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Abstract—This paper presents Visper, a novel object-oriented framework that identifies and enhances common services and
programming primitives, and implements a generic set of classes applicable to multiple programming models in a distributed
environment. Groups of objects, which can be programmed in a uniform and transparent manner, and agent-based distributed system
management, are also featured in Visper. A prototype system is designed and implemented in Java, with a number of visual utilities
that facilitate program development and portability. As a use case, Visper integrates parallel programming in an MPI-like message-
passing paradigm at a high level with services such as checkpointing and fault tolerance at a lower level. The paper reports a range of
performance evaluation on the prototype and compares it to related works.

Index Terms—Distributed parallel programming, visual programming, message-passing, object-oriented model, fault tolerance.

1 INTRODUCTION

XISTING distributed programming systems support a

fixed number of computing models (often only one),
making them hard or impossible for tailoring to specific
needs of an application that was not originally considered.
Building a completely new system is difficult and there is
need for a generic framework with services common to
different software models and applications. Rather than
developing applications directly on top of the transport
layer, the goal of this research is a layered and extensible
framework that supports specific models through simple
customization. When enhanced with visual programming
techniques, such a middleware should facilitate writing of
parallel and distributed applications. We have investigated
the framework concepts by implementing a new, distrib-
uted, object-oriented (OO) environment called Visper.

OO programming is highly regarded when dealing with
complex systems due to extensibility, maintainability, and
reusability of components. Historically, the parallel pro-
gramming community has been slow in adopting object
orientation, due to high cost and time requirements when
building new or replacing existing applications. Therefore,
a new infrastructure was often forced to compromise
between serving the legacy system and language and
facilitating the new development. As a result, the realized
solution was just a bridge between old practices and new
features. However, as we have learned in our survey of
related works, this does not necessarily yield a better or
more natural solution. Pasadena Working Group 7 [27] has
been discussing the OO paradigm and techniques and
promoting them as a more productive approach to parallel
software. Unfortunately, the Pasadena recommendations
also advocate an evolutionary rather than a revolutionary
approach.
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We believe that efficiency and scalability in process
instantiation and communication, portability, fault toler-
ance, extensibility, and interoperability, as discussed at
Pasadena, can be achieved without compromising the new
development. Rather, a new system should be transparent
and open to legacy or other code through a well-defined
and standard interface. It should comply with the new (e.g.,
O0O) methodology, rather than making new techniques
comply with old practices. This sets out the general
objectives of our work. We will consider asynchronous
distributed systems. Specifically, distributed means that the
processors are physically separated and the processes
executing in the system communicate by passing messages
along channels. Asynchronous means that the system has
no global clock and that there are no bounds on relative
local clock speeds, execution speeds, or message transmis-
sion delays.

The rest of the paper is organized as follows: The next
section overviews the major design features in Visper.
Section 3 describes the visual development method and a
new visual formalism adopted. Section 4 outlines the
structure and main components of the Visper prototype.
The OO parallel programming support, fault-tolerant
approach, and distributed management by software agents
are detailed in Sections 5 to 7. Section 8 reports on the
performance evaluation of the prototype, followed by a
comparison to related works in Section 9. Section 10
concludes the paper.

2 DESIGN FEATURES

Distributed systems are complex software and hardware
structures and their development is difficult and challen-
ging. They should provide a consistent and uniform view of
how to build and organize applications that run on them. A
uniform model contributes to a single-system view. The
issues the model has to address comprise scalability,
heterogeneity, security, resource management, fault-toler-
ance, multilanguage support, extensibility, interoperability,
and ease of use.

The idea behind Visper is in a seamless support for
multiple programming models (e.g., parallel, sequential,
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distributed, agents) that are, in their core, similar, if not
identical, and can be realized with high-level tools. In fact,
by definition, distributed and parallel programming differ-
entiate against each other in terms of the hardware they use
rather than applications they represent [8]. A set of
cooperating mechanisms is needed that make up a reusable
design through an OO approach and strict separation of
concerns. Programs should use only those services that are
essential to achieve the goal. Design can be customized for a
specific application by choosing the appropriate implemen-
tations of objects and enhancing them with other objects,
where necessary.

We followed this approach to enable flexible, transpar-
ent, and efficient interaction between application and
system objects, regardless of their role or location. The
framework is further characterized by its support for object
(process) groups, distributed management by agents, fault
tolerance, and visual program development.

2.1 Visual Program Development

Visualization is recognized as a powerful technique in
understanding user requirements and helping software
development since visual constructs and relationships are
often easier to reason about than similar structures
described in plain text. A visual language may enhance a
programming language by providing intuitive graphical
primitives and also enforce programming discipline with
high-level compositional and structural constructs [5].
When developing a parallel program, four main stages
can be identified: problem partitioning, program composi-
tion, debugging, and performance tuning [43]. Visual
formalisms designed so far are often applicable to only
some of the mentioned stages because the level of
abstraction at one stage may not be appropriate at another.

We have designed a visual parallel programming
language for graphical composition of message-passing
programs. The graphical form in the language is scalable
and hierarchical in specifying communication and synchro-
nization. Due to the explicit visual representation of
parallelism and nondeterminism, the potential interdepen-
dency and concurrency between processes are easily
perceivable. The main advantage of our graphical form
over the other existing forms is its consistent visual
representation throughout all four stages that preserves
the user’s mental map [9].

2.2 Modular Programming and Object Groups

The goal of Visper is letting developers concentrate on
designing and implementing functionality as objects in a
modular manner, as this should be their main activity.
Other issues, such as distribution and communication of
objects, are different from what the object does (i.e., its
semantics) and should be obtained from libraries. For
example, a serious limitation of most current systems is
the synchronous point-to-point (i.e., client-server) nature of
their communication and coordination that scales up badly.

The collective state of a distributed application consists
of the states of its semantics objects and, in our approach,
replication and caching are important techniques to achieve
scalability. Visper allows groups of distributed processes
(as objects) to be collectively created and manipulated as

single entities that cause minimal networking overhead and
programming intervention. Further, the library of generic
classes enables communication, coordination, and control of
active program objects and object groups.

2.3 Fault Tolerance

A fault tolerance mechanism is vital in a network
environment because it allows a failed application to be
restarted from the most recent saved state, thus reducing
rerun time by skipping over the already computed
operations. Our fault tolerant model assumes that all
processes in a distributed application are fail-stop [30],
which means that program either completes and produces
the correct result or execution terminates prematurely and
the system notifies the user of this fact. The services to
support fault tolerance include checkpointing, data recov-
ery, detection of faulty hosts, and user notification. Visper
implements a checkpointing mechanism that periodically
saves the state of the objects to file on a per process basis.
The Visper’s layered checkpointing protocol blends natu-
rally into the asynchronous execution model. It promotes
fast program execution by implementing optimistic check-
pointing, while avoiding an unbound rollback [29] through
coordination. The proposed membership service delivers
more accurate [14] and responsive identification of faulty
versus slow processes.

2.4 Distributed Management by Agents

Agents are computational entities that act autonomously on
behalf of other entities. Generally, agents perform their
actions either proactively, reactively, or both, and may
cooperate, learn, and become mobile [17]. As an open
system, Visper is controlled and configured by a set of
agents that provide the link between the system and
application programs and enable separate development of
system and programming services. They communicate by
sending asynchronous messages that can be either active or
passive. Active messages synthesize behavior or data or
both to functionally enrich the system and the passive
messages represent the basic vocabulary understood by all
agents that belong to the same class. The active messages
synthesize behavior or data, or both to functionally enrich
the system.

3 VisuAL PARALLEL PROGRAMMING

Our approach to visual parallel programming is based on a
visual formalism called the Process Communication Graph
(PCG) [32] that originates from the space-time diagram
(STD) [24] and the concurrency map [37]. The latter two
types of diagrams present the execution dynamics of
parallel programs as a stream of events in a two-dimen-
sional space where one axis represents the time and another
the individual processes. They have been used for debug-
ging and tuning of parallel programs, but not for composi-
tion. We have adopted a radical solution to extend the
concept of these diagrams into composition phase, by
redefining the time axis as a control flow axis and adding
the concept of process groups to the process axis.



480 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.5, MAY 2002

. i} World name
% Init all-execute
block
y include block
*11} Run
type stanza - {Double;11} mypi-=res(i] {Double;11}
message node
exclusive- RS E——. Print copy stanza
execute block
]Qop
Finalize comment
process
group

Fig. 1 Visual abstractions in PCG.

3.1 Process Communication Graph

Rather than viewing parallel programs as two-dimensional
[2], the PCG provides a programmer with a three-dimen-
sional programming space illustrated in an example in
Fig. 1. The X-axis runs horizontally and is used to add
processes and groups of processes to the programming
space. Data are communicated among the processes along
this axis. The Y-axis runs vertically from top to bottom and
defines the execution sequence and time. The concept of
groups of processes adds another dimension to parallel
programming. The (virtual) Z-axis represents the number of
processes in each group.

3.2 Visual Abstractions

Programming in PCG is not visual in all aspects, but
exploits visual formalisms for data flow and parallel
constructs. The visual abstractions in Fig. 1 can be classified
in three-tiers that follow the way in which a parallel
program is composed. The first tier comprises the proces-
sing unit called a resource that is uniquely identified by a
name. The thin line represents an individual process, i.e., a
group with only one process. The thick solid line represents
a group of processes, manipulated as a single entity. Groups
can be defined at compile time or dynamically allocated by
a resource manager at runtime. These resources define the
scope of the language primitives in the second tier.

The second tier comprises basic symbols for describing
control and data flow in a message-passing program, all
following the MPI standard [25]. Fig. 1 presents the main
subset of the basic symbols defined in the PCG grammar.
Execute blocks represent code or calls to routines written in C
or Java. All resources in a program execute code found in an
all-execute block. An exclusive-execute block is bound to a
specific resource. A pair of message nodes describes a point-
to-point message, a one-to-many or a many-to-one collec-
tive message. An arc designates the dataflow direction
between two nodes. A crossed arc or message node
represents a conditional message. A textual annotation
attached to a communication primitive in the form of a
stanza, further details the primitive, such as what type of

data is communicated (type stanza) or what operation and
data stores are involved (copy stanza).

The third tier consists of symbols that convey composi-
tional information. An include block (the white rectangle
with a cross) enables inclusion, by reference, of one graph
into another. There is no limit imposed on the level of
nesting. A pair of hollow horizontal lines represents an
iterated computation (i.e., loop). A comment is any text that
does not follow the syntax of the PCG grammar.

3.3 Program Composition

Parallel programs are large constructs with a structure that
is sequentially ordered and spatially interdependent. Most
often, the ratio of sequential to message-passing code favors
the former, but the latter is harder to understand and
optimize, and, thus, worth direct visual presentation. The
PCG formalism is unique in recognizing conditional data
flow rather than control flow, thus encouraging a flat data
flow structure where process interdependencies are not
deeply nested into the sequential control flow. Further, PCG
does not define granularity at which execute blocks should
be used, leaving that at a discretion of the programmer.

At the program composition level, PCG supports
hierarchical program composition and reuse of modules
by graph inclusion. Programmers can work concurrently on
different modules and test them separately in Visper
(Sections 5.1 and 8.1). At the design and programming
level, the language empowers the programmer with the
primitives that scale up [3], such as groups, execute blocks,
and collective communications, when developing programs
with a large number of resources. The tool has been used in
teaching parallel programming, with students composing
programs and visually analyzing the PCG and space-time
diagram (STD) for communication patterns [23] and
behavior [36].

Composing a PCG is performed visually in the
PCG editor (Fig. 2). In an editing window (e.g., CalculateX-
Y.v module of Monte Carlo program from Section 8.2), the
programmer first draws processes and groups, thus
defining the spatial program distribution and processes’
roles, followed by other symbols to define processes’
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Fig. 2. PCG and its editor.

behavior (i.e., control and data flow aspects of an applica-
tion). The module consists of a group called Workers and
two processes, one of which collects and prints the result
(i.e., 0) and the other that generates random numbers called
random. The whole scenario of receiving random numbers
and performing the calculation is wrapped in a loop.

The programmer then annotates the graph by filling in a
set of forms to describe the properties of the resources,
execute blocks (an ExecuteForm), arcs, and nodes (e.g.,
ArcForm and NodeForm). For example, the programmer
must specify such information as the sequential computa-
tion represented by the blocks and the types of the data sent
in the messages. Finally, the programmer invokes a compile
operation to automatically assemble a program. If no
graphical syntax error has been detected, the program is
composed and saved to a text file ready for compilation and
execution.

4 THE PROTOTYPE ARCHITECTURE

The aforementioned design features of the Visper frame-
work have been developed in a prototype [33] that is an
interactive, object-oriented environment, with a set of tools
for composition, execution, and testing of single program
multiple data (SPMD) applications. Fig. 3 shows the major
components of the prototype in two layers: frontend and
backend. The frontend comprises the user interface that
supports visual programming in PCG, configuration man-
agement, monitoring and debugging, and visualization of
message-passing programs through its four tools. Indepen-
dent from the frontend design, the backend implements the
services that support the frontend and system services
including the fault tolerant mechanism. This section gives
an overview of the prototype with its structure and tools.

Arcppd | Cancal I

4.1 Frontend: User Interface Tools

The main functionality of the frontend is to support visual
parallel program composition and visualization of program
execution. It provides the means to compose, start, and
analyze parallel programs through the user interface. Fig. 4
shows various frontend components. The top left window is
the session dialog, the top right window is the debug
window, and the bottom window is the console. By using
the PCG editor (Fig. 2) in the design tool, the programmer
draws a PCG to visually describe the structural aspects of
an application, independent from the target architecture.
The defined processes communicate by visually invoking
message-passing primitives in the form of basic symbols.
The behavioral aspects of processes are specified by
program code. The design tool generates a structured
internal representation of the computation, performs
syntactic analysis of a constructed graph, and translates
the graph into a parallel program.

The configuration tool informs the user about hosts that
are available in a Visper-enabled network of workstations
(NOW) and allows the user to configure the environment
in terms of sessions in a session dialog. The user selects host
names from the left list (e.g., World) and creates a new list
on the right under a new session name. A session is an
ordered set of hosts that represents a virtual parallel
computer, i.e., a metacomputer. Once a session is defined
and created, it is ready to accept requests for program
execution. Each session can run only one program at a
time. Sessions can grow or shrink since hosts can join or
leave (e.g., crash). A session grows dynamically when a
program allocates more resources via a resource manager
(Section 5.2). The user can reconfigure an existing session
by manually adding, removing, or reordering the hosts in a
session dialogue. Through the debugging tool, the user
enables and disables the recording of communication
events. The recorded events, such as synchronization
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Fig. 3. Main components of the Visper prototype.

delays and communication ordering, can later be visua-
lized in a space-time diagram and analyzed [23].

The top right subwindow in the console is a part of the
performance tool that collects and displays the performance
information (e.g., program execution time) and supports
performance analysis with characteristic views (e.g., process
activity). This subwindow also displays system-related
events (e.g., user initiated reporting). The top left sub-
window in the console displays the backend messages
initiated by user actions (e.g., J+ means that host niaum00
has joined session one and its ID is 0). The bottom
subwindow displays program output or generated errors.

4.2 Backend: System Services

The system interface (Fig. 3) bridges the user interface and
the NOW and also interfaces between the networked
workstations. Visper’s system interface uses two reliable
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communication techniques: point-to-point (TCP) and
Intranet multicast (iBus) [31]. Fig. 5 shows the architecture
and the main subsystems.

The backend provides the services that are used to run
programs, generate debugging and runtime data, control
the backend itself, and support fault tolerance. They are
described in Sections 5, 6, and 7. The membership service is
the database of available resources and detector of faulty
hosts. The resource management provides runtime allocation
of hosts. Each host participating in a Visper environment
must run a Visper daemon. Each daemon forks one worker per
session to run programs consisting of remote threads (RT)
and maintains workers’ state (e.g., active, dead). A daemon,
with its set of workers, forms a federated system. As the
basic building blocks in Visper programming, remote
threads will be further discussed in Section 5.1. Fig. 5
illustrates that a worker can run multiple remote threads.
The separation of the Visper daemon, worker, and resource
manager into dedicated JVM processes facilitates different
security policies and better resilience to malicious code. It
also promotes separation of concerns, which enforces
locality of different kinds of information in the programs,
making them easier to understand, write, maintain, and
modify.

To minimize the program start-up cost, each session
maintains its own set of active workers. To allow location
transparent programming and more efficient loading of
Java class files, the user can define multiple loading points,
and different access modes (e.g., http://..., file://...). This
approach also eliminates a potential bottleneck caused by a
single file server servicing many concurrent requests. The
defined access path is valid across a whole network, rather
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than being local to a host like the CLASSPATH environment
variable in Java.

5 PARALLEL PROGRAMMING SUPPORT

From the programmer’s perspective, Visper has a simple
API, as shown in Fig. 6, that enables interaction, commu-
nication, and other activities between distributed objects. In
the figure, the arrow line designates inheritance and the
solid lines represent association. The system-level classes
are prefixed with a V (for Visper) and the user-level classes
with a RT (for remote thread). Most RT classes are just
wrappers for the corresponding V superclasses. They
abstract away implementation issues by hiding the internal
package structure from the programmer and providing a
simple and coherent API as a single package called visper.rt.

The execution model in Visper is based upon groups
represented by VGroup and RTGroup. All computing
resources are organized and accessed on a group basis.
For example, the user first defines a session that
represents a group of hosts. When instantiating a group,
the system creates one process per worker in that group.
At the API level, the programming primitives, such as
RTRemoteProcess and RTRemoteGroup, transform the notion
of a group of hosts into a group of processes on which a
program that consists of remote threads runs. Processes
are created, controlled, and populated by remote threads
only within the context of a group to which they belong,
i.e.,, no process exists outside a group boundary. Conse-
quently, groups provide a communication scope for their
member processes since one process refers to another as
being a member of a particular group.

e RTSession implements an interface to the session
abstraction. The role of a session is twofold. From
the user’s perspective, a session provides the means
to control the environment. From the programmer’s
perspective, an RTSession provides the means to
interact with the user and the environment. An
RTSession contains information about the current
session configuration and status, and keeps track of
all the resources allocated by a program. For each

RTCheckpoint I I RTComms I

RTSession RTRemote
Process
RTGroup f* RTRemote
Group
Y 1
VGroup ! VProcess

Fig. 6. Visper API classes.

execution of a program, there is only one session
object.

e RTGroup represents the abstraction for allocation
and ordering of processes. In Visper, each group is
unique within its session, and represents the
smallest unit of process organization.

e  RTRemoteProcess and RTRemoteGroup provide meth-
ods to spawn and control one or more remote
threads based upon a process group. VProcess is a
system class that generates messages to control
processes.

e RTComms implements communication and synchro-
nization primitives as defined by the MPI standard.
The supported primitives include point-to-point and
collective communications that can behave as syn-
chronous or asynchronous.

e  RTCheckpoint implements the checkpointing and
recovery mechanism to be explained in Section 6.

5.1 Remote Threads

In Visper, a remote thread is the unit of computation that
encapsulates behavior and a resource. As such, it is the
semantics object of an application. Remote threads can be
downloaded or migrated, on demand, to where they have
been scheduled to run. They are protocol and platform
independent and they dynamically extend the functionality
available at the remote hosts. Remote threads have the Java
advantage: memory access violations and typing violations
are not possible, so that faulty remote threads will not crash
processes as they do in most native language environments.
Any class can become a remote thread simply by
implementing the RTRunnable interface:

public interface RTRunnable extends
java.lo.Serializable {
public void Run(String[] args,
RTThreadGroup rttg,RTSession rts);

The Run method defines a remote thread body with a
sequence of actions executed by a thread. The method takes
three arguments. The first argument contains input argu-
ments provided by the user. The second argument is used
in those cases when program uses Java threads. All the
spawned Java threads should belong to that thread group
informing the system to maintain the current remote thread
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state before these Java threads join. The third argument
represents a session.

This solution promotes code reuse and inheriting from a
remote thread class is thus unnecessary. Further, it does not
add any other service nor imply any programming model to
the implementing class, except for turning it into a program
ready for execution. All remote threads are known to the
system, while all other objects used by a remote thread are
local and known only to that thread.

There are four states, fork, blocked, runnable, and dead, in a
remote thread lifecycle:

e The initial remote thread state is called fork. The
system creates and attaches a thread to a process and
sets up an environment in which the thread will run.

e Upon creation and initialization of a remote thread,
the system starts the thread by invoking its
Run method. The start event triggers this state
transition by changing the state from fork to
runnable.

e A runnable remote thread becomes blocked by either
participating in an I/O operation or being explicitly
suspended. When the 1/O operation is completed, or
passes a resume message, the thread becomes
runnable again.

e When Run terminates, the remote thread state
changes to dead. Sending a stop event to a thread
can also trigger a state transition to a dead state. A
remote thread termination activates garbage collec-
tion so that the resources are released and the thread
becomes unreachable. The system also removes the
Java threads spawned by the terminated remote
thread.

5.2 Groups

A group is an ordered set of hosts (i.e., resources). Groups
can be static (i.e., defined at compile time) or dynamic (e.g.,
allocated by a resource manager) and may have a virtual
topology. They are unique; within a session, no two groups
can have the same name. Groups are system-wide objects; if
a host crashes, all the groups that reference that host are
notified. An RTGroup exports its size and name and
process ID. By default, each session has a group called
RTWorld that comprises all the hosts in the session,
allocated either statically or dynamically.

/ Grpl \ Grp2

RTRemoteGroup )
RT

—

Fig. 8. Local and parent groups.

Y
9 000
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Visper provides two more groups, RTParent and RTLocal
(Fig. 8), to simplify programming with RTRemoteProcess
and RTRemoteGroup constructs. Both classes represent
virtual groups since they do not allocate resources. The idea
is to have a programming model that does not depend on a
specific naming convention or forces the programmer to
pass configuration information when new processes are
allocated. An RTParent includes only one member that has
created the remote process or remote group of processes.
An RTLocal is an alias for the actual group that a process or
group of processes belongs to.

5.3 Remote Processes

Remote threads are physically distributed; meaning that the
program state might be partitioned or replicated across
multiple hosts at the same time. However, programmers
need not be concerned with this, given primitives that
encapsulate all implementation aspects, such as control and
communication protocols, replication strategies, and migra-
tion. Two API classes, namely, RTRemoteProcess and
RTRemoteGroup (Fig. 6), implement the interface that
allows thread groups of different cardinality being handled
transparently and uniformly as a single entity.

The remote process architecture can be observed as a
two-part composition that consists of local and remote
objects (Fig. 7). The local objects are directly used by
instances of RTRemoteProcess and RTRemoteGroup (i.e.,
replication object in Fig. 7) classes to spawn asynchronously
new processes on remote hosts that will run remote threads.
A process in Visper has only one remote thread of control so
that there is a one-to-one mapping between remote threads
and processes. The group object (i.e., instances of RTGroup)
instructs the replication object where to spawn new
processes. The protocol object (VProcess in Fig. 6) creates
control protocol messages. It is implemented following the
factory method pattern [16]. The comms object commu-
nicates control protocol messages to the remote hosts and
acts as a placeholder for different networking protocols and
protocol implementations. Depending on the problem size,
it chooses between point-to-point and multicast commu-
nication channels being implemented by underlying com-
munication services and accessed through a uniform
interface.

At the remote side, the control object accepts control
protocol messages and translates them into actions. For
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example, when spawning a new process, it first instructs the
classloader to load a new semantics object class and then
completes the scenario by allocating a resource that places
the semantics object into a Java thread. The control object
maintains and can be queried about the state of the thread it
controls.

No object, either local or remote, in the described flow of
control makes any assumptions about the state or is aware
of the nature of the semantics object. Therefore, we can
define standard interfaces that are not affected by different
policies. When creating an RTRemoteGroup, the program-
mer defines a remote thread class, input arguments, and a
group in which to spawn new threads. When creating an
RTRemoteProcess as coded below, the programmer also has
to define a host (i.e., process ID) relative to that group on
which to spawn a new remote thread.

public class RTRemoteProcess implements
java.ilo.Serializable {
public RTRemoteProcess (Class cls, String[]
args,RTGroup grp, int processID) ;
public Object Invoke(java.lang.reflect.
Method method, Object [] args) ;
public Object Invoke (String method,
Object[] args) ;
public boolean IsAlive();
public boolean Join() ;
public boolean Migrate (int processID) ;
public boolean Resume () ;
boolean Start () ;
public boolean Stop() ;
public boolean Suspend() ;

An object having a reference to a remote process or group
can control the process or group by invoking any of the
interface methods, e.g., invoking IsAlive() to test if that
remote thread or remote thread group is alive (either active
or suspended). Join provides explicit synchronization with a
remote thread termination. It blocks until a thread or a group
of threads complete their execution, i.e., exit Run. Invoke
enables method invocation on remote threads. The method
invocation mechanism is based on the Java Reflection API
[39], which is an example of structural reflection that gives us
an insight into structural aspects of the classes and objects in
the current JVM. A more transparent model of method
invocation requires a preprocessor similar to that in Java and
RMI or CORBA [40]. It, nevertheless, allows invocation of
methods on a remote thread, as well as on a group of remote
threads. Also, any process that refers to another process may
invoke methods on it. The console implements a subset of the
control protocol to control programs on a session basis (e.g.,
Stop, Resume). In fact, the console is the master that spawns a
session worth of workers that belong to a group called World.

5.4 Message-Passing Primitives

At the application level, Visper provides the RTComms (a
TCP/IP-based communication class) to enable direct pro-
cess-to-process and collective communications (in block-
ing/nonblocking and raw/trace modes). In its layout,

RTComms follows the MPI standard, while its implementa-
tion is specifically designed for our OO framework, where
remote threads communicate by exchanging serializable
objects.

RTComms hides the complexity of physical addressing
and communication from the programmer, such as estab-
lishing communication channels and handling of network
exceptions. Messages can be sent within a group or among
different groups. The synchronization capabilities are
represented by the barrier method. For brevity, we list
below some of the implemented methods.

public class RTComms {
public Object[] AllGather (RTDataGroup dg,
Object data) ;
public Object[] AllGather (RTDataGroupInter
dg,Object data) ;
public Object[] AllReduce (RTDataGroupInter
dg,Object data,RTDataOp oper) ;
public Object[] A11ToAll (RTDataGroup
dg,Object data) ;
public boolean Barrier (RTDataBarrier db) ;
public Object Bcast (RTDataBroadcast db,
Object data) ;
public boolean Cancel (RTDataSend ds) ;
public Object[] Gather (RTDataGroup dg,
Object data) ;
public boolean Probe (RTDataSend ds) ;
public boolean ProbeAsync (RTDataRecv dr) ;
public Object Recv (RTDataRecv dr) ;
public RTDataRecv RecvAsync (RTDataRecv
dr) ;
public Object Reduce (RTDataGroup dg,Object
data,RTDataOp oper) ;
public boolean Send (RTDataInter dr,Object
data) ;
public boolean Send(RTDataSend ds, Object
data) ;
public RTDataSend SendAsync (RTDataSend
ds,Object data) ;
public Object SendRecv (RTDataSendRecv
dsr,Object data) ;
public Object Test (RTDataRecv dr) ;
public Object[] WaitAll (RTDataRecv|[] dr) ;
public boolean[]WaitSome (RTDataSend[] ds) ;

All the methods follow the same pattern, where first
arguments represent an intelligent message envelope that
knows how to match itself against a destination address,
matching criteria, and communication primitive, and
second argument represents a content. Similar to MPI, the
programmer refers to transparent process identifiers, rather
than network names and ports. However, RTComms is an
object-based communication library, with no direct support
for native data types. The benefit of this approach is that
RTComms is not domain-specific and programmers do not
have to concern themselves with data marshaling. The
drawback is that the programmer must use a wrapper
object when communicating native types.
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5.5 Master-Worker Example
The following example makes use of some of the concepts
described so far. It implements a master-worker scenario,
where process P1 (i.e., master) in Grpl creates a group
called Grp2 and populates it with remote threads (Fig. 8).
The RTRemoteGroup object refers to the remote threads
(i.e., workers) spawned by PI1. After the workers from Grp2
perform some calculations, P1 collects the results via an
intergroup gather.

The following two program excerpts implement the
master part:

RTGroup Grp2 = new RTGroup (“Workers”,rts); //
create new group in this session
RTRemoteGroup rg = new RTRemoteGroup (Worker.
class,null,Grp2);

Object[] obj = comms.Gather (new RTDataGroup
Inter(10,P1l,Grpl,Grp2) ,null);

and the worker part:

public class Worker implements RTRunnable {
public void Run(String[] args, RTThreadGroup
rttg,RTSession rts) {
Object result = ...; // calculate result
RTGroup parent = new RTParent (rts); // get
parent, i.e., Pl of Grpl
RTGroup local = new RTLocal (rts); // get
local group, i.e., Grp2
comms . Gather (new RTDataGroupInter (10,0,
parent,local) ,result);

The Gather primitive reads as: Collect all the results
with tag 10 from Grp2 at process P1 of Grpl. At the
worker, the system automatically maps group local to
Grp2 and process 0 of group parent to process P1 of Grpl.

6 FAULT TOLERANCE

While a NOW offers additional processing power, it also
introduces new problems, including a possible failure of
one or more hosts. As the number of hosts in a network
increases, the chance of one of them failing during a
computation increases exponentially. A fault tolerance
mechanism is vital in a network environment because it
allows a failed application to be restarted from the most
recent saved state, thus reducing rerun time by skipping
over the already computed operations. A checkpoint repre-
sents the saved state of a process. The procedure of
restarting from a previously checkpointed state is called
rollback-recovery that searches for a consistent system state [4]
among the generated checkpoints.

6.1 The Checkpointing Model

In a network where programs execute asynchronously to
achieve better performance, a checkpointing mechanism
must follow the execution model to be least intrusive. On
the other hand, the system should aim at generating a
consistent preserved state, thus minimizing the network
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overhead and the amount of saved and potentially
useless data.

Unlike other models, the Visper checkpoint model is a
two-phase commit that combines merits of two different
approaches. In the uncoordinated checkpointing protocol,
each process in a message-passing application takes its
checkpoints independently [11]. In the coordinated protocol,
the processes in a system coordinate their checkpoints to
form a system wide consistent state.

The model involves workers and parent Visper daemons
(Fig. 5). From the worker’s perspective, the checkpoint
policy is optimistic (i.e.,, uncoordinated) because check-
points are created independently. From the daemon’s
perspective, the policy is coordinated to simplify the
recovery procedure and eliminate the domino effect [29]
that can lead to an unbound rollback. To minimize the cost
in time, the uncoordinated phase is synchronous and
unbuffered since the mechanism does not make or maintain
in-worker copies of checkpointed objects. The checkpoint-
ing mechanism relies on the Java Object Serialization and
stream compression filters, which require that all objects
registered with the fault tolerance mechanism are serial-
izable. These objects are passed locally as a byte array,
through a socket, to the parent daemon that implements the
coordinated checkpointing policy. Each consistent check-
point is identified by appending a monotonically increasing
consistent checkpoint number (CCN) [10] to the checkpoint
file name. The protocol proceeds as follows:

e A remote thread invokes a commit on a checkpoint
that informs the parent daemon to create a new
checkpoint. Daemon may either buffer in memory or
save the checkpoint to a file, depending on the data
size and caching policy. Then, it broadcasts a marker
message with a CCN to inform other daemons about
the tentative checkpoint.

e Based on session and group information, the receiv-
ing daemons then check if they should participate in
the checkpoint. When all the participating daemons
receive all marker messages from each other, a
tentative checkpoint is qualified to become perma-
nent. The data buffered in memory are saved to a
file. If in the process of forming a new consistent
checkpoint one or more hosts crash, the process is
aborted by the membership service.

e The coordinator, always represented by the process
whose ID is equal to 0 relative to that process group,
broadcasts a commit message for synchronization. A
tentative checkpoint becomes permanent and the
previous permanent checkpoint is discarded.

The coordinated second phase of checkpointing auto-
matically removes the previous consistent checkpoint. Since
the first phase of checkpointing is uncoordinated, each
remote thread may generate multiple tentative checkpoints
that have to be garbage-collected when the program
terminates either successfully or unsuccessfully. Upon a
successful termination, all checkpoints are garbage-
collected. Unsuccessful termination collects only tentative
checkpoints. When recovering, the system reconstructs a
consistent program state from the saved files. If a host fails,
a complete program, rather than just the failed process or
processes, is restarted.
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6.2 The API

The checkpointing API assumes that a process consists of a
single address space and resides on a single host. Since the
JVM does not allow direct program counter and stack
manipulations, a high level checkpointing is implemented
as an API class called RTCheckpoint as shown below.

public class RTCheckpoint {
public RTCheckpoint (String name, RTSession
rts);
public boolean Commit (); // mark checkpoint
as completed
public boolean Initialize(); // initialize
checkpoint
public boolean Recover(); // get last
consistent program checkpoint
public boolean RecoverlLast(); // get last
process checkpoint
public Object Read (String name) ;
public boolean Write (String name,
Serializable obj);

Only the variables required to restore the program to the
position of a given checkpoint need to be saved. By calling
Commit, a checkpoint is marked as complete. Subsequent
calls to Write form a new checkpoint. Checkpoint files use
group names for consistency and all processes in a
checkpointed group must invoke Commit on a checkpoint.
Thus, the following code is incorrect:

if (processID % 2 == 0) checkpoint.Commit () ;

because it produces only 50 percent of the needed commit
requests in creating a consistent checkpoint.

The current Visper prototype provides reliable commu-
nication channels but does not handle messages lost due to
process failures. This implies that in-transit messages (those
sent but not received at the failure instant) may cause a
saved system state become inconsistent.

6.3 Recovery Through Thread Migration

In distributed programming, process migration is useful in
allowing processes to be restarted from a known state in a
different address space. Depending on the application, it
can be used either to offload a host or to continue execution
on a new host. In the strong migration scheme [18], the
underlying system captures the complete process state and
transfers it together with the code to a new location. At a
new location, the process data and execution state are
automatically restored. Due to the characteristics of the
JVM, strong migration is not possible in Java without
modifying the JVM or instrumenting the code [15]. In the
weak migration scheme, only process data are transferred
and, thus, the programmer must manually restore the
preserved execution state upon migration.

As a part of the checkpointing mechanism, Visper
implements weak migration of remote threads. Upon a
request for evacuation, a complete remote thread is serial-
ized. This operation captures all the attributes referenced by
or contained in the remote thread. A remote thread can
migrate only within its own group of instantiation and they

cannot migrate across the boundary of a session. The
migration mechanism can also help load balancing and
speed up execution by migrating the threads to faster hosts
that have become available.

7 DISTRIBUTED MANAGEMENT

At the backend, software agents carry out Visper’s system
management in a distributed manner. The agents provide
the backend components with the knowledge of their roles
within the system and their behaviors. The agents that
control various backend components can be dynamically
reconfigured and manipulated for uninterrupted execution.

7.1 The Agent Model

A number of agent frameworks and tools in Java have been
developed, such as IBM Aglets [1] and Voyager [26]. They
are oriented towards building secure network-based appli-
cations for mobile agents, such as searching and managing
data and other information. However, they do not facilitate
coordination and cooperation among agents.

Visper is a multiagent environment that enables static
agents to work autonomously in achieving their goals.
Agents can also cooperate with other agents of the same or
different class by exchanging high-level messages that incur
lower communication costs. The Visper environment sup-
ports both the contract net and the specification sharing
methods of interoperation for an agent to request a service
or to advertise its presence. With the contract net approach
[6], agents in need of services distribute requests to other
agents. The recipients evaluate those requests and submit
bids to the originating agents who then decide which agents
to award with contracts. With the specification sharing
approach [17], agents supply other agents with information
about their capabilities and needs. These agents can then
use this information to coordinate their activities.

Visper allows the system programmer to concentrate on
agent behaviors rather than low-level details. Visper defines
a common and effective messaging protocol to enable
heterogeneous agents engage in conversation.

At the lowest level, the Visper agent model can be
described as:

e Behavioral, as defined by Watt [42], since agents act
autonomously and without knowledge or ability to
reason about another agent’s goals, intentions, or
beliefs.

e Static since generally agents do not travel beyond
their points of installation.

e Anonymous since the system applies no naming
scheme upon agents. Due to anonymity, these agents
have limited knowledge of the community in which
they operate. For direct communication, an agent
acquires its identity from the host daemon.

e Reactive since Visper agents act upon stimulus by
responding to the present state of the environment
[12] and the events (i.e., messages) they receive.

Agents can form groups. A typical form of grouping is

session. To relieve the implementation of a router or a
name server, such as the Agent Name Server (ANS) [22],
Visper uses subject-based and multicast communications.
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Vendor Architecture 0OS RAM (MB) CPU (MHz)
Sun Ultra 2 Solaris 2.5 256 168 x 2
HP A 9000/780 HPUX B.10.20 512 180
Compaq (PC1) | Pentium II NT 4.00.1381 64 200
Micron (PC2) Pentium I1 NT 4.00.1381 384 400x2
Dell (PC3) Pentium 111 Win 2000 Prof. 256 500

Multicasting facilitates specification sharing and enables
communication without prior knowledge of the other
agents’ whereabouts. Once they have decided with whom
to communicate, they can establish a direct and dedicated
communication channel.

Messages can be either passive or active. A passive
message is an object that is hardcoded into the system. An
active message contains not only data but also a behavior
and executes in its own thread. For example, active
messages are used in console-to-system communication to
enhance the built-in system functionality without modify-
ing the agent layer.

The above agent model serves as an experiment to
demonstrate its feasibility in the Visper framework. The
nature of agents may be changed to suit different purposes.

7.2 The API

The API of Visper agents consists of two base classes:
VAgent and VMessage. VAgent is abstract and must be
extended to create application-specific agent classes. Its
interface defines three methods.

public abstract class VAgent implements
java.io.Serializable {
public abstract void Decode (VMessage msg) ;
public void Finalize() ;
public void Initialize();

The Initialize method performs the initialization and gets
invoked by a host daemon before the agent is attached to its
message queue. After being attached, the agent is ready to
process messages. Each time a new message arrives, Decode
gets invoked with a message content passed in. Before an
agent is removed from the system, Finalize gets called to
release allocated resources.

VMessage is the base class for all messages used by
the framework. Each message is uniquely identified by a
tag and information about its origin. Using objects rather
than interpretive messages simplifies message handling
and eliminates inconsistencies and arbitrary notational
variations.

Visper defines multiple agents. For example, the
VAgentDaemon class implements the Visper daemon
configuration agent, while the VAgentWorker implements
the worker configuration agent. Following the federated
organization among the system components (Section 4.2),
a daemon agent also acts as the facilitator [17] to worker
agents. Not all daemons or workers are required to run

agents of the same class, allowing specialization through
inheritance, but they all must understand the basic
vocabulary. The same is valid for agents that run in
workers or resource managers.

8 PERFORMANCE RESULTS

The advanced features of Java as a programming language
and portability of Java programs come at a cost. The JVM is
a heavy process that takes a couple of seconds to start and
initially ~4 MB of RAM. To improve the runtime perfor-
mance of Java programs, recent releases of the JDK come
with compilers that translate the Java bytecodes to native
instructions before the program starts executing. The
problem here is that the compilation needs to be fast, thus
lacking time to perform optimizations. Further, the com-
piled code cannot be preserved across multiple runs and the
same price in time and performance is paid upon each
program invocation. Visper has employed a number of
techniques to deal with these issues.

To minimize the program startup cost, the Visper session
is persistent. Further, a worker that outlives a program
termination caches the classes and generated native code for
subsequent runs. These caching capabilities allow a fast
transition from an idle to a running state, together with
faster overall execution speed. The cached classes are stored
in a customized class loader and can be updated without
restarting the worker. However, to avoid the risk of
conflicts due to possible cache inconsistencies, when a
single class is changed, the whole cache is dumped and
reloaded.

To evaluate the performance of the Visper prototype, a
number of computational benchmarks have been developed
and executed in the environment. The performances for
sequential execution, checkpointing, the speedups of
parallel execution with multiple hosts, and the caching
effect on multiple runs have been evaluated using several
benchmark programs. This section reports three represen-
tative benchmarks and their results.

The experimental environment consists of hardware as
detailed in Table 1. All the computers are connected with a
10 Mbps Ethernet. The network is partitioned in two
subdomains: one for Unix workstations and one for PCs.
Since there are three different architectures, three different
versions of Java were used. A comparison of Visper to
native systems was reported earlier [35].
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TABLE 2
Magic Square (ms)

HW Visper Java
1* run 2™ run

PC2 1,016 328 1,063

PCl1 3,174 1,152 2,994

HP 4,276 2,679 4,170

8.1 The Jama Benchmark

To test basic sequential performance of Visper, we used
Jama [21], a standard matrix class for Java, to compare the
performance of a standard JVM that does not cache classes
across multiple runs to that of Visper. The difference
between the Visper worker and the JVM is that Visper adds
a layer of abstraction on top of JVM. A worker, as a Java
program, runs in a JVM and each remote thread runs in a
Java thread scheduled by the JVM.

The Magic Square program in Jama was converted into a
Visper remote thread by implementing the RTRunnable
interface instead of main. The results presented in Table 2
do not include the time to load (and initially just-in-time
compile) the bytecodes. Since JVM does not cache classes
across multiple runs, each program execution is equal to a
1st run in Visper. Therefore, the JVM results use only one
column. The results show that a significant improvement in
performance can be achieved, even when the program size
and class structure are not complex.

8.2 Monte Carlo Computation of =
The Monte Carlo method of calculating = generates points
and calculates how many points are in a circle, and how
many are outside [20]. The testing of these points is highly
parallelizable that compensates for the diversity in speed of
our hardware. (Fig. 2 shows the program’s visual form.)
The total number of iterations performed at each run was
2,000,000. The results do not include the time for an initial
installation of remote threads, but only the total remote-
thread execution time. The results show that a distinction

time(ms)
6000

5000 -
4000
3000 -
2000 -

1000 -

can be made between a first run (Ist run in Fig. 9) and
subsequent runs (2nd run), with or without just-in-time (JIT)
compilation. This is due to the behavior of the Java class
loader that resolves classes on demand, rather than at
startup, and loads them one by one. In Visper, each worker
loads program classes only once and they remain cached for
subsequent runs. Since class loading is done via point-to-
point communications, the caching of the classes yields
better performance, even in simple cases (Table 3). Another
approach to minimize the 1st run cost could be taken by
preloading classes. However, this approach is useful when
resources are not allocated dynamically at runtime.

In Fig. 9, 1Ist run and 1st run speedup represent the time
and speedup, respectively, when all the workers were
running the program for the first time and no classes were
cached locally. 2nd run and 2nd run speedup represent the
results with cached classes. 1Ist run represents the actual
values, while 2nd run represents the average value over nine
runs. With the increasing number of hosts, the difference
between the 1st run and the 2nd run times increases, even
though the program uses only 14 classes.

As a reference, the 1 host line represents the time
required for one worker to perform 2,000,000/hosts iterations
and send the result back locally. We use it to compare the
message-passing overhead caused by the network to the
time of a message passed locally to the host. As expected,
the speedup decreased as new hosts were added to the
system because the process that generated random numbers
got more requests. The flat section between hosts 5 and 6 is
due to a small difference in the number of performed
iterations as more processes join in, which additionally
flattens out the curve.

In summary, the performance evaluation has confirmed
the following:

e Given a reasonable coarse-grain parallelism, where
the time spent computing is much greater than the
time spent communicating, Visper shows speedups
when increasing the number of participating hosts.

e The Visper implementation in Java does not suit
applications with fine-grain parallelism, due to a

speedup
- 8
T7 |ssee=s 1st run
+6 2nd run
15 1 host
14 —&——1st run speedup
—»— 1 host speedup
T3 —4A——2nd run speedup
+2
+1
- 0

Fig. 9. = Calculation performance data.
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TABLE 3 TABLE 4
JIT and Class Caching (ms) Two-Dimensional Arrays of Doubles

Iterations 1" run 2™ run 3" run Array Size File (kB) Time (ms)
1.000.000 951 513 460 100x100 23 142
500.000 757 250 261 150x150 51 328
180x180 74 479
relatively high communication cost in the range of 200x200 91 600
milliseconds [34]. 250x250 141 925
e The behavior of the Visper prototype in running 300x300 19 1285

these benchmark programs is predictable and

indeed produced results as expected, in contrast to 500x500 528 3,223
some related systems (Section 9), which produced 1,000x1,000 2.030 13,782

unpredictable performances [34].

e Caching can significantly improve computational
time, even for simple programs with only one
worker executing. It also gives the just-in-time
compiler more time to optimize code.

8.3 Checkpointing

Here, we detail performance results of the checkpointing
mechanism, collected on PC3 (Table 1). The presented
results include the cost of checkpointing a two-dimensional
double precision array of different sizes. In each array, the
first element was always set to 10,000 and the other
elements incremented by one, consecutively. The values in
Table 4 include the time:

e to compress a wrapper object that holds a reference

to the array and convert it to bytes,

e to serialize the bytes together with some additional

information (3 objects), and

e to synchronously transport the serialized data to a

parent daemon.

We can observe that the time to push the array out of the
worker is proportional to the array size. The whole
checkpointing procedure is efficient and does not suffer
from networking overheads. The generated file is small, due
to a compression ratio of ~3.5.

The second test investigates the cost of checkpointing
when performing successive over relaxation (SOR) on a
Poisson system. This is a JPVM [13] program modified for

Visper that uses the red-black ordering of the unknowns.
The results presented in Table 5 include the time to save a
square matrix of doubles, by generating seven checkpoint
files on a mounted file system. For comparison, we also list
the time for the program to run without checkpointing. As
expected, checkpointing exhibits very small impact on the
total execution time. Therefore, the execution time is more
susceptible to slowdowns coming from the outside (e.g.,
180 x 180 test case). This confirms the results from Table 4,
even though the generated files are much larger in this case.

9 RELATED WORKS

A standalone parallel programming environment can be
built either by extending the Java language with new
keywords [28] or by providing a pure Java API for parallel
programming. Here, only pure Java systems are of interest
and among which we classify Visper since new keywords
require nonstandard Java components. None of the related
systems supports visual parallel program development,
with fault tolerance and process migration being generally
weak.

JPVM [13] is an attempt at PVM in Java, but misses some
important features, e.g., dynamic process group and group
broadcast. The process creation in JPVM is just a mechan-
ism, while, in Visper, it is a programming primitive that is
also used for coordination and control. IceT [19] also

TABLE 5
SOR on Poisson

Matrix Size File (kB) Iterations No of CP Time (ms)
0 86,848
150x150 135 21,774
7 93,648
0 218,374
180x180 207 31,844
7 217,232
0 378,164
200x200 262 39,699
7 379,713
0 1,279,796
250x250 423 63,325
7 1,281,557
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TABLE 6
Comparison
Feature DOGMA JPVM IceT Ninflet Visper
Scalability N N Y Y
Scheduling Y N N Y Y
Load Balancing N N N Y N
Fault Tolerance N N N Y Y
Extensibility N N N N Y
Interoperability N N Y N
Migration N N Y Y Y
Data Scheme Y N N N N
Clusters Y N N Y N

follows PVM, being enhanced with classes for collaborative
work of multiple users.

DOGMA [7] runs parallel programs on a network of
workstations and supercomputers (IBM SP/2) based on the
MPI model. The communication library, called MPI],
implements MPI completely in Java. Unlike the RTComms
in Visper, the MPIJ implementation of MPI is based on the
MPI C++ bindings as much as possible. There is no support
for passing objects, as it focuses on native types and
efficiency. DOGMA nodes cache classes locally, but does
not allow updates without manually removing and restart-
ing all the nodes, which makes development and debug-
ging very difficult.

Ninflet [41] is a Java based global computing environ-
ment that builds on the experience acquired by the
Ninf system. A ninflet is a schedulable client program that
executes on the Ninflet system. Ninflets interact by
invoking methods based on the RMI.

Table 6 summarizes the important features supported in
these systems. It is based on the list of objectives that
DOGMA seeks to meet. Ninflet is included primarily as a
fairly complete distributed programming system because it
lacks message-passing primitives.

Scalability in DOGMA and JPVM is questionable since
both systems use persistent communication channels to
improve performance. While the performance of MPIJ
justifies the approach, that of JPVM is erratic [34]. In pure
Java, load balancing is an open issue due to a rather limited
interface to the OS. Interoperability requires resolving the
initialization of the native PVM or MPI virtual machine
from Java, vice-versa, and data representation. As a proof of
concept, IceT managed to soft-install C-based MPI pro-
cesses on remote environments and dynamically install
FORTRAN-base PVM. The support for clusters in DOGMA
is part of its hierarchical topology.

While all the mentioned systems have been tied to the
style of legacy systems, Visper is designed to allow different
programming models and applications being executed
within the same extensible framework. Rather than making
Java behave like legacy systems as much as possible, we
have decided to introduce to Java those techniques in the
most natural way possible. This is particularly important
due to the lack of pointer arithmetic in Java and because

Java types and arrays do not map naturally to native types.
Therefore, the support for parallel programming in Visper
is just a service, rather than a goal.

In Visper, the network is a flat resource organized into
sessions. However, all the hosts that form a session can be
manually ordered in a session dialog (Fig. 4) to support the
MPI model or if so desired. The support for remote thread
migration in Visper is useful when a remote thread initiates
and conducts the migration process by itself. We find this
kind of behavior in mobile agents. For example, the user
first defines a session with a list of hosts and then starts a
remote thread that visits all these hosts and performs tasks
locally. Thus, the order in which hosts appear in a session is
used to externally define an itinerary the agent follows.
Externally initiated migration as in Ninflet is not fully
supported in the current prototype of Visper.

10 CONCLUSION

Visper is conceived as a generic, distributed programming
environment that identifies the services that are common
among different programming models. These services have
been implemented in such a way that they can be used
consistently across multiple models. Visper is an object-
oriented programming environment that is open, secure,
and fault tolerant, with static and dynamic resource
management. It allows remote execution of Java programs
in the form of remote threads, by transforming a network of
computers into a metacomputer called session. Remote
threads are autonomous, interacting computing elements
that encapsulate data and behavior. They can be dynami-
cally instantiated, configured, and controlled, thus provid-
ing flexibility in organizing their activities. The session in
Visper is persistent, meaning that it survives a program
termination and program neutral meaning that multiple
programs can run on the same session, one at a time. We
believe that the concept of remote thread and session in
Visper is more generic than similar approaches, such as
Aglets [1] and Ninflet [41]. Each of the latter approaches has
identified a specific (agent) type that is self-sufficient and,
therefore, more constrained.
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As a parallel programming environment, Visper offers a
set of tools by which the programmer can compose, run,
and test parallel programs within the same visual formal-
ism. Further, the proposed model combines the standard
practices and techniques pioneered by MPI and PVM with
the presented new ideas and features offered by Java. A
parallel program executes as a group or groups of
asynchronous remote threads that communicate via mes-
sage passing. Visper decouples the system services and
system configuration, such as process and group manage-
ment, from the message-passing API. In communications,
following the message-passing model, passive objects (data)
are passed as parameters to the methods of the Visper
communication class called RTComms. The communication
primitives represented by RTComms follow the primitives
of the MPI standard. They provide synchronous and
asynchronous modes of communication among processes.
The programmer can choose between point-to-point and
collective communications. The implementation does not
obscure the usage of other communication mechanisms,
such as the Java RMI [38], if appropriate.

APPENDIX A
PROGRAM EXAMPLE

The following is a simple example that shows how to use
the checkpointing mechanism in Visper to achieve fault
tolerance. The program saves the index periodically after 10
iterations.

import visper.rt.*;
public class SendReceiveMPI implements
RTRunnable {
public void Run(String[] args, RTThreadGroup
rttg,RTSession rts)
{
int 1 =1;
RTCheckpoint rtc
= new RTCheckpoint (“cp”,rts)
RTComms comms = new RTComms (rts) ;
// use default communications
RTWorld world = new RTWorld(rts) ;
// use default group

if (rts.Restarted() && rtc.Recover())
i = ((Integer)rtc.Read
("index”)) .intValue() ;
rtc.Initialize();

for (;i<101;i++) {

if (world.HostID() == 0) {
RTDataSend ds =
new RTDataSend (10,1,world) ;
comms . Send (ds,new Integer(i));
// blocking send

} else if (rts.HostID(world) ==1) {

RTDataRecv dr =
new RTDataRecv (10, 0,world) ;
Integer msg = (Integer) comms.Recv

MAY 2002

(dr); // blocking receive
rts.Out (msg.toString());
// send to console

}

if (1 %$10==0) {
rtc.Write(“index”,new
Integer(i));
rtc.Commit () ;
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