Visualizing Multiple Program Executions to Assist Eehaviour Verification

Chunying Zhao

Kang Zhang

Jie Hao Wec EYiong

Department of Computer Science
The University of Texas at Dallas

Richardson,

TX, USA

{cxz051000, kzhang, jxh049000, ewong}@utdallas.edu

Abstract—Visualization techniques have been widely used in
representing software artifacts. They play a centrarole in
conveying program information to software developes. While
numerous tools have been developed to visualize anfnation
such as static software architectures, dynamic pragm
behaviors, and debugging processes in different way little
attention has been paid to visualizing correlationsand
variations among program representations. This pape
investigates the visualization of cross-referencesacross
multiple program executions upon different testinginputs so
that meaningful and viewable properties can be presited to
the viewpoint from different perspectives. Visualimg such a
comparison can help feature location and program Heavior
verification. It also helps programmers better undestand and
test their software which can have a significant iact on
improving its reliability.

Keywords-software visualization; dynamic behavior
comparison; correlation visualization
l. INTRODUCTION

Software visualization [3][9][32][39] techniques Jea
been widely used in the lifecycle of program depeient
spanning from requirements and design to softwaséng
and maintenance, where program structures and tevahly
results are represented in an intuitive way thatHumans’
mental models. So far, many visualization toolsehbeen
developed to aid comprehension of software systeoms
various perspectives, including static softwarehigecture
[2][4][13][28][29][33], source code navigation[22]ynamic
program runtime behaviors [8][19][25][26], debuggiand
fault location [10][20], statistic analysis [11]n@ program
evolution [5][6][12].

Inherited from information visualization, existing
software visualization tools utilize various gragaii
ingredients and topological theories to visualiodtveare
data, e.g. force directed layouts [14], zoominchiggues
[31], and fisheyes [15]. Colors [16], metaphors fRLltiple
dimensions [23][34], and animations [30][35] arescal
popular visualization methods for conveying sofevar
information to end-users.

While prior software visualization techniques can
display information such as static software architees,
dynamic program behaviors, and debugging processes
different ways, less attention has been paid tdlighting
variations and correlations across multiple sofewar
representations, e.g. visualizing a comparison rogam

executions. VisLink [7], a methodology for reveglitthe
relationship amongst information representations,
emphasizes the importance of constructing coroglati
between information representations. It sheds lmhtthe
visualization of correlations across software acti.

This paper aims at visualizing the comparison of
multiple program executions from different programputs
by highlighting their similarities and differencaésualizing
the cross-referencing of execution traces can dhehelopers
to better understand and test their software wigah
significantly improve its reliability. According tMiranskyy
et al. [24], comparing program execution tracdseiseficial
for several reasons: it helps to improve test cayerand
identify duplicate test cases; it also helps tateccommon
features [37] pertaining to particular behaviorat thccurred
in different executions.

GAMMATELLA [19][26] is one of the well-known
tools for visualizing program execution and debuaggilt
combines treemaps, color hues, and brightnesdusirdte
program execution information. Ware et al. [35]diséereo
and motion cues to maintain connections of relateghts in
consecutive information representations. To compare
multiple representations of program executions, arem
efficient way is to visualize the representatiohiterest in
the same scene. By presenting the similarities and
differences in a human-centric manner, users cailyea
identify common and unique events. Events uniquearto
execution can be considered as a feature relating t
specific test case.

To realize such a comparison, we encountered devera
challenges, such as a large amount of traces,|vizadeling
of program executions, constructing similarities dan
differences among individual executions, and edfiti
navigation supports. To address them, we firstiguce
execution traces to different abstraction levelgshwa
folding/unfolding functionality, so that only nesasy
information is displayed in a limited visualizatispace.
Then we visually model both individual executiomsl aheir
connections using a multi-plane layout based on
conceptual closeness of testing inputs. Finallypnavide a
reactive navigation interface with an eye trackebtowse
the visual space in a human-centric manner.

The rest of the paper is organized as follows. iGe@
presents an overview of the approach, data abistnaetnd
visual models. Section 3 illustrates a multi-pldengout and
mapping specifications. Section 4 describes maeltipl

the

perspectives of the visual space and a reactivégation
interface. Section 5 presents an experiment on [@n o
source software and observations from preliminasults.
Section 6 reviews related work. Section 7 concluthes
paper and discusses our future work.

. MODELING MULTIPLE EXECUTIONS

A. Overview

Creating an effective layout for comparing multiple
executions is not easy. Since there have been &eamaf
useful 2D representations (e.g. sequence diagraais,
graphs) that could visualize various aspects ofystem,
these representations need to be correlated.

B. Execution Trace Abstraction

Handling program execution data involves two major
steps: trace collection and abstraction. We cobeetcution
traces using an aspect-oriented approach. Instriaiem
aspects are created and compiled seamlessly togsttie
the Java byte codes of source programs. In theemturr
implementation, we record method invocations, amittta
call graph of method invocations represented itaadard
GraphML format. Multiple executions on various itpare
traced.

A pre-processing [38] is conducted to preliminafilier
the collected trace by abstracting away detailéorimation
not to be visualized. The information abstractedayw
includes method calls that contribute little to the

To correlate such representations, a 3D space igepresentation of program interactions. Such meiteits
advantageous over a 2D plane because it providee mo may include:

perspectives for users to observe from [34]. Weoshoa
multi-plane 3D layout by displaying individual exgions
on 2D planes and constructing their connectionssacthe
planes in a 3D space. The multi-plane layout caarf
separate correlations from individual representatio
For instance, in Figure 1(a), correlations are rbjea

separated from individual representations compaftidthe
multi-box representation in Fig.1 (b) that clusters
information of individual executions in the box&sfferent
from existing multi-plane layouts that are primatised for
visualizing software hierarchical structures (dRigi [33]),
this paper aims at constructing correlations amoodfiple
executions and deriving meaningful observations.

(a) Multi-planes

(b) Multi-boxes

Figure 1. Different 3D visualization arrangements

Figure 2 depicts an overview of our approach. Etienu
traces are reduced based on

(1) Repeated method invocations.
(2) Lower-level method invocations.
(3) Intra-object method invocations.

Reducing these method invocations makes it postible
display a large amount of information in a limitgtual
space. The reduction is a multi-level abstractioomf the
highest level to the lowest level by unfolding etserand
vice versa. Based on the abstraction criteria, véhemts are
folded, the new event representing the folded médion
will be the highest level event of the folded on&sr
instance, if we collapse a call chafcallsB, B callsC, and
C callsD. The new event denoting the call chain will he
That is, we collapse the low level events, and aoul
iteratively unfold them upon users’ requests. Sinhyl
intra-object method invocations could be foldeddasnter-
object method invocations. Details of our traceuctibn
technique could be found elsewhere [38].

C. Visual Models for Executions

We use sequence diagrams to visualize individual
executions on 2D planes. Although sequence diagraws
been used widely in software design and prograrougia,
visualization of cross-referencing multiple exeond has
not appeared in the literature to our knowledge.

Each object is represented as a small green guiliers

user-defined criterigin the space. As each object may include one oremor

Representations are ordered as multiple planes.n Theobjects due to the abstraction, the more objectpleere

information on adjacent planes is mapped, and dgraph

includes, the larger the sphere will be. We cougign

elements are rendered on the 3D space with multipledifferent colors to objects belonging to differénteads for

perspectives.

Multiple

Different/
The same Ordere(;T
Representations multiplefs| Apfacent
Planes| anes A 3D
_Mapping Structure
J> Graphical
Information Rendering
Data Reduction

Resourc

Figure 2. Approach Overview

a multi-threading program. Method calls betweerectsj are
represented by horizontal edges arranged on therratg
order of events. Edges within one execution (irdrat
execution edges) have the same color (red in otrermu
implementation). Mapping between executions
highlighted with yellow lines. Figure 3(a) depiastypical
representation of a single execution, and Figurb) 3(
describes a multi-execution representation.

Choosing the sequence diagram to visualize indalidu
executions has several merits: (1) it emphasizggscbb
interactions; (2) it makes the layouts of multiplecutions

are

@ (b)

Figure 3. Basic models of multiple planes

uniform, and thus eases the intuitive cross-refangn 1) nOR

compared with other 2D node-link graphs. 2 A ={am an+n..-, &t 0 A, are common attributes
forr;.
A =XECU] | (3) P = {P Prosa P} OP.

Challenging issues for visualizing multi-plane (4) Op 0P, m<j<n, contents orp, have all the
correlations include: attributes ofp.

(1) Visual properties of individual planes, i.e. orders (5) OpO P, Oa O A, contents orpydo not have the
orientations, and positions of planes in a 3D space attributea,.

(2) The optimal layout of planes for the best A concept lattice can be created from the semawtics
observation; the relationships iR. The attributes and relationships can be

(3) Mappings between information in two adjacent annotated by developers using textual labels orh eac
planes, i.e. the criteria of judging whether two execution. We first turn the concept lattice intotrae
(clustered) events on different planes are the samétructure by breaking any possible cycles. Figu(e) 4
or not. illustrates a concept lattice with four types ofatenships

{rq, 15 13, g} and seven planespf,, ps}. Figure 4(b)

A. The Layout of Planes depicts the ordered planes based on the concépe lasing

The order of planes is determined by the semantica tree- traversal algorithm.

relationships between the planes. The generaliphinis to

position planes having close relationships togetfidre r

assumption is that representations with close iosiships

1
ot
are apt to share more common properties. In mxééetion /T\ | 3\ Ps: P1, P2: Ps Pas Po, P3
p5/4 Pa 3
AN

Ill. MAPPINGS BETWEENEXECUTIONS

visualization, executions using similar test cases
performed consecutively can be spatially positiotoegbther,
so that the user can easily observe conceptualtere pr P2 Ps Po
clusters. @) (b)

More forma_lly, we arrange multiple planes based on Figure 4. Ordering of planes
concept analysis as follows:

Let R (ry, ra..., i,...) be the set of different relationships The following tree-traversal algorithm can ordeanss
among all representations (planes), where aaéh R is in a concept lattice.
semantically defined based on the meanings of ¢héeats Input: rootrt of the lattice; Output: an ordering of the
it represents. Le® (py, p,..., Pi,...) be the set of planes for planes

different representations. Lét(ay, &,..., & ...) be the set of PlaneOrdert)

common attributes for the relationshipsRn FOR each chila of rt,

" {A cluster of planeSis defined as a triplei(A, P) such IF ¢ is a plane), putpi in the next adjacent available
a

position in the order

ELSE IFc is a relationshipr(), call PlaneOrde(c); Figure 6 illustrates mappings between entities amnon
Mark p; asrt-cluster. multiple executions. Two entities considered thmesawill
be visually connected. In multiple program exeagiotwo

The multiple planes are rotatable to provide ardbke entities (events) are connected if they are:
observation. We associate the orientations of glavith the (1) invoked by objects having the same class names, and
user’s viewpoint so that the rotatable planes geranhically (2) both callers (callees) of the same method invonatio
present the maximal viewable information to themée by
dynamically forming an angle facing the currentipos of
the viewpoint and showing the properties intergstm the
user. The change of the viewpoint will trigger ches of
plane orientations, and highlights in the new view,a
similar fashion as a camera model [1].

Figure 5 illustrates an example position of themgeint
where the planes rotate to obtain the best expasutke
inter-plane relationships that are the current olirsg focus
of the user.

Figure 6. Mappings between planes

z /‘D z © Definition 1: Eventse; and e, in two abstracted call

/ graphsS, andS; are the same if and only if the nodesand
n,in the graphs denoting ande, are isomorphic, and have
|:> the same names [38].

The isomorphism requires that two abstracted nodes
have the same structural connections with theightmring
— nodes. Two nodes have the same name if they hawsathe

Y X Y X method names, class names, thread names, and atgume

IV. MULTIPLE PERSPECTIVES
Figure 5. Planes adjusting automatically against the viewpoin

A. Visual Coordinates

B. Mapping Specifications Multiple planes in parallel form a cube, and présen
In visualizing multiple representations, an infotoa ~ S€veral meaningful properties when the user obsehee3D
set includes multiple individual representationsd an Structure from different perspectives. Figure 7ickspthree
correlations among them. We define the correldtietwveen ~ Major perspectives: the top view, the front viend ¢he side
two representations ascancept mappingdenoted a$A(X, VIEW.
Y), where X and Y are two visual representations, i.e.,
mapping information sharing the same attributesfi¢to 9
Y. Each visual representation refers to an inforomasiubset
with a specific layoutx /7X is a visual entity irX, andy /7Y
is a visual entity iny. m(x, y) Z7M(X, Y) mapsx toy. The
concept mappingequires that two connected entities share
common attributes. ©
The concept mappingn cross-referencing has several =
properties: ©
(1) It is a concatenation of(X;, X;), M(X;, X3),...,
whereX; is thei™ visual representation.

Figure 7. Multiple perspectives
(2) m(x, y) Z7M(X,Y) could be a one-to-more or more-

to-one mapping. We map visual properties of the 3D structure to a
(3) M(X,Y) is transitive, i.eM(X;, X)) O M(X;, XJ) - Cartesian coordinate system. Figure 8 depicts the
M(Xi, Xy). corresponding information on each axis. Each petsfeis

formed by two axes in the space. The property oh exis
To visualize correlations among multiple is determined by the information topology of the 3D

representations, we consider: structure. In this paper, the X-axis, -Y-axis, ahdxis are
(1) The visualization of individual representatioXs =~ Mapped to object interactions, event orders, aretigion
andXi,: instances (abbreviated as O, V, and E, respeclively

(2) The visualization of mappings!(X;, X..1) between
individual representations andX.

Different from a traditional sequence diagram, our
approach clusters objects and interactions in miffelevels
Execution Instances (E) . . ‘ of abstraction. The interactions between objed&ate the
_ , gy ¥ communications between different object clustete Tser
L>Object Interactions (O) can select one of the presented executions byimjcfor
l Event Orders (V)

gaze at it through an eye tracker) an object ingkacution,
and view it separately. For instance, Figure 9tmws the
| first execution in Figure 9 (a) separately.

Viewing the executions on th®-E plane in Figure 10,
the user can identify and compare how objects gpatie in
the different executions. In this view, objects ihgvthe

The perspectives in the visual space are genetailize same activities are connected by yellow lines. Sobjects
three views: the front view (i.e. tf@-V plane in the visual ~May participate in all the executions, while othensy
coordinate system), the top view (i.e. #heD plane in the ~ appear in fewer executions. For instance, in Fighe
visual coordination system), and the side view theV-E following the yellow lines, we can conclude thag top two

plane in the visual coordinate system). Each viefoimed Objects in each execution have participated intredl four
by two axes as described below. scenarios, and involve the same method invocations.

Figure 8. Visual coordinates

B. Program Properties from Multiple Perspectives

To compare executions, we not only need to locate
common behaviors but also need to understand the
contextual information around the common behavisush
as the interactions with other objects and tempm@berties.
We take advantage of structural properties of thitgecand
derive the meaning of each view as follows:

(1) The front view onO-V plane: Method invocations
within each execution, i.e. object interactions. _ _
(2) The top view orO-E plane: Objects’ participations Figure 10.A top view on theD-E plane

in multiple executions, i.e. common activities of The side view of the executions on thieE plane is

ObjeCt.S in Q|fferent executions. , . shown in Figure 11. Since the V-axis records theuoing
(3) The side view olV-E plane: Events’ occurrences in - orqer of events, viewing the space onhE plane, the user
multiple executions. It helps to compare the can optain temporal properties of object interatio
temporal properties of common or unique events inCommon events occurring at the same or differestairces
different executions. of time in multiple executions connected by yellives can
be seen clearly. For instance, the common evemisected
Figure 9 shows a front view on the-E plane. The by the top straight yellow lines in Figure 11 hapge at the
planes for multiple executions are in parallel. Tolgect beginning of each execution. The bottom angledoyell
interactions within each execution are representddg a lines connecting the same events in three execuition
sequence diagram. indicates that these events did not occur in thg la
execution, and they happened earlier in the seegadution
than those in the other two scenarios. It revdagemporal
distribution of common events among multiple exemns.

@ (b)
Figure 9. A front view on theD-V plane

Figure 11.A side view on th&/-E plane

C. Navigation Supports with Eye Tracking

In addition to traditional navigation supports thae the
mouse/keyboard to move, rotate, and zoom in (ou8PDa
scene, we use an eye tracker to capture usersl\egets
and aid navigation.

@

(b)

Figure 12.Folded/unfolded views with an eye tracker

The eye tracker is a cursor controlled by the pupil
movements that occur while the viewer physicallyegaat
an object of interest [21]. Fixation (the stabitina of eyes
on an object of interest for a certain period ofig) and
saccade (quick movements of eyes from one locatidhe
next) are the two most common types of eye movesnent
[21]. We use fixation to determine the user’s targene
ordinate of the pupil in the eye tracking contnobereen is
mapped to that in the visual space.

The user can choose to see the details of an obyject
gazing at it for a certain amount of time (e.g.€2.5 Then
the object can be unfolded on demand. Assume lileabig
node (in the dotted circle) in Figure 12(a) is tieserver's
current focus; it could be unfolded to the objetéiactions
shown in the dotted rectangle in Figure 12(b)aligely, the

user can trace down from the highest level to teeét to
see method invocations in detail. A large greenesph
indicates that it can be unfolded. Similarly, ackir red line
includes more interactions between objects. Textual
information (e.g. object names) will be displayedon
users’ requests.

Semi-transparency is used to aid highlighting. The
information related to a specific object interegtin the user
can be automatically highlighted by applying traargmcy
to the contextual information. For instance, whemusgr
gazes at the second object (the dotted circleheidftmost
execution in Figure 13 for a certain amount of tirtlee
interactions and correlations caused by the olgect its
correlations with other executions are highlightgdnaking
the contextual information semi-transparent. The
transparency is tunable for obtaining the bestresht The
user can get a quick impression about the influerfciis
object among multiple program executions via higfi.

V. EXPERIMENTS

A. Experiments with JHotDraw

We have evaluated the multiple-plane approach on an
open source project, JHotDraw. JHotDraw is a GUI
framework supporting simple drawing activities wait in
Java, and was initially designed to illustrate #pplication
of design patterns. We used Version 6.0 that costaB6
classes, 1,380 methods, and 19 interfaces.

The experiment aims at evaluating the effectiveradss
visualizing correlations and differences among ipldt
program executions. The scalability of the approfarha
large amount of data is also investigated. We desig
different testing scenarios for the program, andsent
traces in different abstraction levels.

The four testing scenarios include:

Figure 13.Highlighted information with semi-transparency

Figure 14.An abstracted visual representation

(1) Run JHotDraw- create new view draw one round
rectangle- close JHotDraw.

(2) Run JHotDraw - create new view draw one
ellipse » save the view close JHotDraw.

(3) Run JHotDraw- create new view draw one round
rectangle - draw one ellipse- start and stop
animation- close JHotDraw”.

(4) Run JHotDraw-» close JHotDraw.

illustrated by red lines. The yellow lines conndw same
events across each pair of adjacent planes.

Following the yellow lines in the side view, thesugan
easily identify common and different activities the
four scenarios. The representation can also be toseekify
a program’s expected behavior.

In Figure 14 the inter-execution connections hagitied
by the white ellipse on the top indicates that ¢hesents
connected by the yellow lines exist in four exemosi and

The above scenarios have both common and differemiccurred at an early stage in the scenarios, wtictiorms
behaviors. The traces were collected from the pgeka to the fact that the initialization of JHotDraw sts in all the
orgjhotdrawsampls.javadraw This package contains the scenarios, which is a common behavior. Similarlye t

most essential classes and methods that can enitret
drawing environment and support drawing applicaion
The four planes in Figure 14 from left to right @spond
to the four scenarios with the same level of abttma,
respectively. The interactions within each executiare

angled yellow lines at the bottom in Figure 14 aisanect
some common behaviors in the four scenarios.

The scalability is also investigated in our expents. It
is achieved by collapsing information at differabistraction
levels. Figure 15 illustrates the same four scesain two
different abstraction levels. The executions inuFég15(a)

were abstracted by collapsing the method invocatisith a less significant and have been collapsed away & th
depth greater than three in a call chain. The di@wuin abstraction process.

Figure 15(b) did not collapse any method invocatibased From a high-level view, the user can observe amfef in
on call depths, and thus include more data (digglap a the basic structures of program behaviors. Withigeion
scale larger than (a)). By comparing the repretentat supports, the user can track down to low-levelitieta

different levels, the user can identify which bdabev are

(CY (b)

Figure 15.An abstracted visual representation

B. Discussion

abstraction approaches to summarizing the contehta

The multi-plane approach is useful for comparingl an Program behavior. Reiss [27] defined an automatedein

analyzing multiple representations having
connections. The planes could dynamically rotatéhabthe
best exposure of inter-plane relationships
properties interesting to the user is presentechrtdsythe
direction of the user’s viewpoint.

To date, we have only developed the approach thagVe!

arranges and visualizes 2D planes in parallel oadycally
presents inter-plane relationships between two giaas
discussed in Section 3.1. For multiple planes tesgnt
viewable properties towards the viewpoint with migm
occlusions, the optimal angles for individual pleumeed to
be explored. Calculating the angles of multiple npia
geometrically involves many factors, such as thevpioint,
the number of planes, the layouts on individuahetaand
the visualization tasks, etc.

The presented approach addresses the scalalslity s/
information abstraction, which is currently a prEpssing
step, prior to the visualization process. The alotiin step
compresses only low-level and uninteresting infdaromato
reduce the 3D visual complexity.

VI. RELATED WORK

reptesgn

intrinsicfor dynamlc VISUEl|IZIng program execution using ruse

abstractions.

GAMMATELLA [19][26] visualizes executions in three
levels in 2D: a file-level representation in a ratorized
view, a system-level view using treemaps, and &rsi@nt-
view using colors’ hue and brightness.
GAMMATELLA does not support comparisons either.
Similarly, TraceVis [29] visualizes program behasidy
displaying microprocessor instructions in a 2D plaiit

supports queries, arbitrary levels of zooming, and
annotations on colorful blocks. Okamurat al [25]
visualized executions and debugging using visual

programming principles. They used different 3D otgeto
represent software artifacts, and simulated statesitions
by applying animation on the 3D objects. These @ggines,
however, do not support a comparison of differengpm
executions.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a 3D visualization tecienfior
comparing and analyzing multiple representations.
Specifically, multiple program executions are repraed as

There has been a huge amount of work on Ioroglrarppultiple planes in parallel. The correlations arifiedences

visualization and analysis.

are constructed and highlighted. A 3D visualizatiool has

Feijs and Jong [13] visualized the organization ofoeen implemented and experimented on an open source

software architectures in a 3D space, in which vk
modules were mapped onto bricks of different shapbs

project. Locating the correlations among multiplegram
behaviors can help programmers better understaddesmt

bricks are then connected by lines to simulate thd&€ir software which can have a significant impact

relationships between objects. Similarly, Aletral [2] used
a metaphor between software architectures anduitgtings.

improving its reliability.
Multiple executions presented in this paper coudd b

They represented components and metrics of compledeneralized to be multiple representations, e.gdiiderent
software in a 3D virtual world. Navigation is siratéd as software versions, different visual formalisms (s@&s those
walking in the street of a city. These visualizatio N UML), or different platforms. This is one of oduture
approaches only consider one representation ofatic st directions. Our immediate future work is on the lexgtion

architecture, and do not support comparisons betwee®! adjustable angles for the 2D planes accordinghe

different executions or architectures.
Achievements in visualizing the changes or evolutid
software systems includes the work of Begteal [5], which

viewpoint position, more visual features, focusteatual
presentation, and so on. More experiments and sisdies
on larger application programs will also be perfedn

created an animated 2D storyboard to show the toplof
software architectures. The software artifacts oD 2
storyboards are displayed as a bunch of clustéwes clusters ~ [1]
are efficient in visualizing software modulation tbare
difficult to be compared. Also, the changes of wafe
modulation are achieved via the animation of ttepldiys on [2]
2D planes. The animated 2D plane is good at viguall
illustrating the evolution process, which is coatns and 3]
incremental. In contrast, our 3D environment digpla
multiple executions simultaneously. The commoreditand [4]
differences across multiple executions are easybé¢o
identified.

Apart from visualizing software architectures andjs;
evolutions, understanding program behavior has baen
research topic in both program comprehension aftd/ae
visualization. One of the major issues relatedisvalizing [6]
program behavior is the compression techniquexXecuation
traces. Hamou-Lhadjt al. [17][18] have proposed different

REFERENCES

A.G.N. Ahmed, “High Quality Camera Paths for Navigg
Graphs in Three Dimensional SpaceRPhD Thesis
University of Sydney, 2008.

S. Alam and P. Dugerdil, “EvoSpace: 3D Visualizatiof
Software Architecture”Proc. of SEKE'07 2007, pp.500-
505.

T. Ball and S.G. Erik, “Software Visualization Inet Large”,
IEEE ComputerVol.29, No.4, April 1996, pp.33-43.

M. Balzer and O. Deussen, “Hierarchy Based 3D
Visualization of Large Software StructuresProc. |IEEE
Visualization 2004, pp. 4p-4p.

D. Beyer and A.E. Hassan, “Animated Visualizatioh o
Software History Using Evolution StoryboardsRroc.
WCRE’'06 2006, pp.199-210.

C.S. Collberg, S.G. Kobourov, J. Nagra, J. Pittsd &.
Wampler, “A System for Graph-Based Visualizationtloé
Evolution of Software”Proc. SoftVis'03pp.77-86.

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

C. Collins, S. Carpendale, and G. Penn, “VisLinkve&aling
Relationships Amongst VisualizationslEEE Trans. on
Visualization and Computer Graphics (InfoVis’QAypl. 13,
No.6, 2007, pp.1192-1199.

B. Cornelissen, D. Holten, A. Zaidman, L. Moonenl.
Wijk, and A. van Deursen, “Understanding Execufioaces
Using Massive Sequence and Circular Bundle Viewsdc.
ICPC'07, pp.49-58.

P. Eades and K. Zhang (Eds.) Software Visualizatgarld
Scientific Co., Singapore, 1996.

J. Eagan, M.J. Harrold, J.A. Jones, and J. Std3kechnical
Note: Visually Encoding Program Testing Informatitm
Find Faults in Software’Rroc. InfoVis'Q pp. 33-36.

S.G. Eick, J.L. Steffen, E.E. Sumner, “Seesoft- @olTFor
Visualizing Line Oriented Software Statistic$EEE Trans.
on Software Engineering/ol. 18, No. 11, November 1992,
pp-957-968.

S.G. Eick, Todd L. Graves, Alan F. Karr, Audris Ntas,
and Paul Schuster, “Visualizing Software Chang¢BEE
Trans. Software Engineering/ol. 28, No.4, 2002, pp.396-
412.

L. Feijs and R.D. Jong, “3D Visualization of Softwa
Architectures”, Communications of ACMVol. 41, No. 12,
1998, pp.73-78.

T.M.J. Fruchterman and E.M. Reingold, “Graph Drayvivy
Force-Directed Placementdpurnal of Software Practice &
ExperienceyVol. 21, No. 11, November 1991, pp.1129-1164.
G. Furnas, “Generalized Fisheye View8CM SIGCHI

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

Bulletin, Vol.17, No.4, ACM Press, 1996, pp.16-23. [32]
H. Gall, M. Jazayeri, and C. Riva, “Visualizing Sedre
Release Histories: The Use of Color and Third Disiem’,
Proc. ICSM'99 pp. 99-108. [33]

A. Hamou-Lhadj and T. Lethbridge, “Compression
Techniques to Simplify the Analysis of Large Exéont
Traces”,Proc. IWPC'02 pp.159-168.

A. Hamou-Lhadj and T. Lethbridge, “Summarizing the
Content of Large Traces to Facilitate the Undeditap of
the Behavior of a Software Syster®toc. ICPC’06 pp.181-
190.

J.A. Jones, R. Orso, and M.J. Harrold, “GAMMATELLA:
Visualization of Program-Execution Data for Depldye [36]
Software”, Information VisualizationVol.3, No.3, 2004, pp.
173-188.

J.A. Jones, M.J. Harrold, and J. Stasko, “Visué&bza of
Test Information to Assist Fault LocalizationProc.
ICSE'02, pp.467-477.

H. Kagdi, S. Yusuf, and J.I. Maletic, “On Using Eye
Tracking in Empirical Assessment of Software [38]
Visualizations”,Proc. WEASELTech’Qpp.21-22.

G. Lommerse, F. Nossin, L. Voinea, and A. Telea€&Th
Visual Code Navigator: An Interactive Toolset foougce
Code InvestigationProc. INFOVIS'05 pp.24-31.

A. Marcus, L. Feng, and J.I. Maletic, "3D Repreatinohs
for Software Visualization'Proc. SoftVis'03pp. 27-36.

(34]

(35]

(37]

(39]

A.V. Miranskyy, N.H. Madhavji, M.S. Gittens, M. D&son,

M. Wilding and D. Godwin, “An Iterative, Multi-Ledeand
Scalable Approach to Comparing Execution Trac@sc.
SIGSOFT/FSEpp.537-540.

T. Okamura, B. Shizuki, and J. Tanaka, “Execution
Visualization and Debugging in Three-Dimensionabuél

Programming”, Proc. 8" Intl. Conf. on Information
Visualization pp.167-172.
A. Orso, J.A. Jones, M.J. Harrold, and J. Stasko,

“GAMMATELLA: Visualization of Program-Execution
Data for Deployed SoftwareRroc. ICSE’'04 pp.699-700.
S.P. Reiss, “Visualizing Program Execution UsingetJs
Abstractions”Proc. SOFTVIS'06pp.125-134.

J. Rilling and S.P. Mudur, “3D Visualization Techuoes to
Support Slicing-based Program Comprehensi@Quinputers
& Graphics 2005, Vol.29, No.3, pp.311-329.

J.E. Roberts, “TraceVis: An Execution Trace Viszaifion
Tool James RobertsM.S. ThesisUniversity of Illinois at
Urbana-Champaign, 2004.

G.G. Robertson, S.K. Gard, and J.D. Mackinlay,
“Information Visualization Using 3D Interactive Anation”,
Communications of ACM/0l.36 , No.4, April 1993, pp.57-
71.

D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, il [3.
Dubs, and M. Roseman, “Navigating Hierarchically
Clustered Networks Through Fisheye and Full-zoom
Methods”, ACM Trans. on Computer-Human Interaction
Vol.3, No.2, June 1996, pp.162-188.

J. Stasko, J. Domingue, M.H. Brown, and B.A. P(igd.),
Software Visualization: Programming as a Multimedia
Experience, MIT Press, Cambridge, MA, 1998.

M.D. Storey, K. Wong, and H.A. Mduller, “Rigi: A
Visualization Environment for Reverse EngineerinBtpc.
ICSE’'97, pp.606-607.

C. Ware and P. Mitchell, “Visualizing Graphs in €br
Dimensions”, ACM Trans. on Applied Perceptiorv/ol.5,
No.1, 2008, pp.2:1-15.

C. Ware and G. Franck, “Evaluating Stereo and MoGaoies
for Visualizing Information Nets in Three Dimens&in
ACM Trans. on Graphi¢d/ol. 15, No.2, 1996, pp.121-140.
C. Ware, and G. Franck, "Viewing a Graph in a \&ttu
Reality Display is Three Times as Good as a 2D iiauj,
Proc. IEEE Symposium on Visual Languag®@stober 4-7,
1994, pp.182-183.

N. Wilde, J.A. Gomez., T. Gust, and D. Strasbutgcating
User Functionality in Old CodePRroc. 8" ICSM'92, pp.200-
205.

C. Zhao and K. Zhang, and Y. Lei, “Abstraction ot@ilkiple
Executions of Object-Oriented Program#iccepted as a
poster in Proc. 24 Annual ACM Symposium on Applied
Computing 2009.

K. Zhang (Ed.), Software Visualization - From Thedo
Practice, Kluwer Academic Publishers, Boston, Ap@i03.

