
Visualizing Multiple Program Executions to Assist Behaviour Verification 
 

Chunying Zhao     Kang Zhang     Jie Hao     W. Eric Wong 
Department of Computer Science 
The University of Texas at Dallas 

Richardson, TX, USA 
{cxz051000, kzhang, jxh049000, ewong}@utdallas.edu 

 
 

Abstract—Visualization techniques have been widely used in 
representing software artifacts. They play a central role in 
conveying program information to software developers. While 
numerous tools have been developed to visualize information 
such as static software architectures, dynamic program 
behaviors, and debugging processes in different ways, little 
attention has been paid to visualizing correlations and 
variations among program representations. This paper 
investigates the visualization of cross-references across 
multiple program executions upon different testing inputs so 
that meaningful and viewable properties can be presented to 
the viewpoint from different perspectives. Visualizing such a 
comparison can help feature location and program behavior 
verification. It also helps programmers better understand and 
test their software which can have a significant impact on 
improving its reliability. 

Keywords-software visualization; dynamic behavior 
comparison; correlation visualization 

I.  INTRODUCTION 

Software visualization [3][9][32][39] techniques have 
been widely used in the lifecycle of program development 
spanning from requirements and design to software testing 
and maintenance, where program structures and analytical 
results are represented in an intuitive way that fits humans’ 
mental models. So far, many visualization tools have been 
developed to aid comprehension of software systems from 
various perspectives, including static software architecture 
[2][4][13][28][29][33], source code navigation[22], dynamic 
program runtime behaviors [8][19][25][26], debugging and 
fault location [10][20], statistic analysis [11], and program 
evolution [5][6][12].  

Inherited from information visualization, existing 
software visualization tools utilize various graphical 
ingredients and topological theories to visualize software 
data, e.g. force directed layouts [14], zooming techniques 
[31], and fisheyes [15]. Colors [16], metaphors [2], multiple 
dimensions [23][34], and animations [30][35] are also 
popular visualization methods for conveying software 
information to end-users. 

While prior software visualization techniques can 
display information such as static software architectures, 
dynamic program behaviors, and debugging processes in 
different ways, less attention has been paid to highlighting 
variations and correlations across multiple software 
representations, e.g. visualizing a comparison of program 

executions. VisLink [7], a methodology for revealing the 
relationship amongst information representations, 
emphasizes the importance of constructing correlations 
between information representations. It sheds light on the 
visualization of correlations across software artifacts. 

This paper aims at visualizing the comparison of 
multiple program executions from different program inputs 
by highlighting their similarities and differences. Visualizing 
the cross-referencing of execution traces can help developers 
to better understand and test their software which can 
significantly improve its reliability. According to Miranskyy 
et al. [24], comparing program execution traces is beneficial 
for several reasons: it helps to improve test coverage and 
identify duplicate test cases; it also helps to locate common 
features [37] pertaining to particular behaviors that occurred 
in different executions. 

GAMMATELLA [19][26] is one of the well-known 
tools for visualizing program execution and debugging. It 
combines treemaps, color hues, and brightness to illustrate 
program execution information. Ware et al. [35] used stereo 
and motion cues to maintain connections of related events in 
consecutive information representations. To compare 
multiple representations of program executions, a more 
efficient way is to visualize the representations of interest in 
the same scene. By presenting the similarities and 
differences in a human-centric manner, users can easily 
identify common and unique events. Events unique to an 
execution can be considered as a feature relating to a 
specific test case.  

To realize such a comparison, we encountered several 
challenges, such as a large amount of traces, visual modeling 
of program executions, constructing similarities and 
differences among individual executions, and efficient 
navigation supports. To address them, we firstly reduce 
execution traces to different abstraction levels with a 
folding/unfolding functionality, so that only necessary 
information is displayed in a limited visualization space. 
Then we visually model both individual executions and their 
connections using a multi-plane layout based on the 
conceptual closeness of testing inputs. Finally we provide a 
reactive navigation interface with an eye tracker to browse 
the visual space in a human-centric manner.  

The rest of the paper is organized as follows. Section 2 
presents an overview of the approach, data abstraction, and 
visual models. Section 3 illustrates a multi-plane layout and 
mapping specifications. Section 4 describes multiple 



perspectives of the visual space and a reactive navigation 
interface. Section 5 presents an experiment on an open 
source software and observations from preliminary results. 
Section 6 reviews related work. Section 7 concludes the 
paper and discusses our future work. 

II. MODELING MULTIPLE EXECUTIONS 

A. Overview 

Creating an effective layout for comparing multiple 
executions is not easy. Since there have been a number of 
useful 2D representations (e.g. sequence diagrams, call 
graphs) that could visualize various aspects of a system, 
these representations need to be correlated. 

To correlate such representations, a 3D space is 
advantageous over a 2D plane because it provides more 
perspectives for users to observe from [34]. We choose a 
multi-plane 3D layout by displaying individual executions 
on 2D planes and constructing their connections across the 
planes in a 3D space. The multi-plane layout can clearly 
separate correlations from individual representations. 

For instance, in Figure 1(a), correlations are clearly 
separated from individual representations compared with the 
multi-box representation in Fig.1 (b) that clusters 
information of individual executions in the boxes. Different 
from existing multi-plane layouts that are primarily used for 
visualizing software hierarchical structures (e.g. Rigi [33]), 
this paper aims at constructing correlations among multiple 
executions and deriving meaningful observations. 

 
Figure 1.  Different 3D visualization arrangements 

Figure 2 depicts an overview of our approach. Execution 
traces are reduced based on user-defined criteria. 
Representations are ordered as multiple planes. Then 
information on adjacent planes is mapped, and graphical 
elements are rendered on the 3D space with multiple 
perspectives. 

 
Figure 2.  Approach Overview  

B. Execution Trace Abstraction 

Handling program execution data involves two major 
steps: trace collection and abstraction. We collect execution 
traces using an aspect-oriented approach. Instrumentation 
aspects are created and compiled seamlessly together with 
the Java byte codes of source programs. In the current 
implementation, we record method invocations, and build a 
call graph of method invocations represented in a standard 
GraphML format. Multiple executions on various inputs are 
traced. 

A pre-processing [38] is conducted to preliminarily filter 
the collected trace by abstracting away detailed information 
not to be visualized. The information abstracted away 
includes method calls that contribute little to the 
representation of program interactions. Such method calls 
may include: 

(1) Repeated method invocations. 
(2) Lower-level method invocations. 
(3) Intra-object method invocations. 

 
Reducing these method invocations makes it possible to 

display a large amount of information in a limited visual 
space. The reduction is a multi-level abstraction from the 
highest level to the lowest level by unfolding events, and 
vice versa. Based on the abstraction criteria, when events are 
folded, the new event representing the folded information 
will be the highest level event of the folded ones. For 
instance, if we collapse a call chain: A calls B, B calls C, and 
C calls D. The new event denoting the call chain will be A. 
That is, we collapse the low level events, and could 
iteratively unfold them upon users’ requests. Similarly, 
intra-object method invocations could be folded inside inter-
object method invocations. Details of our trace reduction 
technique could be found elsewhere [38]. 

C. Visual Models for Executions 

We use sequence diagrams to visualize individual 
executions on 2D planes. Although sequence diagrams have 
been used widely in software design and program execution, 
visualization of cross-referencing multiple executions has 
not appeared in the literature to our knowledge.  

Each object is represented as a small green solid sphere 
in the space. As each object may include one or more 
objects due to the abstraction, the more objects a sphere 
includes, the larger the sphere will be. We could assign 
different colors to objects belonging to different threads for 
a multi-threading program. Method calls between objects are 
represented by horizontal edges arranged on the occurring 
order of events. Edges within one execution (i.e. intra-
execution edges) have the same color (red in our current 
implementation). Mapping between executions are 
highlighted with yellow lines. Figure 3(a) depicts a typical 
representation of a single execution, and Figure 3(b) 
describes a multi-execution representation. 

Choosing the sequence diagram to visualize individual 
executions has several merits: (1) it emphasizes object 
interactions; (2) it makes the layouts of multiple executions  

 

(a) Multi-planes (b) Multi-boxes 

Adjacent 
Planes 

Mapping 
Graphical 
Rendering Information 

Reduction 

Ordered 
multiple 
Planes 

Multiple 
Different/ 
The same 

Representations 

Data 
Resource 

A 3D  
Structure 



  
(a)                                                                                         (b) 

Figure 3.  Basic models of multiple planes 

uniform, and thus eases the intuitive cross-referencing 
compared with other 2D node-link graphs.  

III.  MAPPINGS BETWEEN EXECUTIONS 

Challenging issues for visualizing multi-plane 
correlations include: 

(1) Visual properties of individual planes, i.e. orders, 
orientations, and positions of planes in a 3D space; 

(2) The optimal layout of planes for the best 
observation; 

(3) Mappings between information in two adjacent 
planes, i.e. the criteria of judging whether two 
(clustered) events on different planes are the same 
or not. 

A. The Layout of Planes 

The order of planes is determined by the semantic 
relationships between the planes. The general principle is to 
position planes having close relationships together. The 
assumption is that representations with close relationships 
are apt to share more common properties. In multi-execution 
visualization, executions using similar test cases or 
performed consecutively can be spatially positioned together, 
so that the user can easily observe conceptually related 
clusters. 

More formally, we arrange multiple planes based on 
concept analysis as follows:  

Let R (r1, r2,..., r i,...) be the set of different relationships 
among all representations (planes), where each ri ⊂ R is 
semantically defined based on the meanings of the contents 
it represents. Let P (p1, p2,…, pi,...) be the set of planes for 
different representations. Let A (a1, a2,..., ai,...) be the set of 
common attributes for the relationships in R.  

A cluster of planes S is defined as a triple (ri, Ai, Pi) such 
that  

(1) r i ∈ R. 
(2) Ai = {am, am+1,…, an} ⊂ A, are common attributes 

for r i.. 
(3) Pi = {pm, pm+1,…, pn} ⊂ P. 
(4) ∀pj ∈ Pi, m ≤ j ≤ n, contents on pj have all the 

attributes of Ai. 
(5) ∀pk ∉ Pi, ∃ ai ∈ Ai, contents on pk do not have the 

attribute ai. 
A concept lattice can be created from the semantics of 

the relationships in R. The attributes and relationships can be 
annotated by developers using textual labels on each 
execution. We first turn the concept lattice into a tree 
structure by breaking any possible cycles. Figure 4(a) 
illustrates a concept lattice with four types of relationships 
{ r1, r2, r3, r4} and seven planes {p0, …., p6}. Figure 4(b) 
depicts the ordered planes based on the concept lattice using 
a tree- traversal algorithm. 

 
(a)    (b) 

Figure 4.  Ordering of planes 

The following tree-traversal algorithm can order planes 
in a concept lattice. 

Input: root rt of the lattice; Output: an ordering of the 
planes  

PlaneOrder(rt) 
FOR each child c of rt, 
IF c is a plane (pi), put pi in the next adjacent available 

position in the order 

r1 

r2 
r3 p5, p1, p2, p6, p4, p0, p3 

r4 

p6 

p4 p3 

p1 p2 

p5 

p0 



ELSE IF c is a relationship (r i), call PlaneOrder(c); 
Mark pi as rt-cluster.  

 
The multiple planes are rotatable to provide a desirable 

observation. We associate the orientations of planes with the 
user’s viewpoint so that the rotatable planes can dynamically 
present the maximal viewable information to the viewer by 
dynamically forming an angle facing the current position of 
the viewpoint and showing the properties interesting to the 
user. The change of the viewpoint will trigger changes of 
plane orientations, and highlights in the new view, in a 
similar fashion as a camera model [1]. 

Figure 5 illustrates an example position of the viewpoint 
where the planes rotate to obtain the best exposure of the 
inter-plane relationships that are the current observing focus 
of the user.  

 
Figure 5.  Planes adjusting automatically against the viewpoint 

B. Mapping Specifications 

In visualizing multiple representations, an information 
set includes multiple individual representations and 
correlations among them. We define the correlation between 
two representations as a concept mapping, denoted as M(X, 
Y), where X and Y are two visual representations, i.e., 
mapping information sharing the same attributes from X to 
Y. Each visual representation refers to an information subset 
with a specific layout. x ⊂ X is a visual entity in X, and y ⊂ Y 
is a visual entity in Y. m(x, y) ⊂ M(X, Y) maps x to y. The 
concept mapping requires that two connected entities share 
common attributes.  

The concept mapping in cross-referencing has several 
properties: 

(1) It is a concatenation of M(X1, X2), M(X2, X3),…, 
where Xi is the i th visual representation. 

(2) m(x, y) ⊂ M(X, Y) could be a one-to-more or more-
to-one mapping. 

(3) M(X, Y) is transitive, i.e. M(Xi, Xj) ∪ M(Xj, Xk) → 
M(Xi, Xk). 

 
To visualize correlations among multiple 

representations, we consider: 
(1) The visualization of individual representations Xi 

and Xi+1; 
(2) The visualization of mappings M(Xi, Xi+1) between 

individual representations Xi and Xi+1. 
 

Figure 6 illustrates mappings between entities among 
multiple executions. Two entities considered the same will 
be visually connected. In multiple program executions, two 
entities (events) are connected if they are: 

(1) invoked by objects having the same class names, and 
(2) both callers (callees) of the same method invocation. 

 
Figure 6.  Mappings between planes 

Definition 1: Events e1 and e2 in two abstracted call 
graphs S1 and S2 are the same if and only if the nodes n1 and 
n2 in the graphs denoting e1 and e2 are isomorphic, and have 
the same names [38]. 

The isomorphism requires that two abstracted nodes 
have the same structural connections with their neighboring 
nodes. Two nodes have the same name if they have the same 
method names, class names, thread names, and arguments.  

IV.  MULTIPLE PERSPECTIVES 

A. Visual Coordinates 

Multiple planes in parallel form a cube, and present 
several meaningful properties when the user observes the 3D 
structure from different perspectives. Figure 7 depicts three 
major perspectives: the top view, the front view, and the side 
view.  

 
Figure 7.  Multiple perspectives 

We map visual properties of the 3D structure to a 
Cartesian coordinate system. Figure 8 depicts the 
corresponding information on each axis. Each perspective is 
formed by two axes in the space. The property of each axis 
is determined by the information topology of the 3D 
structure. In this paper, the X-axis, -Y-axis, and Z-axis are 
mapped to object interactions, event orders, and execution 
instances (abbreviated as O, V, and E, respectively). 

X 

Z 

Y 
X 

Z 

Y 



 
Figure 8.  Visual coordinates 

The perspectives in the visual space are generalized into 
three views: the front view (i.e. the O-V plane in the visual 
coordinate system), the top view (i.e. the E-O plane in the 
visual coordination system), and the side view (i.e. the V-E 
plane in the visual coordinate system). Each view is formed 
by two axes as described below.  

B. Program Properties from Multiple Perspectives 

To compare executions, we not only need to locate 
common behaviors but also need to understand the 
contextual information around the common behaviors, such 
as the interactions with other objects and temporal properties. 
We take advantage of structural properties of the cube, and 
derive the meaning of each view as follows: 

(1) The front view on O-V plane: Method invocations 
within each execution, i.e. object interactions. 

(2) The top view on O-E plane: Objects’ participations 
in multiple executions, i.e. common activities of 
objects in different executions. 

(3) The side view on V-E plane: Events’ occurrences in 
multiple executions. It helps to compare the 
temporal properties of common or unique events in 
different executions. 

 
Figure 9 shows a front view on the O-E plane. The 

planes for multiple executions are in parallel. The object 
interactions within each execution are represented using a 
sequence diagram.  

   
(a)    (b)  

Figure 9.  A front view on the O-V plane 

Different from a traditional sequence diagram, our 
approach clusters objects and interactions in different levels 
of abstraction. The interactions between objects indicate the 
communications between different object clusters. The user 
can select one of the presented executions by clicking (or 
gaze at it through an eye tracker) an object in that execution, 
and view it separately. For instance, Figure 9(b) shows the 
first execution in Figure 9 (a) separately. 

Viewing the executions on the O-E plane in Figure 10, 
the user can identify and compare how objects participate in 
the different executions. In this view, objects having the 
same activities are connected by yellow lines. Some objects 
may participate in all the executions, while others may 
appear in fewer executions. For instance, in Figure 10 
following the yellow lines, we can conclude that the top two 
objects in each execution have participated in all the four 
scenarios, and involve the same method invocations. 

 
Figure 10.  A top view on the O-E plane 

The side view of the executions on the V-E plane is 
shown in Figure 11. Since the V-axis records the occurring 
order of events, viewing the space on the V-E plane, the user 
can obtain temporal properties of object interactions. 
Common events occurring at the same or different instances 
of time in multiple executions connected by yellow lines can 
be seen clearly. For instance, the common events connected 
by the top straight yellow lines in Figure 11 happened at the 
beginning of each execution. The bottom angled yellow 
lines connecting the same events in three executions 
indicates that these events did not occur in the last 
execution, and they happened earlier in the second execution 
than those in the other two scenarios. It reveals the temporal 
distribution of common events among multiple executions. 

 
Figure 11.  A side view on the V-E plane 

Execution Instances (E) 

Object Interactions (O) 

Event Orders (V) 



C. Navigation Supports with Eye Tracking 

In addition to traditional navigation supports that use the 
mouse/keyboard to move, rotate, and zoom in (out) a 3D 
scene, we use an eye tracker to capture users’ visual targets 
and aid navigation. 

   
(a)    (b) 

Figure 12.  Folded/unfolded views with an eye tracker 

The eye tracker is a cursor controlled by the pupil 
movements that occur while the viewer physically gazes at 
an object of interest [21]. Fixation (the stabilization of eyes 
on an object of interest for a certain period of time) and 
saccade (quick movements of eyes from one location to the 
next) are the two most common types of eye movements 
[21]. We use fixation to determine the user’s target. The 
ordinate of the pupil in the eye tracking controller screen is 
mapped to that in the visual space. 

The user can choose to see the details of an object by 
gazing at it for a certain amount of time (e.g. 2 sec.). Then 
the object can be unfolded on demand. Assume that the big 
node (in the dotted circle) in Figure 12(a) is the observer’s 
current focus; it could be unfolded to the object interactions 
shown in the dotted rectangle in Figure 12(b). Iteratively, the 

user can trace down from the highest level to the lowest to 
see method invocations in detail. A large green sphere 
indicates that it can be unfolded. Similarly, a thicker red line 
includes more interactions between objects. Textual 
information (e.g. object names) will be displayed upon 
users’ requests. 

Semi-transparency is used to aid highlighting. The 
information related to a specific object interesting to the user 
can be automatically highlighted by applying transparency 
to the contextual information. For instance, when a user 
gazes at the second object (the dotted circle) of the leftmost 
execution in Figure 13 for a certain amount of time, the 
interactions and correlations caused by the object and its 
correlations with other executions are highlighted by making 
the contextual information semi-transparent. The 
transparency is tunable for obtaining the best contrast. The 
user can get a quick impression about the influence of this 
object among multiple program executions via highlights. 

V. EXPERIMENTS 

A. Experiments with JHotDraw 

We have evaluated the multiple-plane approach on an 
open source project, JHotDraw. JHotDraw is a GUI 
framework supporting simple drawing activities written in 
Java, and was initially designed to illustrate the application 
of design patterns. We used Version 6.0 that contains 136 
classes, 1,380 methods, and 19 interfaces. 

The experiment aims at evaluating the effectiveness of 
visualizing correlations and differences among multiple 
program executions. The scalability of the approach for a 
large amount of data is also investigated. We design 
different testing scenarios for the program, and present 
traces in different abstraction levels.  

The four testing scenarios include: 
 

 

 
Figure 13.  Highlighted information with semi-transparency 

  



 
Figure 14.  An abstracted visual representation 

(1) Run JHotDraw → create new view→ draw one round 
rectangle → close JHotDraw. 

(2) Run JHotDraw → create new view→ draw one 
ellipse →  save the view→ close JHotDraw. 

(3) Run JHotDraw → create new view→ draw one round 
rectangle →  draw one ellipse →  start and stop 
animation→ close JHotDraw”. 

(4) Run JHotDraw → close JHotDraw. 
The above scenarios have both common and different 

behaviors. The traces were collected from the package 
org.jhotdraw.sampls.javadraw. This package contains the 
most essential classes and methods that can initiate the 
drawing environment and support drawing applications. 

The four planes in Figure 14 from left to right correspond 
to the four scenarios with the same level of abstraction, 
respectively. The interactions within each execution are 

illustrated by red lines. The yellow lines connect the same 
events across each pair of adjacent planes. 

Following the yellow lines in the side view, the user can 
easily identify common and different activities across the 
four scenarios. The representation can also be used to verify 
a program’s expected behavior.  

In Figure 14 the inter-execution connections  highlighted 
by the white ellipse on the top indicates that those events 
connected by the yellow lines exist in four executions and 
occurred at an early stage in the scenarios, which conforms 
to the fact that the initialization of JHotDraw exists in all the 
scenarios, which is a common behavior. Similarly, the 
angled yellow lines at the bottom in Figure 14 also connect 
some common behaviors in the four scenarios. 

The scalability is also investigated in our experiments. It 
is achieved by collapsing information at different abstraction 
levels. Figure 15 illustrates the same four scenarios in two 
different abstraction levels. The executions in Figure 15(a) 



were abstracted by collapsing the method invocations with a 
depth greater than three in a call chain. The executions in 
Figure 15(b) did not collapse any method invocations based 
on call depths, and thus include more data (displayed in a 
scale larger than (a)). By comparing the representations at 
different levels, the user can identify which behaviors are 

less significant and have been collapsed away in the 
abstraction process.  

From a high-level view, the user can observe and infer 
the basic structures of program behaviors. With navigation 
supports, the user can track down to low-level details.  

 

  
(a)                                    (b) 

Figure 15.  An abstracted visual representation 

 
 



B. Discussion 

The multi-plane approach is useful for comparing and 
analyzing multiple representations having intrinsic 
connections. The planes could dynamically rotate so that the 
best exposure of inter-plane relationships representing 
properties interesting to the user is presented towards the 
direction of the user’s viewpoint. 

To date, we have only developed the approach that 
arranges and visualizes 2D planes in parallel or dynamically 
presents inter-plane relationships between two planes as 
discussed in Section 3.1. For multiple planes to present 
viewable properties towards the viewpoint with minimum 
occlusions, the optimal angles for individual planes need to 
be explored. Calculating the angles of multiple planes 
geometrically involves many factors, such as the viewpoint, 
the number of planes, the layouts on individual planes and 
the visualization tasks, etc. 

The presented approach addresses the scalability issue by 
information abstraction, which is currently a preprocessing 
step, prior to the visualization process. The abstraction step 
compresses only low-level and uninteresting information to 
reduce the 3D visual complexity.  

VI.  RELATED WORK 

There has been a huge amount of work on program 
visualization and analysis.  

Feijs and Jong [13] visualized the organization of 
software architectures in a 3D space, in which software 
modules were mapped onto bricks of different shapes. The 
bricks are then connected by lines to simulate the 
relationships between objects. Similarly, Alam et al. [2] used 
a metaphor between software architectures and city buildings. 
They represented components and metrics of complex 
software in a 3D virtual world. Navigation is simulated as 
walking in the street of a city. These visualization 
approaches only consider one representation of a static 
architecture, and do not support comparisons between 
different executions or architectures. 

Achievements in visualizing the changes or evolution of 
software systems includes the work of Beyer et al. [5], which 
created an animated 2D storyboard to show the evolution of 
software architectures. The software artifacts on 2D 
storyboards are displayed as a bunch of clusters. The clusters 
are efficient in visualizing software modulation but are 
difficult to be compared. Also, the changes of software 
modulation are achieved via the animation of the displays on 
2D planes. The animated 2D plane is good at visually 
illustrating the evolution process, which is continuous and 
incremental. In contrast, our 3D environment displays 
multiple executions simultaneously. The commonalities and 
differences across multiple executions are easy to be 
identified. 

Apart from visualizing software architectures and 
evolutions, understanding program behavior has been a 
research topic in both program comprehension and software 
visualization. One of the major issues related to visualizing 
program behavior is the compression technique for execution 
traces. Hamou-Lhadj et al. [17][18] have proposed different 

abstraction approaches to summarizing the contents of a 
program behavior. Reiss [27] defined an automated model 
for dynamic visualizing program execution using user 
abstractions.  

GAMMATELLA [19][26] visualizes executions in three 
levels in 2D: a file-level representation in a miniaturized 
view, a system-level view using treemaps, and a statement-
level view using colors’ hue and brightness. 
GAMMATELLA does not support comparisons either. 
Similarly, TraceVis [29] visualizes program behaviors by 
displaying microprocessor instructions in a 2D plane. It 
supports queries, arbitrary levels of zooming, and 
annotations on colorful blocks. Okamura et al. [25] 
visualized executions and debugging using visual 
programming principles. They used different 3D objects to 
represent software artifacts, and simulated state transitions 
by applying animation on the 3D objects. These approaches, 
however, do not support a comparison of different program 
executions. 

VII.  CONCLUSION AND FUTURE WORK 

This paper has presented a 3D visualization technique for 
comparing and analyzing multiple representations. 
Specifically, multiple program executions are represented as 
multiple planes in parallel. The correlations and differences 
are constructed and highlighted. A 3D visualization tool has 
been implemented and experimented on an open source 
project. Locating the correlations among multiple program 
behaviors can help programmers better understand and test 
their software which can have a significant impact on 
improving its reliability. 

Multiple executions presented in this paper could be 
generalized to be multiple representations, e.g. for different 
software versions, different visual formalisms (such as those 
in UML), or different platforms. This is one of our future 
directions. Our immediate future work is on the exploration 
of adjustable angles for the 2D planes according to the 
viewpoint position, more visual features, focus-contextual 
presentation, and so on. More experiments and user studies 
on larger application programs will also be performed. 

REFERENCES 

[1] A.G.N. Ahmed, “High Quality Camera Paths for Navigating 
Graphs in Three Dimensional Space”, PhD Thesis, 
University of Sydney, 2008. 

[2] S. Alam and P. Dugerdil, “EvoSpace: 3D Visualization of 
Software Architecture”, Proc. of SEKE’07, 2007, pp.500-
505. 

[3] T. Ball and S.G. Erik, “Software Visualization In the Large”, 
IEEE Computer, Vol.29, No.4, April 1996, pp.33-43. 

[4] M. Balzer and O. Deussen, “Hierarchy Based 3D 
Visualization of Large Software Structures”, Proc. IEEE 
Visualization, 2004, pp. 4p-4p. 

[5] D. Beyer and A.E. Hassan, “Animated Visualization of 
Software History Using Evolution Storyboards”, Proc. 
WCRE’06, 2006, pp.199-210. 

[6] C.S. Collberg, S.G. Kobourov, J. Nagra, J. Pitts, and K. 
Wampler, “A System for Graph-Based Visualization of the 
Evolution of Software”, Proc. SoftVis’03, pp.77-86. 



[7] C. Collins, S. Carpendale, and G. Penn, “VisLink: Revealing 
Relationships Amongst Visualizations”, IEEE Trans. on 
Visualization and Computer Graphics (InfoVis’07)), Vol. 13, 
No.6, 2007, pp.1192-1199. 

[8] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J.J. V 
Wijk, and A. van Deursen, “Understanding Execution Traces 
Using Massive Sequence and Circular Bundle Views”, Proc. 
ICPC’07, pp.49-58. 

[9] P. Eades and K. Zhang (Eds.) Software Visualization, World 
Scientific Co., Singapore, 1996. 

[10] J. Eagan, M.J. Harrold, J.A. Jones, and J. Stasko, “Technical 
Note: Visually Encoding Program Testing Information to 
Find Faults in Software”, Proc. InfoVis’0, pp. 33-36. 

[11] S.G. Eick, J.L. Steffen, E.E. Sumner, “Seesoft- A Tool For 
Visualizing Line Oriented Software Statistics”, IEEE Trans. 
on Software Engineering, Vol. 18, No. 11, November 1992, 
pp.957-968. 

[12] S.G. Eick, Todd L. Graves, Alan F. Karr, Audris Mockus, 
and Paul Schuster, “Visualizing Software Changes”, IEEE 
Trans. Software Engineering, Vol. 28, No.4, 2002, pp.396-
412. 

[13] L. Feijs and R.D. Jong, “3D Visualization of Software 
Architectures”, Communications of ACM, Vol. 41, No. 12, 
1998, pp.73-78. 

[14] T.M.J. Fruchterman and E.M. Reingold, “Graph Drawing by 
Force-Directed Placement”, Journal of Software Practice & 
Experience, Vol. 21, No. 11, November 1991, pp.1129-1164. 

[15] G. Furnas, “Generalized Fisheye Views”, ACM SIGCHI 
Bulletin, Vol.17, No.4, ACM Press, 1996, pp.16-23. 

[16] H. Gall, M. Jazayeri, and C. Riva, “Visualizing Software 
Release Histories: The Use of Color and Third Dimension”, 
Proc. ICSM’99, pp. 99-108. 

[17] A. Hamou-Lhadj and T. Lethbridge, “Compression 
Techniques to Simplify the Analysis of Large Execution 
Traces”, Proc. IWPC’02, pp.159-168.  

[18] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the 
Content of Large Traces to Facilitate the Understanding of 
the Behavior of a Software System”, Proc. ICPC’06, pp.181-
190. 

[19] J.A. Jones, R. Orso, and M.J. Harrold, “GAMMATELLA: 
Visualization of Program-Execution Data for Deployed 
Software”, Information Visualization, Vol.3, No.3, 2004, pp. 
173-188. 

[20] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of 
Test Information to Assist Fault Localization”, Proc. 
ICSE’02, pp.467-477. 

[21] H. Kagdi, S. Yusuf, and J.I. Maletic, “On Using Eye 
Tracking in Empirical Assessment of Software 
Visualizations”, Proc. WEASELTech’07, pp.21-22. 

[22] G. Lommerse, F. Nossin, L. Voinea, and A. Telea “The 
Visual Code Navigator: An Interactive Toolset for Source 
Code Investigation”, Proc. INFOVIS’05, pp.24-31.  

[23] A. Marcus, L. Feng, and J.I. Maletic, "3D Representations 
for Software Visualization", Proc. SoftVis'03, pp. 27-36. 

[24] A.V. Miranskyy, N.H. Madhavji, M.S. Gittens, M. Davison, 
M. Wilding and D. Godwin, “An Iterative, Multi-Level, and 
Scalable Approach to Comparing Execution Traces”, Proc. 
SIGSOFT/FSE, pp.537-540. 

[25] T. Okamura, B. Shizuki, and J. Tanaka, “Execution 
Visualization and Debugging in Three-Dimensional Visual 
Programming”, Proc. 8th Int’l. Conf. on Information 
Visualization, pp.167-172. 

[26] A. Orso, J.A. Jones, M.J. Harrold, and J. Stasko, 
“GAMMATELLA: Visualization of Program-Execution 
Data for Deployed Software”, Proc. ICSE’04, pp.699-700. 

[27] S.P. Reiss, “Visualizing Program Execution Using User 
Abstractions”, Proc. SOFTVIS’06, pp.125-134. 

[28] J. Rilling and S.P. Mudur, “3D Visualization Techniques to 
Support Slicing-based Program Comprehension”, Computers 
& Graphics, 2005, Vol.29, No.3, pp.311-329. 

[29] J.E. Roberts, “TraceVis: An Execution Trace Visualization 
Tool James Roberts”, M.S. Thesis, University of Illinois at 
Urbana-Champaign, 2004. 

[30] G.G. Robertson, S.K. Gard, and J.D. Mackinlay, 
“Information Visualization Using 3D Interactive Animation”, 
Communications of ACM, Vol.36 , No.4, April 1993, pp.57-
71. 

[31] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. 
Dubs, and M. Roseman, “Navigating Hierarchically 
Clustered Networks Through Fisheye and Full-zoom 
Methods”, ACM Trans. on Computer-Human Interaction, 
Vol.3, No.2, June 1996, pp.162-188. 

[32] J. Stasko, J. Domingue, M.H. Brown, and B.A. Price (Ed.), 
Software Visualization: Programming as a Multimedia 
Experience, MIT Press, Cambridge, MA, 1998. 

[33] M.D. Storey, K. Wong, and H.A. Müller, “Rigi: A 
Visualization Environment for Reverse Engineering”, Proc. 
ICSE’97, pp.606-607. 

[34] C. Ware and P. Mitchell, “Visualizing Graphs in Three 
Dimensions”, ACM Trans. on Applied Perception, Vol.5, 
No.1, 2008, pp.2:1-15.  

[35] C. Ware and G. Franck, “Evaluating Stereo and Motion Cues 
for Visualizing Information Nets in Three Dimensions”, 
ACM Trans. on Graphics, Vol. 15, No.2, 1996, pp.121-140. 

[36] C. Ware, and G. Franck, "Viewing a Graph in a Virtual 
Reality Display is Three Times as Good as a 2D Diagram", 
Proc. IEEE Symposium on Visual Languages, October 4-7, 
1994, pp.182-183. 

[37] N. Wilde, J.A. Gomez., T. Gust, and D. Strasburg, “Locating 
User Functionality in Old Code”, Proc. 8th ICSM’92, pp.200-
205. 

[38] C. Zhao and K. Zhang, and Y. Lei, “Abstraction of Multiple 
Executions of Object-Oriented Programs”. Accepted as a 
poster in Proc. 24th Annual ACM Symposium on Applied 
Computing, 2009. 

[39] K. Zhang (Ed.), Software Visualization - From Theory to 
Practice, Kluwer Academic Publishers, Boston, April 2003. 

 


