

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2000;30:741–763

An evaluation of Java
implementations of
message-passing

Nenad Stankovic∗,† and Kang Zhang

Department of Computing, Division of ICS, Macquarie University, Sydney, NSW 2109, Australia

SUMMARY

As an objected-oriented programming language and a platform-independent environment, Java has been
attracting much attention. However, the trade-off between portability and performance has not spared Java.
The initial performance of Java programs has been poor, due to the interpretive nature of the environment.
In this paper we present the communication performance results of three different types of message-passing
programs: native, Java and native communications, and pure Java. Despite concerns about performance
and numerical issues, we believe the obtained results confirm that high-performance parallel computing in
Java is possible, as the technology matures and the approach is pragmatic. Copyright 2000 John Wiley &
Sons, Ltd.

KEY WORDS: message passing; Java; MPI; PVM; COMMS1; broadcast

INTRODUCTION

When programming for parallel processing, the message-passing model, although less ambitious, has
proven more popular than the shared memory. The main advantages are generally better performance,
flexibility, and integrability into the existing programming tools and practices. Message-passing
libraries like the Message Passing Interface (MPI) [1] and the Parallel Virtual Machine (PVM) [2]
provide a common programming interface and a portable program source code across many computer
architectures that make up a network or cluster. The library interface is standardized, but multiple
architecture, topology specific and performance-tuned implementations of the same library are
available. Different implementations employ different approaches, and thus, the performance of each
implementation may deviate. When programming in languages like C and FORTRAN it is nevertheless
necessary to provide a correct executable for each target architecture.

∗Correspondence to: Nenad Stankovic, 2680 Fayette Drive, Apt. 406, Mountain View, CA 94040, U.S.A.
†E-mail: nstankov@ics.mq.edu.au

Received 23 August 1999
Copyright 2000 John Wiley & Sons, Ltd. Revised 10 January 2000

Accepted 10 January 2000

742 N. STANKOVIC AND K. ZHANG

In 1995 Sun Microsystems introduced a form of machine independent binaries that allow executables
to travel over the Internet and execute on any host machine containing the needed interface, referred
to as a Java Virtual Machine (JVM) [3]. This new language entitled Java [4] quickly found a home in
the entangled Internet Web community, with programmers writing small applications called applets.
The fundamental trade-off between portability and performance is well known to programmers of
scientific applications for parallel processing. With an interpretive language like the early Java we are
looking at an order of magnitude or more slower execution speed. Making Java programs run faster is
a challenging task and active area of research. Besides the interpreter, the other approaches to running
Java are a hardware implementation, a Hot Spot [5] compiler and a Just-In-Time (JIT) [6] compiler. The
most common solution to performance problems is by the use of a JIT that translates Java bytecodes
to native instructions, at runtime. The compilation causes some initial slowdown in program execution
speed, but significant performance improvements have been observed and reported [7]. The Hot Spot
technology is even more promising since it can further optimize bytecodes by performing runtime
analysis of the frequency of the code segments execution.

On the other hand, the Java bytecode language is emerging as a software distribution standard, with
major software and hardware vendors committed to porting the standard Java run-time environment
to their platforms. Being an object-oriented language, Java also has several built-in mechanisms that
allow the exploitation of the parallelism that is inherent in scientific computing. Java threads and
concurrency constructs that make use of native threads [8] are well suited to shared-memory computers.
They also have an important role to play in parallel systems when masking communication and I/O
latencies [9]. The performance of a parallel program is also influenced by the speed that data can be
exchanged between running processes. The Java networking package provides communication classes
based on sockets and Remote Method Invocation (RMI) [10] that can be used for message-passing
programming, but are regarded rather low-level and their scalability is questionable. The way the Java
I/O has been implemented was found to be a major source of overhead in some benchmarks [11].
The ability to access standard native libraries from Java programs through the Java Native Interface
(JNI) [12] is important not only for performance reasons, but also for reusing the wealth of existing C
and FORTRAN code with very little cost when writing new applications in Java.

This paper presents a comparison between three different forms: the native, the Java, and the Java-
enabled in which programs for parallel processing could be found. Two native libraries, a PVM and
an MPI implementation and two Java libraries: the JavaMPI [13] and the jPVM [14] that provide
interfaces to these two native libraries have been installed and tested. Also, four pure Java systems: the
DOGMA [15], the JPVM [16], the iBus [13], and our own communication library called RTComms.
The idea behind these projects is to enable parallel processing in Java based on the mentioned message-
passing systems, without modifying the language or the JVM. The tests consisted of the COMMS1 [18]
and collective benchmarks collected on different hardware and Java runtime environments. The cost of
message passing in Java is analyzed by looking into different steps when sending messages.

MESSAGE-PASSING MODEL

The message-passing programming model represents an application distributed over a collection of
processes that communicate problem parameters and results by sending messages. In distributed
memory multiprocessors or networked workstations, data are communicated by explicitly invoking

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 743

message-passing primitives. When sending a message, a typical message-passing primitive requires
a destination address, an identification tag, a content and (depending on the implementation and the
programming language) its length and data type. To receive a message, the receiving process provides
the senders address and tag to match against, and possibly a buffer with a maximum length. Message-
passing primitives often come as blocking (synchronous) and non-blocking (asynchronous). They
operate either between a pair of processes or on a group of processes. For example, the broadcast
primitive replicates a message onto a group of processes, while the barrier synchronizes a group.

Performance of a message-passing primitive is measured in units of time orbandwidthand expressed
asbytes-per-second. The time for a small or zero-length message to travel through the channel from the
sender to the receiver is known aslatency. It generally depends upon the speed of the signal through
the media and any software overhead in sending or receiving the message. Small messages play an
important role in evaluating synchronization cost and determining optimal granularity of parallelism.
Large messages are primarily affected by the available network bandwidth, with the media maximum
usually being approached. However, choosing only two numbers to represent the performance of a
network can be misleading. For better comparison and understanding of the behavior of a message-
passing environment, communication times are often being drawn as function of message length [19].

For two directly connected processes, message-passing time is usually a linear function of message
size. A number of factors that can affect the time to communicate a message can be identified. For
networks with a more complicated topology, a per-hop delay may increase the message-passing time.
Buffer alignment on word, cache-line or page may also affect performance, while message lengths that
are powers of two or cache-line size may provide better performance than smaller lengths. Context-
switch times may contribute to delays for small messages. Touching all the pages of the buffers can
reduce virtual memory effects, by swapping them into the memory prior to invoking a message-passing
primitive. Among other effects, it has been observed that exchangingworm upand synchronization
messages before collecting timing data can eliminate some first-time effects. The aggregate bandwidth
of the network, the amount of concurrency, and congestion management may be issues.

In a system like Java, many of these effects and techniques to eliminate or alleviate them are out
of control. On the other hand, Java, due to its architecture and execution mode, has introduced some
new issues to be aware of and deal with. If running as a stream of bytecodes, the virtual machine
branches out of the switch statement to perform an action, which often results in a cache miss. Run
time (e.g. JIT) compilation may solve this problem, but due to a limited time when compiling, the
compiler may not produce an optimal native code. The introduction of a garbage collector, and the
usage of threads in Java-based message-passing libraries further complicate the situation, as thread
creation times and scheduling become issues. For example, Java does not provide a mechanism to
discriminate against blocked threads upon notification. The programmer can resume either only one
thread at random or all of them, also in no particular order. Efficiency of I/O operations very much
depends on the implementation and optimizations in the virtual machine.

THREE TYPES OF IMPLEMENTATIONS

Four key aspects of Java bytecode-based software distribution motivate our interest in Java. First,
Java adds security [20] to the distribution of software, providing added benefits over more common
languages like C and C++. Second, the JVM delivers the environment that executes Java bytecode

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

744 N. STANKOVIC AND K. ZHANG

programs on a wide variety of architectures, allowing development of a truly portable software base.
Third, Java contains many features that are vital for the success of any universal language. The
existence of threads, for example, greatly simplifies the overlapping of I/O and computation, but
their usage, if not prudent, can prove costly. Last, due to the nature of interpreted languages, Java
executables run slower than their compiled counterparts in other languages. Different solutions are
being investigated to overcome this problem.

In our study, we investigate and evaluate pure Java and Java-enabled systems for message-passing
parallel programming. To evaluate the results, we compare them against the two popular native systems
that should define the range of values we aim for in Java. The JNI provides the bridge for calling native
methods from Java. This feature is desirable not only to access legacy libraries but also to speed up
performance and enable interoperability with legacy systems. Based on the native code dependability,
we can divide the systems of interest into Java-enabled systems (e.g. JavaMPI, jPVM), and pure Java
(e.g. JPVM, iBus, RTComms). While implemented in Java, DOGMA relies on native code (when
possible) for better communication performance.

MPI and PVM

The message-passing model has become the paradigm of choice for parallel processing. Although there
are many variations, the basic concept is well understood and has been widely exploited for the SPMD
type of programs on parallel computers and networks of workstations (NOW). MPI has become an
emerging standard for implementing SPMD, and since the release of the initial MPI specification [21],
several MPI implementations have been made publicly available. The standard is primarily concerned
with message-passing issues and performance, and leaves the question of process creation open. The
LAM [22] programming environment and development system that has been used in the tests comes,
nevertheless, with a complete set of tools to compile, run and debug parallel programs.

Similar to MPI, PVM is used to transform a network of computers into a metacomputing
environment. Although less rich in different modes and communication primitives, a PVM
implementation is a self-contained system that offers the utilities to spawn and control processes.
A PVM program is implemented as a set of processes that may join and leave the application, thus
promoting a dynamic processing environment.

JavaMPI and jPVM

It is believed that for Java to establish itself in scientific programming, the interoperability with native
legacy software through the JNI is very important. This is also important for performance reasons,
especially when no method apart from the interpreting is used to execute the bytecodes. In principle,
binding of a native library to Java can be accomplished either by dynamically linking the library
to the JVM, or by linking the library to the object code generated by a stand-alone Java compiler.
Complications stem from the fact that Java implements strong type safety, has no pointer arithmetic,
and Java data formats are different from those found in C. Therefore, a native method interface allows
C functions to access Java data and perform a format conversion if necessary. In binding a native
library to Java portability problems may arise. The JNI was not part of the original specification, and
incompatible interfaces exist from different vendors.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 745

In an effort to combine the advantages of the new features offered by Java, and yet not to sacrifice to
much of the performance, access to communication libraries like the MPI and PVM has been enabled.
The JavaMPI [13] binding allows Java programs to use a native MPI library, which was LAM in our
case. It comes with the Java-to-C interface generator (JCI) that takes as input a C header file and
generates a Java native method declaration for each exported function. Thus generated stubs convert
the arguments into a form understandable to the corresponding C functions. However, the conversion
comes at a cost, which is obvious from our benchmarks. The JavaMPI consists of more than 120
functions, and so far was the most complete and best supported among similar products. For example,
the HP Java project has been revived recently, with publicly available mpiJava [23] being an object-
oriented Java interface to the standard MPI. It supports MPICH [24] and Sun HPC-MPI [25] on Solaris,
and WMPI 1.1 [26] on Windows NT. We believe the performance should be similar to JavaMPI, as
both systems take the same approach. (The older version of mpiJava would not run on the benchmark
system, and it also required a patch to be applied to the MPICH.) The jPVM [14] interface is similar to
JavaMPI in its approach, but provides interoperability between Java and PVM.

DOGMA

DOGMA [15] is a Java environment designed to run parallel programs on networks of workstations
and supercomputers (IBM SP/2). The team has worked hard to improve the bad image of Java as being
too slow for scientific processing with some encouraging results. Regarding communication aspects,
DOGMA follows MPI by implementing a pure Java library called MPIJ that is based on the C++
bindings to the standard MPI as much as possible. MPIJ implements a large subset of MPI functionality,
but misses on virtual topologies and user-defined data-types. Objects must be manually serialized
before communicated as a stream of bytes, what probably also requires a user defined protocol. To
achieve better performance, native types are first marshaled into a Java byte array, and then sent over
a TCP/IP channel. For some architectures (e.g. MS Windows) the conversion is performed by a native
library, which increases performance by 40% [15]. The library uses persistent communication channels
that remain active as long as the program executes. While this feature improves performance, it does
not scale.

JPVM

JPVM [16] is a simple but, nevertheless, popular prototype that partially implements a PVM-like
environment in Java. The interface supported by the library is similar to the C and FORTRAN interface
to PVM, but with syntax and semantics modifications that match better the programming style of Java.
It also enhances PVM by the novel features such as thread safety, multiple communication endpoints
per task, and direct message routing by default. The communication library is based on the Java Object
Serialization [27] to send user-defined data, and persistent socket channels each of which is serviced
by its own thread and maintains its own send and receive message lists. The send is asynchronous,
while the receive blocks. An asynchronous receive is also available. As in PVM, the programmer must
manually pack the data into a buffer and unpack from it. The implementation model is flat since each
send (and receive) operation comprises streaming of three integers, two character arrays and one object.

Not all PVM communication primitives have been implemented, most notably there is no barrier
synchronization primitive. Being entirely implemented in Java, JPVM does not support interoperability

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

746 N. STANKOVIC AND K. ZHANG

with the standard PVM. The JAPE [28] project enhanced the JPVM functionally by implementing
the barrier and reduction primitives, and performance-wise by improving task creation and message
delivery. JPVM was also used as the basis to build an MPI-like system in Java called jmpi [29].

iBus

iBus [17] is an object-oriented, pure Java middleware aimed at supporting intranet applications (e.g.
groupware, multimedia) and as such is not a message-passing libraryper se. However, it can serve as
a basis to build one. The main strength lies in the development of location independent applications,
with no single point of failure and no background services, based on TCP/IP and reliable IP multicast.
The communication model in iBus is asynchronous (i.e. push) or synchronous (i.e. pull). For this
benchmark, we have used the push since the pull (re)uses the same channel for sending and receiving.
This has required a simple synchronization mechanism that blocks the sending of a new message
before a reply is received for a previous one. Rather than providing wrapper methods for sending and
receiving the benchmark used the standard mechanism of creating a posting with a data object that
contained a specified number of bytes, and pushing it down a TCP stack. The following code explains
the mechanism:

Stack stack = new Stack("TCP"); // TCP quality of service
iBusURL url = iBusURLFactory.create(...); // create channel
Data data = new Data(); // wrapper object
Posting posting = new Posting(1);
data.data = new byte[1000]; // allocate user data
posting.setLength(1); // constrain posting to 1 object only
posting.setObject(data); // add data to posting
stack.push(url,posting); // send posting

Upon receipt of a message, a callback method gets invoked that passes the posting in. The usage of a
data object as the wrapper when sending native types resembles the mechanism found in RTComms,
as described below. The COMMS1 test program has been run between two dedicated nodes without a
logical-to-physical address resolution.

The iBus version used in the tests was the last nonlicensed release made by Softwired. More recent
versions might be obtained free of charge for research (check the Softwired web-site), but they have a
different API, based on Java beans.

RTComms

RTComms is a communication class that follows the MPI standard, but also takes advantage of the
features like the function overloading and the Java Object Serialization to simplify the implementation
and programming. The RTComms class represents the API to our thread-safe communication library.
It is a part of our metacomputing environment called Visper [30]. The communication architecture is
presented in Figure1.

As in iBus, to help with data marshaling, all the message-passing methods take serializable objects
as arguments, and consequently messages consist of serializable Java objects that are communicated
via sockets. When serializing data, the programmer does not have to define the data type or the array

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 747

Figure 1. Communication architecture.

size. Being properties of the data, that is taken care of by the serialization mechanism itself. These
features simplify the signature of MPI primitives in our implementation, and reduce the possibility
of programming errors. As in MPI, each message has a tag, a process ID and a group to which the
sending or receiving process belongs. These three attributes are combined into an envelope object of
the abstract system VData class. When sending data, a RTDataSend object is used, and when receiving
a RTDataRecv is used. Both classes are derived from VData, and define the methods to match against
tag, group or process ID. All the primitives that send data take another argument that represents the
contents. For example, the blocking send is defined as:

RTComms rtc = new RTComms();
RTDataSend envp = new RTDataSend(tag,toProcID,group);
Data data = new Data(new byte[1000]);
rtc.Send(envp,data);

and the matching blocking receive:

RTComms rtc = new RTComms();
RTDataRecv envp = new RTDataRecv(tag,fromProcID,group);
byte[] b = ((Data)rtc.Recv(envp)).data;

The implementation supports blocking (synchronous) and non-blocking point-to-point and collective
messaging, together with synchronization capabilities in a raw and trace mode. At the moment, there
is no support for virtual topologies. Synchronous and asynchronous primitives can be combined
together, at both ends of a communication channel. To perform arithmetic operations, as required by
MPI Reduce, we use the Reflection API, to look inside the object for native types. For example, to sum
up a similar array of data as above atroot from agroupof nodes, the reduce operation is defined as:

RTDataReduce envp = new RTDataReduce(root,group);
Data result = (Data)rtc.Reduce(envp,data,RTReduceOp.ID_SUM);

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

748 N. STANKOVIC AND K. ZHANG

Figure 2. Internal architecture.

RTComms does not use persistent communication channels, which explains the selection of the push
model in iBus to compare against.

Internally (Figure2), the communication library is structured as a symmetrical composite entity that
consists of two threads, two monitors and an API class, the RTComms, at the top. All the individual
components, on each side, are grouped upon theproducer–consumerpattern. The receive server (i.e.
thread) creates and services a server socket. Upon a connection request, a new channel is passed to
the receive monitor that extracts the envelope and the data, appends them to the message queue, and
notifies all the blocked processes that new data have arrived. The monitor also implements the methods
to check and get synchronously and asynchronously data from the queue, and to match them against an
envelope. Once a match was found, the RTComms method returns the data. When sending a message,
a synchronous send makes a direct socket call and blocks. An asynchronous send appends a message
to the send monitor message queue. The send server gets notified and sends the message. Messages can
be canceled, and checked for completion synchronously or asynchronously. An error status is raised
upon failure. For better response, the receive server runs at the highest priority, while the send server
runs at the same priority as the API thread (i.e. process) that has notified it, for fairness.

BENCHMARKING

To send a message from one process to another the following steps are required:

• Network address resolution,
• Data marshaling, and
• Data transfer.

In message-passing programming, the network address resolution involves the conversion of a logical
process identifier with respect to a communication group into an actual IP address and port number. The
data marshaling involves the conversion of the data from the local host format into the network format,

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 749

Figure 3. COMMS1 pseudo-code.

and vice-versa. The data transfer comprises the establishing of a reliable communication channel.
These three steps were included in the benchmarking results presented below, except for the iBus test
program. The iBus times, in the tables below, do not include the network address resolution. Assuming
that the information is available locally, it should not cause much overhead, especially in a JIT or
HotSpot environment which is of main interest. In the case of RTComms, each message consists of two
objects (i.e. message envelope and content) which requires two serialize/deserialize calls per message.
In the iBus case, only the message content was serialized, as only one object was pushed on the stack.
To make a fair comparison with the Java systems, performance in all the tests was measured at the
application level.

COMMS1

The COMMS1 [18] benchmark is used to measure the basic communication properties of a message-
passing computer by measuring the end-to-end delay. Also known as thepingpongbenchmark, it
requires two processes, where each process acts as a sender or a receiver interchangeably. The receiving
process simply echoes back whatever was sent, and the sending process measures roundtrip time. Times
are collected outside the repetition loop as defined by the pseudo-code in Figure3.

It is assumed that the time to send a message is equal to the time to receive a reply. The
communication times for blocking primitives were measured for messages of various lengths, i.e. 1,
100, 1000, 10 000, 100 000, and 1 000 000 bytes.

Collective

In this benchmark, we focus on two collective communications primitives: the broadcast and the
barrier, since they are standard in most parallel-programming environments. To measure broadcast
performance, in the benchmark we vary the message size and the number of involved processes. The
algorithm is presented in Figure4.

To measure barrier performance only the number of processes varies, as no data are sent.
This benchmark is also known as SYNCH1 [31] and it measures the time to execute a barrier
synchronization primitive as a function of the number of participating processes, or as the number

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

750 N. STANKOVIC AND K. ZHANG

Figure 4. Broadcast pseudo-code.

Table I. Hardware.

Vendor OS Architecture RAM(MB) CPU(MHz)

Sun Solaris 2.5 Ultra 2 256 168∗ 2
HP HP-UX B.10.20 A 9000/700 512 180
Compaq NT 4.00.1381 Pentium II 64 200
Micron NT 4.00.1381 Pentium II 256 400

of executions per second. It is expected that the time to execute a barrier does not increase too fast with
the number of processes.

Collective primitives can be implemented with point-to-point primitives. The sender communicates
with each participating node in a tight loop. The problem with this approach is that it is inefficient
for high latency environments, and waist bandwidth as it does not scale up well. On the other hand,
to broadcast reliably over a network requires programming with timeouts that is not convenient at the
API level.

The environment

The environment consisted of three different hardware architectures. Only the Java benchmarks were
performed on all the three, while the native and Java-to-native tests were performed only on Sun. We
have used the following software in our tests:

• LAM 6.2b (University of Notre Dame) compiled with gcc2.7.2 on UltraSparc,
• PVM 3.3 compiled with gcc2.7.2 on UltraSparc,
• JavaMPI and jPVM as downloaded of the Internet,
• iBus version 0.5,
• JDK 1.1.6 without JIT from Sun Microsystems for UltraSparc/Solaris,
• JDK/JRE 1.2.1 from Sun Microsystems for PC/NT with JIT and HotSpot compilers, and
• HP-UX Java C.01.15.05 with JIT.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 751

Table II. LAM and PVM times (ms).

Length LAM PVM JavaMPI jPVM

1 0.358 0.58 1.08 0.95
100 0.540 0.78 0.78 1.10
1000 2.043 2.36 2.28 2.65
10 000 9.987 10.4 10.2 10.8
100 000 91.99 95.8 97.1 97.6
1 000 000 922.3 966 957.7 985.1

The hardware is defined in TableI. The network was a 10 Mbps Ethernet. For each of the tests, we
have used a pair of workstations of the same architecture. The cross-architecture results were dominated
by the slower component, and can be deducted from the tables.

THE RESULTS

To compare communication systems several metrics are required. The study presents and compares
the results for the mentioned libraries. The time-per-byte and latency values were calculated by linear
regression. A summary of the results based on the tables below is presented in a series of graphs.

COMMS1

The pingpong test was performed on all the mentioned libraries and architectures. While the results for
the native systems exhibit linear increase as the messages get larger, the Java systems are much more
erratic, due to the problems described above (see section on Message-Passing Model).

Table II presents the results collected for the native and Java-to-native systems. They were all
collected on the Sun boxes, which mans that no JIT was used for Java. Nevertheless, the impact is not
severe and is diminishing as the messages were getting larger, due to the increasing network overheads.
The overhead in the Java systems is also caused by the argument conversion in the wrappers.

TableIII presents the results collected for the RTComms library on the three different architectures
and TableIV for the iBus. The iBus JIT results compared to the HotSpot on PC were mixed, e.g.
for 1 and 100 bytes it took 85 ms with JIT and for 100 000 and 1 000 000 it took 135 and 1407 ms,
respectively.

The performance results for DOGMA in TableV follow the pattern observed above. It is nevertheless
interesting to notice the effect due to the native code enhancement built into the library on small
messages on PC, in particular, which is quite dramatic. On HP and Sun, however, the marshaling of
the data was performed only in Java. Another important factor is the persistent communication channel
between the nodes.

The JPVM approach is to a certain extent similar to the one found in RTComms, as both libraries
use object serialization. In the JPVM case, only one object, the data buffer gets serialized. The JPVM

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

752 N. STANKOVIC AND K. ZHANG

Table III. RTComms times (ms).

Length Sun(−jit) HP(+jit) PC(+HotSpot)

1 60.83 13.2 6.7
100 61.73 13.3 6.8
1000 65.91 14.9 8.4
10 000 88.8 102.7 16.6
100 000 179.5 205.5 140.9
1 000 000 1201 1084 1427

Table IV. iBus times (ms).

Length Sun(−jit) HP(+jit) PC(+HotSpot)

1 40.3 99.4 75
100 54.5 100 95
1000 49.2 107.6 100
10 000 68.2 200.6 20
100 000 170.6 203.4 130
1 000 000 1261 1141 1317

Table V. DOGMA times (ms).

Length Sun(−jit) HP(+jit) PC(+HotSpot)

1 1.04 0.843 0.864
100 1.11 0.863 0.825
1000 2.63 2.343 2.655
10 000 12.4 20.11 12.52
100 000 108.4 162.4 126.4
1 000 000 1080 1021 1274

uses persistent communication channels, which explains the better latency time on Sun (TableVI).
However, as it relies heavily on threads, scheduling becomes an issue. This is particularly important
on HP, where threads were rather lazy. The PC times are harder to explain, as they do not fall into the
observed pattern of behavior, being exacerbated by the extremely high latency value (Figure5).

From the presented results it can be observed that for the pure Java libraries the performance is much
slower for small messages, which means that the latency values are high, as is obvious from Figures5
and6. All the figures present only the more interesting results, for brevity. The results in Figure6 are
normalized to Sun LAM, as the better DOGMA value is due to a better hardware. As the messages

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 753

Table VI. JPVM times (ms).

Length Sun(−jit) HP(+jit) PC(+jit)

1 27.2 102 138.25
100 25.4 100 109.4
1000 25.0 100 109.35
10 000 21.0 25.2 18
100 000 123 116.6 120
1 000 000 1108 1011 1258

Figure 5. Latency (ms).

were getting larger, the differences in roundtrip times were getting smaller. Consequently, the time
per byte values are close (Figures7 and8). It is encouraging, nevertheless, that performance could
be improved significantly by employing a Java-to-native compilation technique. The approach taken
by DOGMA also speaks in favor of Java, since they have pinpointed and implemented a relatively
simple solution to significantly boost I/O performance. Rather than having a legacy message-passing
system as in JavaMPI, they have only added native code to convert Java native types to bytes before
sending them through a channel. If the standard Java would provide such functionality (at the moment

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

754 N. STANKOVIC AND K. ZHANG

Figure 6. Latency ratio.

there is only theSystem.arraycopymethod), that code would not be needed. However, the problem of
serializing objects would still remain, since objects are not linear entities like arrays, but are in fact
graphs of types.

The channel throughput or bandwidth is the rate at which the network can deliver data. As a result
of the high latency values, the effective bandwidth is reduced for small messages in the RTComms and
iBus case compared to the native based libraries, by one to two orders of magnitude. The calculated
bandwidth values are presented in Figure9. TableVII shows the bandwidth for LAM, PVM, JavaMPI
and jPVM. The values are high and represent the results aimed for in Java systems.

TableVIII shows a selection of bandwidth values for iBus, JPVM and RTComms. With respect to
the native systems, the results are an order of magnitude or more inferior for small messages. The iBus
bandwidth values are very close to the RTComms values. In the iBus case, however, only a message
content was serialized, as only one object was pushed on the iBus stack. The presented results are
nevertheless encouraging. For small messages, the JPVM bandwidth values are one order of magnitude
inferior to the RTComms values.

TableIX shows the bandwidth values collected for DOGMA. For small messages they are one to two
orders of magnitude better than the iBus and RTComms values. The difference diminishes as messages
get larger.

If we look at the calculated bandwidth across the whole range of messages, the picture is different,
and the results remain within a 30% range that favors pure Java approach (Figure9).

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 755

Figure 7. Time/byte (ms).

Figure 8. Time/byte ratio.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

756 N. STANKOVIC AND K. ZHANG

Figure 9. Calculated bandwidth (MB/s).

Table VII. LAM and PVM bandwidth (MB/s).

Length LAM PVM JavaMPI jPVM

1 0.003 0.002 9.2e−4 0.001
100 0.19 0.13 0.13 0.091
1000 0.49 0.423 0.44 0.378
10 000 1.00 0.96 0.98 0.926
100 000 1.09 1.043 1.03 1.025
1 000 000 1.08 1.035 1.04 1.015

Barrier

The barrier synchronization performance is dominated by startup latency, as no user-defined data are
sent. It requires that each process in a group first sends a message to the root process, and waits blocked
before the root replies back. If based on point-to-point primitives, the lower the latency, the more
efficient the implementation. A smart library should not perform a network call when delivering locally,
even though operating systems often provide optimizations in such cases. Therefore, in Figure10most
results for only one node fall at or near 0 ms. For the Java libraries, 0 indicates a value that was below
timer resolution.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 757

Table VIII. iBus, JPVM and RTComms bandwidth (MB/s).

Length PC: iBus PC:JPVM PC:RTComms

1 1.3e−5 7.23e−6 1.5e−4
100 0.001 9.14e−4 0.015
1000 0.01 0.009 0.119
10 000 0.5 0.556 0.602
100 000 0.769 0.831 0.710
1 000 000 0.759 0.794 0.701

Table IX. DOGMA bandwidth (MB/s).

Length Sun HP PC

1 9.66e-4 0.001 0.0012
100 0.09 0.116 0.1212
1000 0.38 0.427 0.377
10 000 0.80 0.497 0.799
100 000 0.922 0.616 0.791
1 000 000 0.926 0.979 0.785

Figure 10. Barrier times (ms).

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

758 N. STANKOVIC AND K. ZHANG

Figure 11. Broadcast times (ms).

In RTComms there are no empty messages, and that’s why the results are inferior. The
communication library does not discriminate against message data, except for finding a match against
the envelope. Therefore the receiving thread always reads two arguments from a channel, and inserts
them into a message list.

Broadcast

All the systems under investigation use software-based approaches to cater for broadcast functionality.
Performance of collective communications depends on the performance of the underlying point-to-
point primitives. That is obvious from the obtained results that show that the bandwidth is inversely
proportional to the number of involved nodes. Figure11 presents a selection of the times to broadcast
10 000 bytes forPC:RTComms, Sun:LAM, Sun:JavaMPI, PC:RTComms, and PC:DOGMA. The
displayed times were measured at the root process. For small messages, the results were dominated
by latency.

In Java, the situation with collective communications is further complicated when object serialization
is used directly on top of a socket. If realized as a sequence of point-to-point channels, this means that
for each channel, the object gets serialized anew. Regarding the efficiency of the object serialization
in Java at present, that can prove costly, not only for large objects (see thePC:RTCommsresults). A
potential solution would be to use native broadcast, but since it is unreliable it must be timer driven,
and therefore not always suitable for programming.

DISCUSSION

While the majority of the results as presented are not very much in favor of Java, it is encouraging to
see the improvement as the result of JIT compilation. Given a system like Java, it can be expected that

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 759

Table X. Socket creation time (ms).

Sun HP PC

Min Max Min Max Min Max

2 7 1 8 0 30

sending a small message does not come cheap. The question remains, however, what is the cause and
cost at different stages when sending a message, and how to improve it.

As the starting point, the three steps when sending messages are used, as mentioned in the
introduction to the Benchmarking section. Assuming that the address information is stored locally, this
is just a local call that returns anInetAddressobject based on a group name and a host ID number.
Even with no JIT, this operation takes less than a millisecond and is thus below the Java’s timer
resolution, and can be excluded as a potential problem. Then, a socket object is created to establish
the communication peers. This is a standard Java library class and its efficiency depends on the JVM.
Table X summarizes the spread of values on the benchmark network when creating a socket. It is
important to notice that the spread, although large, is in reality much smaller since the values were
concentrated at the minimum, and the maximum values were rare. The 0 value indicates that the actual
time was below resolution. By comparing these values with those in TableIII it is clear that they do
not dominate the roundtrip time. The reason for the best ratio being found on Sun is that the socket
creation process consists mainly of native methods, and therefore is least intrusive to an interpretive
environment. The presented analysis was done on RTComms.

Once the socket has been created, the data could be serialized, i.e. written into the channel. When
serialized, a Java object is turned into an array of bytes that includes the native attributes and other
objects it refers to. The serialization mechanism is general and performs automatic marshaling and
demarshaling by inspecting the object at runtime. At the receiver, these bytes are converted back
into a deep copy by restoring the complete object graph. To avoid repetition and infinite loops,
the serialization mechanism keeps a hash table of the already visited objects. The serialization time
presented in TableXI represents the writing of two objects, as defined by theRTComms.Sendmethod.
The method blocks before the serialized data get moved out of the process address space. The HP
results are surprising, as one would expect the values to be closer to the PC values for small messages.
Similar results are obtained even when the process ping-pongs locally.

Finally, we look at the receiving side of the communication channel where the serialized object
is restored to its original state, but in a new process. The RTComms library is implemented as a
multithreaded entity, following the producer–consumer pattern (Figure2). The sending thread makes
a direct call when sending data, while the receiver is blocked at a monitor. The receive server, after
receiving a message, adds the data to a monitor, which notifies all the blocked threads that a new data
have arrived. TableXII summarizes the results, that show that for small messages most of the time is
spent while deserializing the input from the channel. There are two objects to deserialize: the envelope
and the content, as described in section on RTComms. The presented values do not include any time

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

760 N. STANKOVIC AND K. ZHANG

Table XI. Serialization time (ms).

Sun HP PC

Length Min Max Min Max Min Max

1 2 3 2 2 0 0
100 2 3 2 3 0 0
1000 2 3 2 3 0 0
10 000 62 70 2 9 10 20
100 000 145 199 209 218 90 101
1 000 000 1131 1213 1017 1062 922 981

Table XII. Deserialization time (ms).

Sun HP PC

Length Min Max Min Max Min Max

1 54 55 12 25 0 10
100 53 55 11 16 10 10
1000 53 54 12 13 10 10
10 000 115 161 77 98 10 20
100 000 161 280 263 310 110 141
1 000 000 1155 1264 1035 1165 1312 1422

when the receiver was blocked waiting for input. Therefore, no thread synchronization affected the
obtained values. Rather, this is just the cost of making twoVObjectInputStream.readObjectcalls.
VObjectInputStreamis derived fromjava.io.ObjectInputStreams, and knows how to rebuild objects
that belong to classes from other class repositories than those defined in theCLASSPATHenvironment
variable, by contacting a customized class loader.

There are two ways to improve on these results. One is to keep the communication channel open, and
the other is to use native types rather than objects whenever possible. A problem when keeping channels
open, is that this solution does not scale, as there is a limit on the number of file descriptors that can
concurrently be in use. Specific to Java, we have observed that for large messages (e.g. 1 000 000 bytes)
the flushing of the channel by the sender does not always guarantee that the object will be successfully
restored at the receiver. If not, the socket blocks indefinitely. It is not clear, however, why is this the
case. With native types, it is required to have a loop that reads in the whole message, and the following
code is used:

for(int k=0;k<length;k+=is.read(buffer,k,length-k));

where:

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 761

Table XIII. Native types (ms).

Length Sun HP PC

1 0.279 0.6 0.0
100 0.442 0.5 0.5
1000 1.91 2.05 2.0
10 000 11.21 10.25 12.5
100 000 105.1 101.56 111.2
1 000 000 1035.7 932.85 1160.7

Table XIV. Object times (ms).

Length Sun HP PC

1 1.37 1.79 1.35
100 1.42 1.36 0.9
1000 2.95 2.87 2.44
10 000 11.96 16.2 43.4
100 000 103.6 102 134.7
1 000 000 1032.5 966 1415

k is the offset into the byte arraybuffer
length is the message length in bytes
is is the java.io.DataInputStream.

Regarding the sending of native types rather than objects, we have also written and performed a
COMMS1 test of sending an array of bytes of variable length over a persistent TCP channel, the
results of which are presented in TableXIII . The test includes only the communication cost, as no
threads scheduling or logical-to-physical address resolution were included in the code. The results
closely follow those in TableV for DOGMA, as they represent a similar approach.

Table XIV is similar to TableXIII but uses a wrapper object as a native array holder. The
communication channel was persistent. We can observe that as messages get larger, the difference
in time gets smaller. In both cases, the array was allocated for each different length only once, so the
presented times depend mostly on the JVM and the network.

The results in TableXIII are, for small messages, very much in favor of sending native types rather
than objects, to improve performance. From the system design perspective, by sending objects rather
than native types we can achieve a simpler API and we stay more in line with other mechanisms like
the RMI [10]. Neither the programmer nor the API needs to explicitly specify at any point in time
what is the data type they deal with or how to go about it when sending messages. As we aim for an
object-oriented environment that is open in Java terms, that approach serves us well.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

762 N. STANKOVIC AND K. ZHANG

A similar set of tests has been reported in [32], for the PVM suite of tools. The results are surprising
for Java given the fact that JIT compilation was enabled. For comparison, the tests were performed
also on integers. As expected, they proved to be more expensive due to a host-to-network and network-
to-host conversion. A similar setup was also used to benchmark jmpi [29], apparently without JIT
compilation. Some observations about the slow performance of the object serialization mechanism
combined with RMI can be found in [33].

CONCLUSION

In this paper we have presented our own and related work on high performance message-passing
computation in Java, and compared it to the standard native libraries such as MPI and PVM. Versions of
the COMMS1 and collective benchmarks were written and tested for each of the libraries. The results
were, as expected, in favor of the native systems, with the Java-enabled ones being a clear second. The
iBus and JPVM results on PC are probably due to the internal architecture and thread scheduling. Due
to a rather old version of Solaris a JIT or HotSpot compiler could not be used on Sun. The HotSpot
technology has not significantly improved performance over the JIT. It is encouraging that runtime
compilation has improved RTComms performance by almost an order of magnitude on PC for small
messages, even though that network subdomain appeared slower than the Unix one. We believe the
Sun and JIT results would even closer match the jPVM and JavaMPI results.

The rationale behind combining Java and native code has been in utilizing the standard
communication and mathematical libraries, and harvesting their better performance, while gaining on
features and flexibility provided by Java. The question remains concerning what is the advantage of
using Java in a manner that may add more complexity than C or C++ due to its features, such as the
lack of pointer arithmetic and incompatible data types. Due to the different presentation, converting
data from Java to native presentation andvice-versacomes at a cost and is complicated due to the Java
strict type checking and absence of pointer arithmetic. This makes the JavaMPI data model rather
confusing compared to the genuine MPI. This explains the reasons behind the Visper/RTComms
approach that aims for a pure Java parallel-processing environment. Further improvements are,
nevertheless, necessary.

REFERENCES

1. Gropp W, Lusk E, Skjellum A.Using MPI, Portable Parallel Programming with the Message-Passing Interface. The MIT
Press, 1994.

2. Geist AG, Beguelin A, Dongarra JJ, Jiang W, Manchek R, Sunderam VS. PVM 3 User’s Guide and Reference Manual.
Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, 1993.

3. Lindholm T, Yellin F.The Java Virtual Machine Specification(Sunsoft Java Series) (2nd edn). Addison Wesley Developers
Press, 1999.

4. Campione M, Walrath K.The Java Tutorial Second Edition: Object-Oriented Programming for the Internet. Addison
Wesley, 1998.

5. Sun Microsystems, Inc. The Java HOTSPOT Performance Engine Architecture.White Paper, April 1999.
6. Neffenger J. The Volano Report: Which Java platform is fastest, most scalable? A Java World exclusive!.

http://www.javaworld.com/javaworld/jw-03-1999.
7. Mangione C. Just in time for Java vs. C++.NC World1998;7(2).
8. Lea D.Concurrent Programming in Java, Second Edition: Design Principles and Patterns(The Java Series). Addison-

Wesley, 1999.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

JAVA IMPLEMENTATIONS OF MESSAGE-PASSING 763

9. Foster I, Tuecke S. Enabling technologies for web-based ubiquitous supercomputing.Proceedings of the 5th IEEE
Symposium on High Performance Distributed Computing, http://www.globus.org/nexus/nexusjava.html.

10. Sun Microsystems, Inc.Java Remote Method Invocation Specification, Revision 1.42, October 1997.
11. Hsieh C-HA, Conte MT, Johnson TL, Gyllenhaal JC, Hwu W-MW. A study of the cache and branche performance issues

with running Java and current hardware platforms.Proceedings of IEEE CompCon’97, San Jose, CA, 1997; 211–216.
12. Liang S.Java Native Interface: Programmer’s Guide and Specification(The Java Series). Addison-Wesley, 1999.
13. JavaMPI: a Java Binding for MPI. http://perun.hscs.wmin.ac.uk/.
14. Thurman DA. jPVM. http://www.isye.gatech.edu/chmsr/jPVM.
15. DOGMA: Distributed Object Group Metacomputing Architecture. http://zodiac.cs.byu.edu/DOGMA [September 1998].
16. Ferrari A. jPVM. http://www.cs.virginia.edu/˜ajf2j/jpvm.html.
17. SoftWired AG.IBus Programmer’s Manual, Version 0.5, August 20, 1998. http://www.softwired.ch/ibus.htm.
18. Dongarra JJ, Meuer H-W, Strohmaier E. The 1994 TOP500 Report. http://www.top500/org/.
19. Dongarra JJ, Dunigan, T. Message-passing performance of various computers.Technical Report CS-95-299, University of

Tennessee, Knoxville, TN, May 1996.
20. Gong L.Inside Java 2 Platform Security: Architecture, API Design, and Implementation(The Java Series). Addison-

Wesley, 1999.
21. MPI Forum. MPI: A Message-Passing Interface Standard, Version 1.0. http://www.mcs.anl.gov/mpi [5 March 1994].
22. Ohio LAM Version 6.1. MPI Primer/Developing with LAM. http://www.mpi.nd.edu/lam [1996].
23. Carpenter B, Getov V, Judd G, Skjellum T, Fox G. MPI for Java: position document and draft API specification.Technical

Report JGF-TR-03, Java Grande Forum, November 1998.
24. MPICH-A Portable Implementation of MPI. http://www.mcs.anl.gov/mpi/mpich.
25. Sun Microsystems, Inc. Sun MPI 3.0 Guide.Revision A, November 1997.
26. WMPI-Win32 Message Passing Interface. http://dsg.dei.uc.pt/wmpi.
27. Sun Microsystems, Inc. Java object serialization specification. http://java.sun.com/. [November 1998].
28. Imasaki K. JAPE: the Jave parallel environment.ISCOPE’97, The 1997 International Scientific Computing in Object-

Oriented Parallel Environments Conference, Marina del Rey, CA. http://www.acl.lanl.gov/iscope97.
29. Dincer K. A ubiquitous message passing interface implementation in Java: jmpi. http://www.baskent.edu.tr/˜kdincer.
30. Stankovic N, Zhang K. Java and network parallel processing.Recent Advances in Parallel Virtual Machine and Message

Passing Interface, Proceedings 5th European PVM/MPI Users’ Group Meeting, LNCS1497, Alexandrov V, Dongarra JJ
(eds.). Springer Verlag: Liverpool, UK, 1998; 239–246.

31. Hockey R, Berry M. Public international benchmarks for parallel computers.PARKBENCH Committee: Report 1, February,
1997.

32. Yalamanchilli N, Cohen W. Communication performance of Java based parallel virtual machines.ACM 1998 Workshop on
Java for High-Performance Network Computing, Palo Alto, CA. http://www.cs.ucsb.edu/conferences/java98/.

33. Caromel D, Vayssiere J. A Java framework for seamless sequential, multi-threaded and distributed programming.ACM
Workshop Java for High-Performance Network Computing, Stanford University, Palo Alto, CA, 1998; 141–150.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:741–763

		INTRODUCTION

		MESSAGE-PASSING MODEL

		THREE TYPES OF IMPLEMENTATIONS

		MPI and PVM

		JavaMPI and jPVM

		DOGMA

		JPVM

		iBus

		RTComms

		BENCHMARKING

		COMMS1

		Collective

		The environment

		THE RESULTS

		COMMS1

		Barrier

		Broadcast

		DISCUSSION

		CONCLUSION

