recon-
6guration manager, which is responsible for validating a recon#guration plan and for
coordinating the distributed processes to execute the plan. The manager maintains a
database of the con#gurative information associated with the distributed programs. Ini-
tially, when a distributed program is constructed, the dynamic recon#guration manager
reads and checks the content of the con#guration speci#cation and then builds the
graph construct accordingly. Multiple instances of a graph construct can coexist where
each one is associated with its own con#guration speci#cation. During the execution
of a distributed program, the manager is ready to accept requests for recon#guration
that are speci#ed in a recon#guration plan and then validate and process the plan.



J. Cao et al. / Science of Computer Programming 48 (2003) 43–65 55

Validated
Request

Graph-Oriented
Configuration
Specification

Database

Validation

Reconfiguration

Current
Configurative
Information

Graph
Constructs

Update the
Graph Construct and
Configuration Specification

Reconfiguration
Request

Fig. 2. The dynamic recon#guration framework.

Fig. 3 shows the component modules of the dynamic recon#guration manager. The
communication module is responsible for the interactions between the initiating pro-
gram component and the LPs. It receives the requests for recon#guration and returns
the processing status to the appropriate module of the calling program after the recon-
#guration has #nished. The con#guration speci#cation module reads the con#gurative
information from the con#guration database and updates the con#guration speci#cation
in the database according to the recon#guration that was performed. The validation
module performs the validation operations for the requests, as described in Fig. 2. This
validation includes checking for the existence of a vertex or an edge that is planned
to be deleted, maintaining a causal ordering among the requested changes, etc. The
following primitives have been provided for validation:

1. boolean IsGraphExist(char ∗graph name); // check whether a specified graph exists
2. boolean IsVertexExist(int vertex no, char ∗graph name); // check whether a vertex

exists in a graph
3. boolean IsMaxVertexExist(char ∗graph name); // check whether a maximum num-

ber of vertices already exist in a graph.
4. boolean IsEdgeExist(int start vertex, int end vertex, char ∗graph name); // check

whether an edge exists in a graph.
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Fig. 3. Component modules of the dynamic recon#guration manager.

5. boolean IsLPtoVertexExist(int LP no, int vertex no, char ∗dgraph instance name);
// check whether a LP to vertex mapping exists in a graph instance.

6. boolean IsInsExist(int LP no, char ∗dgraph instance name); // check whether a LP
instance exists in a graph instance.

7. boolean IsInsMapped(int LP no, char ∗dgraph instance name); // check whether a
LP instance is mapped to a vertex in a graph.

8. boolean IsMaxInsExist(char ∗dgraph instance name); // check whether a maximum
number of LP instances already exist in a graph.
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9. boolean IsVertexValid(int vertex no); // check whether a vertex has a valid ID
ranging from zero to a maximum number.

10. boolean IsInsValid(int LP no); // check whether a LP instance has a valid ID ranging
from zero to a maximum number.

11. boolean IsVertexMapped(int vertex no, char ∗dgraph instance name); // check
whether a vertex has been mapped to a processor.

After the validation, the recon#guration module executes the valid recon#guration
and updates the graph construct. An important requirement of the recon#guration man-
agement process is to ensure that a dynamic change is performed in a safe manner to
maintain a consistent state for the modi#ed system. Standard consistency constraints,
which are independent of the application, can be built into the validation module of
the recon#guration manager. However, it is believed, in general, that the consistency
cannot be preserved without the support of the application programs that form the
base-level components [17]. Therefore, the consistency constraints cannot simply be
added as a management facility to an existing distributed system. We will not discuss
this issue further in this paper.

5. A prototypical implementation

We have implemented a prototype of the graph-oriented distributed programming
model [8]. This implementation is on top of a parallel virtual machine (PVM) [12] over
a network of SUN workstations. The graph construct is provided to the programmers
as a library of C routines. A distributed representation of a directed graph is used [9].
Each graph is assigned an identi#er that is unique within the entire system, which is
used to invoke the operations on the graph. Multiple graphs can coexist in the system
and be run in parallel. DIG does not attempt to completely hide the message-passing
paradigm at the level of program. A programmer still has a message-passing view of
the system. However, this is an abstract view that is de#ned in terms of the edges
in a logical graph. The programs that are based on the DIG model are bound to the
vertices of a graph and integrated with the distributed graph operations and inter-vertex
communications.

5.1. A central-server-based implementation

Based on the prototypical implementation of DIG, a prototype of the graph-oriented
dynamic con#guration management platform has been developed. A PVM is used as
a virtual machine-con#guration platform and as the communication library in the im-
plementation of our example DIG model. A kernel of the DIG runtime system is run
at each site on top of a PVM, as shown in Fig. 4. Programs can simply call DIG
functions to interface with our platform using the daemons of a PVM.

A PVM provides a uni#ed framework for developing parallel programs in an e<cient
and straightforward manner. It provides an abstraction for representing a collection
of heterogeneous computer systems as a single virtual parallel machine. Moreover,
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Fig. 4. The implementation architecture.

Fig. 5. Infrastructure of the dynamic recon#guration management.

it handles message routing, data conversion and task scheduling across a network of
heterogeneous computers. The user can write a collection of cooperative processes
(called tasks) to access the resources of a PVM using a library of standard interface
routines. The tasks on a PVM have arbitrary control that allows tasks to start or stop
and it also allows computers to be added or deleted from the virtual machine at any
time during the execution of an application. These properties make a PVM a useful
tool for developing our graph-oriented distributed programming platform. In addition,
with our platform being implemented on top of a PVM, it is also easy to port our
platform to diDerent hardware environments.

The prototype of the dynamic recon#guration management process is implemented
in a client-server infrastructure. Fig. 5 depicts this client-server infrastructure. The cen-
tral server maintains the con#guration speci#cation of graph instances. The validation
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Fig. 6. The interaction between a client’s stub function and a central server.

and execution of a recon#guration plan is performed as a client-server process, where
the central server receives the requests from the program modules of a distributed
application and initiates the recon#guration.

The invocation of the recon#guration functions on the central server is implemented
using the primitives provided by a PVM. The central server blocks and waits for the
incoming requests when it is in idle. When a recon#guration is initiated, a function
call is made to a stub function, which in turn invokes the management function at the
central server. When a recon#guration is completed, the server sends the result back
to the stub function. Fig. 6 illustrates the interaction between the requesting program
and the central server for a recon#guration operation that involves adding a vertex to
a graph.
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Fig. 7. The process of creating the binary tree.

5.2. Sample applications

The graph-oriented method for dynamic recon#guration is powerful enough to model
and implement various types of parallel and distributed programs. One of the popular
parallel programming paradigms is called tree computing. In this paradigm, local pro-
cesses in a parallel program are spawned dynamically and associated with a tree-like
structure. The establishment of this tree structure results from the parent–child relation-
ships between the processes. Such a tree-computing model is suitable for applications
with an unpredictable workload (i.e., the total workload of a program is unknown
before execution).

One sample application of tree computing is the Split-Sort-Merge algorithm. In this
parallel sorting algorithm, one process contains a list of entities that are to be sorted
and it spawns a second process and sends it half of the list. After the two sublists
have been sorted separately, the #rst process is then responsible for merging the two
sublists to produce the #nal sorted list. This split and merge process can be carried out
recursively at diDerent component processes. The spawning procedure continues until
a tree with an appropriate depth is formed. Then, each process sorts its own sublist
and a merge phase follows in which the sorted sublists are transmitted upwards along
the tree branches with the intermediate merges being done at each appropriate node.

In this example, the main program is responsible for calling the primitives for graph-
oriented recon#guration to create an initial graph construct of the binary tree. Another
type of local program is the child process, which may create vertices dynamically for
the binary tree by sending requests for recon#guration to the central server to change
the con#guration of the system during execution. The execution Eow of the Split-Sort-
Merge program is as follows.

• The main() program calls create binary tree(“conf spec”, “binary tree”), where
conf spec is the #le containing the con#guration speci#cation and binary tree is the
name of the graph construct that is built using the information from conf spec.
Fig. 7(a) shows the initial graph that is described by conf spec.

• As the main program executes, vertex 1 is added to the tree. An instance of the LP
called child is added and mapped to vertex 1, which is then mapped to a host. An
edge is added from vertex 0 to vertex 1. Now, a tree with two vertices has been
created, as shown in Fig. 7(b).



J. Cao et al. / Science of Computer Programming 48 (2003) 43–65 61

# GRAPH NAME : binary_tree
[VERTEX]
0,1,2,3,4,5,6

[EDGE]
0,1;0,2;1,3;1,4;2,5;2,6

[LP]
0,main;1,child;2,child;3,child;4,child;5,child;6,child

[LPtoVERTEX]
0,0;1,1;2,2;3,3;4,4;5,5;6,6

[VERTEXtoHOST]
0,lisa;1,marge;2,homer;3,maggie;4,orion;5,mecury;6,aries

Fig. 8. Con#guration speci#cation for the binary tree.
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Fig. 9. The logical structure of the binary tree.

• The main program continues to add vertex 2. At the same time, the child that is
bound to vertex 1 begins its execution, which will add two more vertices, 3 and 4,
to the logical graph. The process continues until the list that is to be sorted at each
vertex is short enough. In this example, a two-level binary tree composed of 7 nodes
and 7 LPs is created. Fig. 8 shows the content of the #nal #le for the con#guration
speci#cation and Fig. 9 shows the logical structure of the binary tree.

This example shows an operational change in the con#guration. The same principle is
also suitable for performing an evolutionary change. Let us consider another example,
the distributed optimization problem (DOP). The objective of a discrete optimization
problem is to #nd an optimal solution from a #nite or in#nite (countable) set of solu-
tions that satisfy the speci#ed constraints. Problems in various #elds can be categorized
as DOPs, for example, planning and scheduling problems, the optimal layout of very
large-scale integration chips, robot motion planning, test-pattern generation for digital
circuits, logistics and control [21]. DOPs are usually solved by search algorithms that
evaluate a set of candidate solutions to #nd one that satis#es the problem-speci#c cri-
teria. In most DOPs, the solution set is so vast that it is not feasible to enumerate
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Fig. 10. The graph structure of a DOP.

through all candidates to determine the optimal solution. Thus, the solution space of
a DOP problem can be represented as a tree. The DOP problem is solved by #nding
an optimal solution along a path in the tree. The tree can be expanded dynamically by
generating new nodes at the ends of the existing branches to represent new candidate
solutions during the search. Each new node that is generated leads to an unexplored
part of the search space. The expansion and search of the solution space continues on
the tree until an optimal solution has been found.

In the parallel search of DOPs, the search space is distributed onto multiple pro-
cesses. Each process searches a subtree that can be expanded at run-time without any
interaction with the other processes. Since the search space is generated dynamically,
it is di<cult to estimate the size of the search space before execution. Hence, it is
impossible to partition the search space evenly among the processes in advance. DOPs
can be represented in our DIG model. The dynamic recon#guration of the model en-
ables the evolution of the tree to reEect the dynamic expansion of the search space.
This is an evolutionary change. Fig. 10 shows the graph construct (i.e., a tree) of a
DOP. In the tree, the root (vertex 0) initially holds the whole search space. If the
initial workload is high, the root node can generate new vertices to do parallel search
on the subspaces. During the search, the workload on any vertex may become high due
to the expansion of the search space. An overloaded vertex can spawn a new vertex
to process part of the subspace. A new vertex is then bound to a new process that
runs on an additional processor to perform the search on the subspace. The tree will
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not be expanded further when the workload on each vertex stays at a reasonable level
(i.e., below a threshold). In Fig. 10, eventually 18 vertices are generated to perform
the parallel search in the solution space.

In addition to the dynamic expansion of a graph, the workload can be scheduled
among the processes dynamically. When a process runs out of work, it can also request
extra work from another process that has an unexplored subspace. The requesting
process submits a request for more work to the dynamic recon#guration manager. The
manager examines the status of all processes and transfers a portion of an unexplored
subspace from an appropriate process to the requesting process. If an optimal solution
is found or the whole solution space is exhausted, the computation terminates on all
processes.

6. Conclusions

In this paper, we have described a graph-oriented model, called distributed implemen-
tation of graphs (DIG), for programming distributed applications. We have discussed
dynamic con#guration management in the proposed distributed programming environ-
ment. We have also described the design of a graph-oriented dynamic recon#guration
manager and presented a prototypical implementation on a parallel virtual machine.
Examples of distributed programs have been constructed to illustrate implementations
of the DIG model. We believe that the proposed framework provides a novel approach
to programming recon#gurable distributed applications and systems. It is a powerful
system for modeling the dynamic features of various kinds of distributed and parallel
programs.

Some important issues have not been addressed in our work. For example, the ability
to compose a system hierarchically from the component interfaces is the main underly-
ing principle of the system con#guration and recon#guration. The recursive building of
a binary tree in the split-sort-merge program demonstrates the hierarchical construction
of a graph structure. The synchronization of the dynamic recon#guration operations
on a logical graph is essential to ensure the consistency of the application. The syn-
chronized interaction between a client stub and a central server in the prototypical
implementation demonstrates this capability of our model. Even so, a more compre-
hensive mechanism is required to support system-wide synchronization. In our future
work, we are now investigating the issues associated with ensuring safe and consistent
transitions of the states of the system during the recon#guration. For example, deter-
mining the recon#guration region, checking the states of the local programs (LPs) and
transferring the states from an old version of an LP to a new one, and the transparent
update of the con#guration speci#cation while the system continues execution.
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