
Visualizing Design Patterns in
Their Applications and Compositions

Jing Dong, Member, IEEE, Sheng Yang, Member, IEEE, and Kang Zhang, Senior Member, IEEE

Abstract—Design patterns are generic design solutions that can be applied and composed in different applications where pattern-

related information is generally implicit in the Unified Modeling Language (UML) diagrams of the applications. It is unclear in which

pattern instances each modeling element, such as class, attribute, and operation, participates. It is hard for a designer to find the

design patterns used in an application design. Consequently, the benefits of design patterns are compromised because designers

cannot communicate with each other in terms of the design patterns they used and their design decisions and trade-offs. In this paper,

we present a UML profile that defines new stereotypes, tagged values, and constraints for tracing design patterns in UML diagrams.

These new stereotypes and tagged values are attached to a modeling element to explicitly represent the role the modeling element

plays in a design pattern so that the user can identify the pattern in a UML diagram. Based on this profile, we also develop a Web

service (tool) for explicitly visualizing design patterns in UML diagrams. With this service, users are able to visualize design patterns in

their applications and compositions because pattern-related information can be dynamically displayed. A real-world case study and a

comparative experiment with existing approaches are conducted to evaluate our approach.

Index Terms—Design pattern, UML, model-driven architecture, Web service, visual tool.

Ç

1 INTRODUCTION

APPLYING design patterns [6], [8], [19], [21], [41] in
software designs support the reuse of expert design

experiences to solve recurring problems. Design patterns
help designers communicate architectural knowledge, help
people learn a new design paradigm, and help new
developers avoid traps and pitfalls that have traditionally
been learned only by costly experiences. Design patterns are
usually modeled and documented in natural languages and
visual notations such as the Unified Modeling Language
(UML) [5], [43], [52]. UML is a family of modeling notations
for specifying, visualizing, constructing, and documenting
artifacts of software-intensive systems. It provides a
collection of visual notations to capture different aspects
of the system under development.

Each design pattern normally contains several partici-

pants such as classes, attributes, and operations, which play

certain roles manifested by their names. When the design

pattern is applied or composed in an application, the role

names of its participants may be adapted to reflect the

application domain. Thus, pattern-related information,

represented by the role names, is lost. It is hard to identify

in which patterns a modeling element, such as class,

attribute, and operation, participates in an application

design. The designers are not able to trace this information

in the application design. For instance, Fig. 1 shows a

software system design containing six design patterns:

Abstract Factory, Session Facade, Business Delegate, Service
Locator, Singleton, and Adapter. It is hard to identify the
participants of each design pattern in this diagram because
all pattern-related information is implicit. There are several
problems when design patterns are implicit in software
system designs. First, software developers can only com-
municate at the class level instead of the pattern level
because they do not have pattern-related information in
system designs. Second, each pattern often documents some
ways for future evolutions [2], which are buried in the
system design. The designers are not able to change the
design using relevant pattern-related information. Third,
each pattern may preserve some properties and constraints.
It is hard for the designers to check whether these
properties and constraints hold when the design is changed.
Fourth, it may require considerable effort on reverse-
engineering design patterns from software systems [24],
[26], [28], [29], [39].

As the de facto standard for object-oriented modeling,
the UML is defined within a general four-layer metamodel-
ing architecture: metametamodel, metamodel, model, and
user objects. The metametamodel layer defines a language
for specifying the metamodel layer. The metamodel layer,
in turn, defines a language for specifying the model layer.
Similarly, the model layer is used to define models of
specific software systems. The user objects layer is used to
define software systems of a given model. For example, the
UML metamodel defines all legal UML specifications. The
UML model defines a model of software systems that may
be instantiated into user objects. The metamodel and model
layers are most relevant to modeling design patterns in
UML. A UML profile may be used to define an extension to
the UML at the metamodel level.

In this paper, we present a UML profile for design
patterns, which extends the UML with new stereotypes,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007 433

. The authors are with the Department of Computer Science, University of
Texas at Dallas, 2601 North Floyd Road, Richardson, TX 75083.
E-mail: {jdong, syang, kzhang}@utdallas.edu.

Manuscript received 28 May 2006; revised 20 Dec. 2006; accepted 15 Mar.
2007; published online 9 Apr. 2007.
Recommended for acceptance by B. Cheng.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0115-0506.
Digital Object Identifier no. 10.1109/TSE.2007.1012.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

tagged values, and constraints to explicitly visualize
pattern-related information. The UML extension is defined
in the UML metamodel. In this way, the role each modeling
element plays in a design pattern can be represented
statically using the UML profile. In addition, we provide a
tool that can be used to dynamically visualize pattern-
related information. This tool is deployed as a Web service
for on-demand visualization and can be seamlessly inte-
grated with UML tools such as Rational Rose [53]. A case
study on a real-world system is conducted to illustrate the
features and evaluate the scalability of our approach. In
addition, an experiment is performed to compare the
graphic complexity metrics of different existing approaches.

The remainder of this paper is organized as follows:
In the next section, we detail the problem of missing
pattern-related information and some current solutions. In
Section 3, we discuss the related work. Section 4 presents
our proposed extension of UML with a profile. In
Section 5, we describe our techniques for on-demand
visualization and its usage as a Web service. We conduct
a comparative study using different graphic complexity
metrics in Section 6. In Section 7, we use a case study to
illustrate the usage of proposed extension and on-demand
visualization and evaluate the scalability of our approach.
In the last section, we conclude this paper and discuss
the future work.

2 BACKGROUND AND MOTIVATING EXAMPLES

Consider Fig. 1 as an example of a software system design.

This system manages peer-reviewed conferences and work-

shops, including paper/abstract submission, committee

formation, paper reviews, online technical committee meet-

ings, report compilations, author notification, preliminary

conference program creation, and so forth. There are

multiple types of users in this system: author, reviewer,

conference chair, and administrator. Authors can submit

papers to a conference and read the reviews of their papers.

Reviewers may submit reviews for different papers. The

program chair manages the conference, assigns reviewers to

papers, and makes the final decision on the acceptance or

rejection of the papers. The system may also allow a third

party to batch upload papers and review through the

provided interfaces. In this partial design of the system,

there are six design patterns: Abstract Factory, Session

Facade, Business Delegate, Service Locator, Singleton, and

Adapter, including two instances of the Session Facade

pattern. The participants of each design pattern are

normally manifested by their role names, which have been

changed to fit the application domain. It is hard for

designers to identify each design pattern instance in this

diagram. Therefore, the benefits of design patterns are

compromised.

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

Fig. 1. Conference manager system design.

Several approaches have been proposed to solve this
problem [5], [20], [33], [48]. To illustrate these approaches,
we consider a part of this design, as shown in Fig. 2, which
include four design patterns: Business Delegate [3], Session
Facade [3], Singleton [21], and Adapter [21], applied in the
system design.

The ServiceLocator, BusinessDelegate, and PaperSession
classes participate in the Business Delegate pattern. The
goal of the Business Delegate pattern is to abstract the
business of the client side and hide the implementation of
business services. It reduces the coupling between the client
and the system business services. In particular, the
BusinessDelegate class provides control and protection for
the business services. The ServiceLocator class provides the
API lookup (naming) services for the class BusinessDelegate
to locate the business service.

The PaperSession and PaperEntity classes participate in
the Session Facade pattern that abstracts the underlying
business object interactions and provides a service layer
that exposes only the required interface. In the example
shown in Fig. 2, the PaperSession class controls the
interactions between the client and the participating
business data and business objects. It provides a coarse-
grained method to perform the required business function.
The PaperEntity class is used to represent the business data
and manage the data to ensure its integrity.

The BusinessDelegate, DelegateAdapter, and Common-
Interface classes participate in the Adapter pattern that can
convert the interface of a class in the interface that its client
expects. The DelegateAdapter and CommonInterface classes
wrap the BusinessDelegate class and provide the uniform
interface to the third party.

The ServiceLocator class is also a Singleton in the
Singleton pattern. It ensures that only one instance of
ServiceLocator is available at any time.

In an intuitive approach based on Venn diagrams [48], all
participating classes are bounded with a particular shade of
color for each pattern, as shown in Fig. 3. This annotation
for visualizing patterns works fine with small systems.
When the system becomes bigger, especially when a class
participates in multiple patterns, the overlapping area
becomes hard to distinguish. In addition, it is unclear what
role each modeling element, such as class, attribute, and

operation, plays in the corresponding patterns. The ap-
proach only identifies the boundary of each design pattern.

The UML provides a collaboration annotation by attach-
ing dashed ellipses to the general UML diagrams. Colla-
boration annotation can be used to highlight design
patterns. Dashed lines attached with participant names
are used to associate the patterns with their participating
classes. As shown in Fig. 4, there are four dashed ellipses
representing four design patterns. All the participants are
connected to the corresponding dashed ellipses. Compared
to Venn-style annotation, this annotation can explicitly
represent the participant role a class plays. However, the
roles that an operation (attribute) plays in a pattern are still
not addressed. Moreover, the dashed lines clutter the
representation. The pattern information and the class
structure are mixed and hard to distinguish. It is also hard
to scale up.

To improve the diagrammatic presentation by removing
the cluttering dashed lines, a graphical notation, called
“pattern:role annotations” has been proposed [48]. The idea
is to tag each class with a shaded box containing the pattern
and/or participant name(s) associated with the given class.
If it will not cause any ambiguity, only the participant name
is shown for simplicity. Fig. 5 shows that the pattern-related
annotations appear in shaded boxes as if they are on a
different plane from the class structure. This notation is
more scalable than the previous notations and highly
readable and informative [48]. However, not only a class
but also an operation or attribute may play some roles in
some design patterns. This notation cannot represent the
roles that an operation (attribute) plays in a design pattern.
Even though the approach may scale better than previous
approaches, the additional note boxes (with pattern-related
information) still increase the size of the original UML
diagrams. There also can be multiple instances of the same
design pattern in a system design, which cannot be
distinguished by this approach. Moreover, the problems
related to shading arise. The gray backgrounds do not fax
and scan well as identified as a limitation of the approach
[48]. In addition, they may not print well in some printers
with low resolution because the gray backgrounds can
make the words inside the shaded box illegible.

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 435

Fig. 2. The composition of the Business Delegate, Session Facade, and

Adapter patterns.

Fig. 3. Venn diagram-style pattern annotation.

In summary, all existing solutions tend to attach static

notations and/or textural information to UML diagrams,

which may inflate the original diagram with pattern-related

information. They cannot distinguish different instances of

the same design pattern. Most of these solutions cannot

attach information to attributes/operations. They only

addressed the issues in class diagrams instead of behavioral

diagrams, such as collaboration or sequence diagrams,

which are typically important part of design pattern

descriptions. In this paper, therefore, we plan to achieve

the following goals:

. providing a scalable approach with the graphic
complexity close to that of the original UML
diagram;

. representing the roles an operation/attribute plays
in addition to the roles a class plays in a design
pattern;

. providing mechanisms to distinguish different in-
stances of the same design pattern in a UML
diagram;

. supplying tool support that is compatible with
commonly used UML tools, such as Rational Rose
[53] and ArgoUML [51]; and

. allowing the user to concentrate on a particular part
of a large diagram.

In the remainder of this paper, we first discuss the
related work. We then introduce our approach on a UML
profile for design patterns. We describe a tool, called VisDP,
which can dynamically display pattern-related information
in UML diagrams. Finally, we conduct a spatial measure-
ment comparison and a case study to evaluate our
techniques and tool.

3 RELATED WORK

Explicitly visualizing design patterns in UML has been
investigated in [48], where all approaches surveyed can
only represent the role a class plays in a pattern, not the
roles of an attribute (or operation). They cannot distinguish
multi-instances of a pattern either. These approaches
provided new notations and/or text information attached

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

Fig. 5. Pattern:role annotation.

Fig. 4. UML collaboration annotation.

to the UML diagrams to represent pattern-related informa-
tion. Nevertheless, the additional information is static and
does not scale well. In this paper, we presented a UML
profile that can represent the role an attribute (operation), as
well as a class, plays in a design pattern and distinguish
multi-instances of a design pattern. Our approach can be
seamlessly integrated with the UML standards. We propose
to dynamically visualize design patterns to overcome the
scalability problem of all the static approaches. In this way,
we hide all pattern-related information and allow the user
to visualize design patterns on demand. All pattern-related
information is displayed only when requested.

France et al. [20] specialized the UML metamodel to
obtain a pattern specification. Pattern-related information is
defined as roles in subtypes of UML metamodel in a
separate diagram. Thus, the generic specifications of each
design pattern are represented in a separate diagram from
the applications of the corresponding pattern. The applica-
tion of a design pattern is mapped to its generic specifica-
tions by dotted lines with arrow heads. The user is able to
visualize pattern-related information from these dotted
lines. In this case, pattern specifications always need to be
presented for the user to visualize pattern-related informa-
tion in a UML diagram. The pattern specification diagram
and the dotted lines bound to the corresponding pattern
application are static information added on normal UML
diagram. The main goal of the approach is to find a practical
way for specifying design patterns. Our goal, on the other
hand, focuses on providing a scalable solution on visualizing
design patterns. We also take into account the composition of
patterns and multi-instance of patterns. We consider our
approaches to complement those of France et al.

Reiss [42] proposed a specification language for defining
design patterns that breaks a design pattern down into
elements and constraints over a database storing the
structural and semantic information of a program. Each
system has a database to store the design patterns defined
in this language. Design pattern instances can be created,
found, maintained, and edited by querying the database.
Based on this language, a tool is developed to allow the user
to identify and create pattern instances in the source code.
The objective of his approach is to facilitate the application
and discovery of design patterns, instead of visualizing
them based on their generic specifications.

Logic-based languages have been presented to express
unambiguously the solutions proposed by design patterns
[1], [16], [37]. Visual notations consisting of icons (ovals,
triangles, and squares) are proposed to make the formal
languages more accessible to novice users [16]. The main
goal of these formal approaches is to reduce ambiguity in
the specification of design patterns in informal languages,
not to display instances.

General design recovery frameworks have been investi-
gated [22], [23]. Tool support for applying (forward
engineering) and discovering (reverse engineering) design
patterns has also been developed [17]. This tool is based on
the fragment model and fragment database. Although the
fragment structure diagram can be used to visualize the role
each class (attribute or operation) plays in a design pattern,
it does not keep the topology of the original UML diagram,

and so the class model information is lost. The tool cannot
visualize a program purely in terms of pattern instances.

Lander and Kent [31] propose an approach to specifying
a design pattern in type model and role model in addition
to class model to tackle the impure pattern modeling
problem due to the difficulty of expressing nondetermi-
nistic number of concrete classes using UML. When
several patterns are composed, the three models and the
mapping among them become very complex. The main
goal of their work is to provide a more expressive
approach to specifying design patterns although their
approach can trace design pattern from type/role model to
class model. Instead of introducing new types of diagrams,
the goals of our approach are scalability, practice, and easy
to learn and use.

Design Pattern Modelling Language (DPML) has been
proposed to model and apply design patterns [33]. In
contrast to our approach that constraints UML, DPML
provides new notations such as hexagon and inverted
triangle for modeling design patterns. It improves the
expressiveness for some special concepts, for example,
dimension, of design patterns. A tool is also provided to
draw the new notations. Unlike DPML, our goal is to
explicitly visualize the hidden dependency of a design
pattern to its instance link. We also support design pattern
composition, dynamic aspects of design patterns, object
constraint language, and the overlapping of design pattern
instances.

Several limitations of using the UML parameterized
collaboration diagram to specify and apply design patterns
are discussed in [47]. A tool has been provided for the
generation and reconstruction of design patterns to over-
come the limitations. In addition, two stereotypes, <<Clan>>
and <<Tribe>> have been defined to model recurring
constraints of design patterns [32]. The <<meta>> stereotype
is defined with some well-formedness rules in OCL to
improve the graphic representation of pattern occurrences.
Unlike their goals (generation and reconstruction), our
approach intends to visualize and recognize design patterns
in their applications.

UML extension mechanisms have been used to expand
the expressive power of UML to model object-oriented
framework [18], software architecture [27], [35], and agent-
oriented systems [49] when the original UML is not
sufficient to represent the semantic meaning of the design.
We extend UML with a new profile to visualize the
pattern-related information hidden in a UML diagram. We
define new stereotypes and tagged values and provide the
constraints applied to these stereotypes and tagged values.

UML has been used to visually specify interactive
multimedia application [44] and support for dynamic
modeling [25] with an extension for behavioral specifica-
tions. The concept of visual scripting in VISOME [40] is
interesting. The scripting mechanism supports the visual
composition of high-level functions for software modeling
and assists automatic synthesis of different UML diagrams.
The usability of UML tools can also be enhanced by
adding speech recognition capability [30]. None of these
approaches, however, address the visualization issues of
design patterns in UML.

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 437

To our knowledge, there has been no reactive user

interface similar to ours for visualizing design patterns.

Dynamic user interactive techniques have been used for

information visualization. An example is the hybrid net-

work visualizing software development communities [36].

Due to the large number of nodes representing the names of

developers and edges representing their communications,

the network connection is hidden by default. Relevant

communication details such as e-mail messages are high-

lighted or displayed in popup windows.
Tightly integrated into the Eclipse IDE, SEXTANT [45] is

a prototype for software exploration with graph-based

visualization and navigation support. The user can hide

irrelevant information during exploration. The visualization

and navigation support is, however, not designed for

dynamic visualization of design patterns in class diagrams.

4 EXTENDING UML TO VISUALIZE DESIGN

PATTERNS

This section presents our approach for explicit visualization

of design patterns in their applications and compositions

through the same example used in Section 2. We introduce

the UML extensions including new stereotypes, tagged

values, and constraints, and present a general description of

their semantics. We also discuss how the UML extensibility

mechanisms have been applied in the definition of a UML

profile for design patterns.

4.1 UML Profile Metamodel

UML can be considered as a multipurpose language with

many notational constructs. Fig. 6 shows the UML

metamodel that defines all legal UML specifications for

our UML profile.1 The UML provides extension mechan-

isms to allow users to model software systems if the current

UML technique is not semantically sufficient to express the

systems. These extension mechanisms are defined at the

UML metamodel and model levels. They include stereo-

types, tagged values, and constraints.
Stereotypes allow the definition of extensions to the UML

vocabulary, denoted by <<stereotype-name>>. As shown in

Fig. 6, the base class of a stereotype must match the

metaclass of that model element such as Class, Attribute,

and Operation. A stereotype groups tagged values and

constraints under a meaningful name. When a stereotype is

branded to a model element, the semantics of the tagged

values and the constraints associated with the stereotype are

attached to that model element implicitly. A number of

possible uses of stereotypes have been proposed [4].
Tagged values extend model elements with new kinds of

properties. They may be attached to a stereotype, and such an

association will propagate to the model element to which the

stereotype is branded. The format of a tagged value is a pair

of name and an associated value, i.e., fname ¼ valueg. The

tagged values attached to a stereotype must be compatible

with the constraints of the stereotype’s base class.

438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

1. Our specifications are based on UML 1.4.

Fig. 6. UML profile metamodel and our extension.

Constraints add new semantic restrictions to a model
element. Typically, constraints are written in the Object
Constraint Language (OCL) [50]. Constraints attached to a
stereotype imply that all model elements branded by that
stereotype must obey the semantic restrictions of the
constraints. The constraints attached to a stereotyped model
element must be compatible with the constraints of the
stereotype and the base class of the model element.

A profile is a stereotyped package containing model
elements that have been customized for a specific domain
or purpose by extending the metamodel using stereotypes,
tagged values, and constraints. A profile may specify model
libraries on which it depends and the metamodel subset
that it extends.

Fig. 6 shows the relationships among stereotype,
constraint, tagged value, and model element. The stereo-
type, constraint, and tagged value can be attached to a
model element and add corresponding semantics to
restrict the model element. A stereotype may include a
number of tagged values and constraints whose semantics
is propagated from the stereotype to the model elements
to which the stereotype is branded. In our approach, we
propose a new tag definition called PatternTagDefinition,
which is inherited from TagDefinition and consists of
three parts, PatternName, PatternRole, and PatternIn-
stance. PatternName has a type of Name, and so does
PatternRole. PatternInstance has a type of integer. The
part above the dashed line in Fig. 6 is from the UML
metamodel, whereas the lower part is our new tag
definition. There are several reasons for us to define a
new kind of tag (PatternTagDefinition) instead of reusing
the existing one (TagDefinition). First, we need to restrict
the general definition of tags. This special type of tags is
only used to define the role, pattern name, and instance,
which are important for visualization. Second, for the
usual TagDefinition, the name of taggedValue is clearly
defined; the variation point is the value of taggedValue.
For our new tag definition, the names of taggedValue
themselves are changeable, which may be different from
class to class. Third, introducing this new tag also
facilitates our tool support.

4.2 A UML Profile for Design Patterns

We considered three options to extend the UML to explicitly
visualize pattern-related information usually hidden in UML
diagrams. The first option is to define three stereotypes:
PatternClass, PatternAttribute, and PatternOperation, whose
base classes are Class, Attribute, and Operation, respectively.
There is one tagged value defined in each stereotype in the
first option. The name of the tagged value is “pattern” and the
dataValue of the tagged value is a tuple in the format of
<name: string [instance: integer], role: string>. The “name” in
the tuple is the pattern name in which a model element, such
as class, attribute, or operation, participates. The “instance” in
the tuple indicates the instance number of the pattern the
model element participates. It can be omitted if there is only
one instance of the design pattern in the system design. The
“role” in the tuple shows the role that a model element plays
in the pattern.

The second option is also to define three stereotypes:
PatternClass, PatternAttribute, and PatternOperation,

whose base classes are Class, Attribute, and Operation,
respectively. There is one tagged value defined for each
stereotype. In contrast to the first option, the name of the
tagged value has the format of “role@name[instance]” and
the dataValue of the tagged value is either true or false. The
meanings of fields “name,” “instance,” and “role” are the
same as those in the first option. If the dataValue of a tagged
value is true, the value can be omitted and only the name of
the tagged value is shown in a diagram. If this tagged value
is attached to a modeling element, it indicates that the
modeling element participates in the “name” pattern with
the role of “role.” The value of “instance” distinguishes
different instances of the same design pattern, which can be
omitted if there is only one instance of the design pattern in
the system design. The main difference between these two
options is that the first option defines the name of the
tagged value as “pattern” and the value of the tagged value
as <name: string [instance: integer], role: string> whereas
the second option defines the name of the tagged value as
“role@name[instance],” and the dataValue of the tagged
value is either true or false. The dataValue of a tagged value
can be omitted when it is true, that is, fname ¼ trueg can be
shorthanded to {name}. In contrast, the name of a tagged
value cannot be omitted.

Similarly to the previous two options, the third option
also defines three stereotypes: PatternClass, PatternAttri-
bute, and PatternOperation with base classes Class,
Attribute, and Operation, respectively. In contrast to the
other two options, each stereotype may have three tagged
values. The first tagged value defines the tagType as
PatternName and the dataValue storing the name of the
pattern in which the model element participates. The
second tagged value defines the tagType as PatternRole
and the dataValue storing the role that the model element
plays. The third tagged value defines the tagType as
PatternInstance and the dataValue with the index value of a
pattern instance. Although this option may clearly specify
the PatternName, PatternRole, and PatternInstance with
their values, it requires tagTypes in every tagged value that
enlarge the specification. When a modeling element
participates in multiple patterns, in addition, the designer
must be careful not to mix up the PatternName, Pattern-
Role, and PatternInstance tagged values of different
patterns because the order of the tagged values of the
same stereotype does not matter. For example, suppose a
stereotype has the tagged values {PatternName = Adapter}
{PatternRole = Adaptee} {PatternName = Bridge} {Pattern
Role = Abstraction}. A simple disorder of these tagged
values by a designer or a tool may cause trouble in
understanding to which pattern a role belongs. Moreover, it
is relatively difficult to implement this option in a tool due
to the order issue.

There are several advantages of the second option. First,
the other two options may result in larger specifications
because the name of a tagged value cannot be omitted.
Pattern-related information should be minimized in class
diagrams for readability and scalability. Second, the first
option is not supported by commonly used UML tools such
as Rational Rose. Third, the third option has an issue with
the order of the tagged values. Therefore, we choose the

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 439

second option to define the complete set of the UML profile,
the stereotypes, the tagged values, the constraints, and the
virtual metamodel (VMM).

We define the three stereotypes, PatternClass, Pattern-
Attribute, and PatternOperation (see Table 1) to explicitly
visualize design patterns in UML diagrams. The Pattern-
Class stereotype is attached to a class that plays a role in a
design pattern. Similarly, the PatternAttribute and Pattern-
Operation stereotypes are attached to an attribute and an
operation, respectively, which plays a certain role in a
design pattern. Each stereotype also defines one tagged
value, as shown in Table 2. These tagged values define the
exact role of a class, an attribute, or an operation in a design
pattern. These stereotypes, together with their tagged
values and constraints, form a new UML profile for design
patterns. Sections 4.3 and 4.4 provides detailed semantics of
these stereotypes and of their tagged values and constraints.

4.3 Semantics

The PatternClass stereotype is defined to be applied to a
class that plays a role in a design pattern. The particular role
this class plays is defined in the tagged value in the format
“role@name[instance],” where “name” specifies the name of
the design pattern, “instance” specifies to which instance of
the pattern the class belongs, and “role” specifies the role the
class plays in the pattern. The “name,” “instance,” and
“role” are instances of PatternName, PatternInstance, and
PatternRole defined in Fig. 6, respectively. For instance, the
BusinessDelegate class plays the role of Adaptee in the
Adapter pattern in the example shown in Fig. 2. Then, the
stereotype <<PatternClass{Adaptee@Adapter}>> is branded
to the BusinessDelegate class, where the branded class
participates in the Adapter pattern and plays the role of
Adaptee in the pattern. The instance field is omitted because
there is only one instance of the Adapter pattern in this
design.

A class may simultaneously play different roles in
different patterns. In this case, a new tagged value with the
same format as “role@name[instance]” is branded to the
class for each additional pattern it participates. For instance,
the BusinessDelegate class also plays the role of BusinessDe-
legate in the Business Delegate pattern in the example shown

in Fig. 2. Thus, the stereotype <<PatternClass{Business

Delegate@BusinessDelegate}{Adaptee@Adapter}>> is

branded to the BusinessDelagate class, where the branded

class participates in the Business Delegate pattern with the

role of BusinessDelegate and the Adapter pattern with the

role of Adaptee.
The constraint of the PatternClass stereotype is defined

formally in OCL as follows:

<<PatternClass>>:

self.baseClass = Class and self.taggedValue -> exists

(tv:taggedValue j tv.name = }role@name[instance]} and

tv.dataValue = Boolean),

where the base class of this stereotype is Class, and the

stereotype has a tagged value with the name of “role@

name[instance]” and the value of true/false. The types of

“name” and “role” are string, and the type of “instance” is

integer.
The constraints of the PatternAttribute and Pattern-

Operation stereotypes are defined similarly and are branded

to an attribute and operation, respectively, when they play a

role in a design pattern. These constraints are inherited

from the corresponding stereotype and represent the

properties of stereotypes. Section 4.4 defines the con-

straints restricted by design patterns. These constraints

represent the properties of design patterns, instead of the

properties of stereotypes as shown previously.

4.4 Constraints

Figs. 7 and 8 show the pattern-related constraints for

stereotypes <<PatternClass>>, <<PatternAttribute>>, and

<<PatternOperation>>, respectively.
In Fig. 7 (the constraints of <<PatternClass>>), the first

and second constraints indicate that the name field and role

field of the tagged values associated with <<PatternClass>>

are mandatory, respectively. Thus, these fields cannot be

empty. The third constraint indicates that the instance field

of the tagged values associated with <<PatternClass>> can

be empty if there is only one instance of a particular design

pattern in a system design. If there are multiple instances of

440 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

TABLE 2
Tagged Values

TABLE 1
Stereotypes

a certain design pattern, however, the instance field cannot
be empty, as defined in the fourth constraint.

In the constraints of <<PatternAttribute>> and <<Pattern-
Operation>> (Fig. 8), the first constraint indicates that all
pattern names found in the <<PatternAttribute>> or
<<PatternOperation>> stereotype should also be in the
<<PatternClass>> stereotype. If an attribute participates in
a particular design pattern, its class should also participate
in the same design pattern. The second constraint shows
that the number of patterns in the <<PatternAttribute>> or
<<PatternOperation>> stereotypes must be less than or
equal to that of <<PatternClass>>. It is often the case that a
class plays multiple roles in several patterns. However, one
attribute may not participate in all patterns in which its
class participates. Sometimes, an attribute of a class plays
roles in some patterns; other attributes of the same class
may play roles in other patterns. The third constraint
defines that the role field of the tagged values associated
with <<PatternAttribute>> or <<PatternOperation>> is
mandatory. The fourth constraint states that the name field
of the tagged values associated with <<PatternAttribute>>
or <<PatternOperation>> can be omitted if its class only
participates in one design pattern. If the name field of
<<PatternAttribute>> or <<PatternOperation>> is omitted,
<<PatternAttribute>> or <<PatternOperation>> has the
same name as <<PatternClass>>, which is stated in the
fifth constraint. The instance field of the tagged values
associated with <<PatternAttribute>> or <<PatternOpera-
tion>> can be empty if the instance field of <<Pattern-
Class>> is empty as stated in the sixth constraint. If the
instance field is empty, <<PatternAttribute>> or <<Pattern-
Operation>> has the same instance as <<PatternClass>>,
which is defined in the seventh constraint.

4.5 Virtual Metamodel

A virtual metamodel (VMM) is the UML expression of a
formal model with a set of UML extensions. The VMM for
the newly defined extensions is represented as a set of class
diagrams. A VMM can graphically represent the relation-
ship among the newly defined elements (PatternClass,
PatternOperation, and PatternAttribute) and those defined
by the UML specification (Class, Operation, and Attribute),
which gives a clear picture of the relationships between the
newly defined elements and those in the UML. It can also

define the relationships between the new stereotypes and
tagged values.

The VMM represents a Stereotype as a Class stereotyped
<<stereotype>> (as shown in Fig. 9). The VMM represents a
tagged value associated with a Stereotype as an Attribute of
the Class that represents the Stereotype. The Attribute is
stereotyped <<TaggedValue>>. The Attribute name is the
name of the tagged value. The value of a tagged value is
enclosed between the “<” and “>” symbols, indicating a
Boolean. The multiplicity ([1..*]) following the Attribute
name indicates that the tagged value may have one or more
values.

After applying the new UML extensions to the example
design shown in Fig. 2, the new class diagram of the system
design with pattern-related information represented in the
corresponding stereotypes is shown in Fig. 10. From this
diagram, we can identify four design patterns and their
participants. For example, from the stereotype branded to
the ServiceLocator class, that is, <<PatternClass{Lookup-
Service@ServiceLocator [1]}{Singleton@Singleton [1]}>>, we
may conclude that ServiceLocator participates in two
design patterns, the Service Locator and Singleton patterns.
It plays the role of LookupService in the first instance of the
Service Locator pattern and the role of Singleton in the first
instance of the Singleton pattern. There is only one instance
of the Service Locator and Singleton pattern.

5 ON-DEMAND VISUALIZATION

As presented in the previous section, we extend the UML
with a profile. We attach newly defined stereotypes and

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 441

Fig. 9. Virtual metamodel.

Fig. 7. Constraints for stereotype PatternClass.

Fig. 8. Constraints for stereotypes PatternAttribute and PatternOperation.

tagged values to UML diagrams to include pattern-related
information. The additional pattern-related information
does not scale well with large applications as shown in
Fig. 10. Even though the system is not very big, we can see
that attaching the pattern-related information onto a class
diagram dramatically increases the size of the class
diagram. Like all current approaches, our approach attaches
static information (notations) to the UML diagrams. Thus,
no matter how careful the static information or notations are
selected, the scalability problem would eventually arise
because additional notations are needed in the UML
diagrams. In addition, most of the static approaches tangle
pattern-related information with the class structure, making
both pattern and class harder to see. Although some
approaches, such as [31], propose to separate pattern-
related information from the class structure into different
diagrams, the connections, consistencies and traceability
among these diagrams can be challenging. Furthermore, it
is not easy for the user to zoom in and concentrate on a
particular part of a diagram. We propose on-demand
visualization techniques based on coloring and mouse
movement to solve these problems. We have developed a
tool, called VisDP [14], which can hide/show pattern-
related information on demand. In this way, we can
dynamically, instead of statically, show the stereotypes
with pattern-related information. A design pattern typically
contains both structural and behavioral aspects, which are
modeled in UML class and collaboration diagrams, respec-
tively. In the following, we introduce our dynamic
visualization techniques from structural and behavioral
aspects.

5.1 Structural Visualization

When the pattern-related information is hidden, our
diagrams are just like the ordinary UML diagrams in

VisDP. For example, Fig. 11 shows a screen shot of VisDP
with the UML diagram of the example described in
Section 2. It is a normal UML diagram with all pattern-
related information hidden.

When the pattern-related information is shown with
different colors and on-demand information, the user can
identify the design patterns in which a class (operation/
attribute) participates and the roles it plays. By using our
techniques and tool with a UML diagram, the user can
move her cursor onto the modeling element (for example,

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

Fig. 11. Composition of Business Delegate, Session Facade, and

Adapter with pattern information hidden.

Fig. 10. Composition of Business Delegate, Session Facade, and Adapter modeled with the new UML profile.

class, operation, and attribute) in question. All the classes

that participate in the same pattern under the cursor are

changed to the same color. If the class under the cursor

participates in more than one design patterns, different

colors are used to distinguish the patterns. All pattern-

related information encoded in the stereotypes and tagged

values of a modeling element is shown when the user

moves the cursor over that modeling element. If the cursor

is over a class that participates in more than one pattern,

different colors are displayed in alternation on this class.

When the user’s cursor moves out, all pattern-related

information is gone, and no color is shown. The diagram

returns back to normal.
Figs. 12 and 13, for instance, demonstrate the scenario

where a software designer moves her cursor over the

PaperSession class in the UML diagram in Fig. 11. Two

colors are displayed because this class participates in both

the Business Delegate pattern and the Session Facade

pattern. All the classes participating in the Business Delegate

pattern are changed to one color (yellow, shown as light

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 443

Fig. 12. BusinessDelegate class diagram with pattern information shown.

Fig. 13. BusinessDelegate class diagram with pattern information shown.

gray in black-and-white print), whereas the class participat-
ing in the Session Facade pattern is changed to another color
(green, shown as dark gray in black-and-white print). The
color of the overlapping class(es) (PaperSession) is blinking
between yellow (for Business Delegate pattern) and green
(for Session Facade pattern), as illustrated by two screen
shots at two points in time in Figs. 12 and 13, respectively.
Since the user’s cursor is over the class name compartment
of the PaperSession class, VisDP shows a text box containing
detailed pattern-related information described in terms of
the stereotype and tagged values of this class. Through the
stereotype and tagged values, therefore, the designer is able
to identify this class participating in both the Business
Delegate and the Session Facade patterns. It plays the role of
“Business Service” in the Business Delegate pattern and the
role of “Session Facade” in the Session Facade pattern. Both
patterns in which the BusinessDelegate class participates are
the first instances of such patterns. Suppose the designer
moves the cursor down to the operation compartment of the
same class, the stereotype and tagged values of the
operation AddPaperDelegate() is displayed. All colors stay
the same. When the user’s cursor moves out, all pattern-
related information and colors disappear. The diagram
returns to normal, as shown in Fig. 11.

5.2 Behavioral Visualization

A collaboration diagram describes how groups of objects
collaborate in some behavior. It usually consists of a set of
objects and a set of messages transmitted from one object to
another. In collaboration diagrams, an object of a certain
class may participate in one or more design patterns. This
information is also lost in normal collaboration diagrams.
VisDP is able to visualize pattern-related information on
demand in UML collaboration diagrams. Similar to class
diagrams, the user can move the cursor over any objects in
the collaboration diagrams. Different colors are displayed to

distinguish different patterns. Detailed pattern-related
information is also shown in the text box under the cursor.

As an example, Fig. 14 is the collaboration diagram
describing the behavior of the user adding papers through
the system discussed in Section 2. When the user adds
papers into the system, an object of the BusinessDelegate
class is first created. It asks the object of ServiceLocator for
the business object (PaperSession in this case) by invoking
the GetService method defined in ServiceLocator, which
looks up the business object (PaperSession) and returns it to
BusinessDelegate. The user can then invoke the AddPaper-
Delegate method in BusinessDelegate, which delegates the
invocation to AddPaperImp of PaperSession. Fig. 15 shows
the scenario where the user’s cursor is over the object of the
BusinessDelegate class, which participates in both the
Business Delegate and Adapter patterns. Similar to the
class diagrams, two colors (yellow and green) are displayed
and blinking in the overlapping part and the detailed
pattern-related information is displayed in a text box in
terms of stereotype and tagged values. When the cursor
moves out, all colors and pattern-related information
disappear. If the users want to know which elements play
the other roles of, for example, the BusinessDelegate pattern
instance, they can simply move the mouse cursor to other
classes/objects that are highlighted with the same color.

5.3 A Web Service

We have implemented the aforementioned techniques as a
Web service [7], [55] accessible both from a browser and
from a standalone application. The overall system archi-
tecture of VisDP includes the following processes: register-
ing the Web service, generating an XML file, invoking the
service, and generating new UML diagrams. On the server
side, we deploy VisDP as a Web service that is registered in
the Web service engine so that it is ready to serve end users.

444 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

Fig. 14. Collaboration diagram with no pattern-related information.

Fig. 15. Collaboration diagram with pattern related information.

On the client side, the user may use any common UML

tools, such as Rational Rose, to draw diagrams with

stereotypes and tagged values representing pattern-related

information as introduced in Section 4. When the user

wants to use the VisDP Web service to visualize pattern-

related information encapsulated in the diagrams, she may

use an appropriate plug-in (for example, UniSys XMI [54]

for Rational Rose) to transform a UML diagram into an

XML file. The JavaServer Pages (JSP) page [54] of VisDP

takes the XML file as an input and returns the user a Java

applet with a new UML diagram that displays design

patterns on demand as shown previously. There are several

advantages of the architecture of VisDP. First, it works with

current UML tools, not only Rational Rose, as long as a

corresponding plug-in can generate the XML files of the

UML diagrams. Second, new services can be provided, for

example, for visualizing UML diagrams other than class
and collaboration diagrams that have been visualized in
VisDP. Third, our service can be used anywhere and
anytime [54].

5.4 A Conference Management System

We applied our tool on the partial design of a management
system for technical conferences and workshops shown in
Fig. 1. Fig. 16 depicts the resulting diagram by statically
attaching all pattern-related information in the original
UML diagram (Fig. 1). Class BusinessDelegate, which plays
the role of BusinessDelegate in the Business Delegate
pattern and the role of Adaptee in the Adapter pattern, is
used to provide control and protection for the business
service, PaperSession and ReviewSession. Class Service-
Locator, which plays the role of LookupService in the
Business Delegate pattern and the role of ServiceLocator in

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 445

Fig. 16. Conference management system.

the Service Locator pattern, provides service lookup and
encapsulates the implementation details of such a lookup.
To ensure that only one instance of ServiceLocator exists, the
Singleton pattern is used. Class InitialContext plays the role
of InitialContext in the Service Locator pattern. It provides
the InitialContext object from the ServiceLocator class. The
PaperSessionHome and ReviewSessionHome classes play
the role of ServiceFactory in the Service Locator pattern.
They are responsible for the life-cycle management (see the
create/lookup dependencies represented by the dashed line
in Fig. 1) of the business objects, PaperSession, and
ReviewSession, respectively. Classes PaperSession and
ReviewSession, which play the role of BusinessService in
the Business Delegate pattern, the role of BusinessService in
the Service Locator pattern, and the role of SessionFacade in
the Session Facade pattern, manage the relationships and
interactions among BusinessObject, PaperEntity, and Re-
viewEntity. Classes PaperEntity and ReviewEntity play the
roles of BusinessObject in the Session Facade pattern. The
PaperEntity class is used for authors to submit papers and
for all users to view the papers that they are entitled to
access. The ReviewEntity class allows the reviewers to write
the reviews for papers and the authors to check their
reviews. The DelegateAdapter class, which plays the role of
Adapter in the Adapter pattern, adapts the business
functions provided by BusinessDelegate. The Common-
Interface class, which plays the role of Target in the Adapter
pattern, exposes a common interface to any third party.
Classes EJBObject, PaperSession, ReviewSession, Paper-
SessionHome, ReviewSessionHome, and EJBHome partici-
pate in the Abstract Factory pattern. The EJBObject and
EJBHome classes play the roles of abstract product and
abstract factory, respectively. The PaperSession and Review-
Session classes play the roles of concrete product, whereas the
PaperSessionHome and ReviewSessionHome classes play
the roles of concrete factory.

Fig. 17 shows some screen shots of the class diagrams
generated by VisDP. It shows the structural information of
the conference management system. When the user moves
the cursor over the ServiceLocator class, the pattern-related
information is shown on the class diagram (Fig. 17). The
stereotype <<PatternClass{LookupService@BusinessDelega-
te}{ServiceLocator@ServiceLocator}{Singleton@Single-
ton}>> is displayed in a text box, indicating that the
ServiceLocator class participates in the Business Delegate,
Service Locator, and Singleton patterns, and plays the roles of
LookupService, ServiceLocator, and Singleton, respectively.
The ServiceLocator class is displayed in three alternating
colors because it is the overlapping part of three design
patterns, Business Delegate, Service Locator, and Singleton.
Similarly, the PaperSession and ReviewSession classes are the
overlapping part of two design patterns: Business Delegate
and Service Locator. They are displayed in two alternative
colors. Fig. 17 illustrates three screen shots capturing three
moments where the user moves the cursor over the
ServiceLocator class. The PaperSession, ReviewSession,
BusinessDelegate, and ServiceLocator classes participate in
the Business Delegate pattern displayed in yellow (shown as
light gray in black-and-white print). The PaperSession,
PaperSessionHome, ReviewSession, ReviewSessionHome,
ServiceLocator, and InitialContext classes participate in the
Service Locator pattern displayed in green (shown as dark

gray in black-and-white print). The ServiceLocator class itself
participates in the Singleton pattern displayed in brown
(shown as gray in black-and-white print).

6 COMPLEXITY STUDIES

As discussed in Section 3, current approaches on
visualizing design patterns can be categorized into two
kinds, UML-based approaches [20], [31], [48] and non-
UML-based approaches [16], [33], [42]. The UML-based
approaches can be further divided into single diagram
[48] and multidiagram [20], [31]. The multidiagram
approaches tend to use different diagrams to represent
design patterns at type level and instance level, respec-
tively, whereas the single-diagram approaches represent
both the type and instance levels of design patterns in a
single diagram. Our approaches can be considered single-
diagram approaches.

This section reports a comparative study on the graph
complexity of different UML-based single-diagram ap-
proaches. In this study, we do not include the UML-based
multidiagram and non-UML-based approaches for the
following reasons: First, there are often repetitive informa-
tion and interconnections between different diagrams in
multidiagram approaches, making them more complex by
nature. Second, some of these approaches may have other
goals, such as specification, generation, and reconstruction,
with additional modeling elements. Third, some of the
graph complexity methods that we use are not suitable for
analyzing these approaches. We do not include UML
behavioral diagrams such as collaboration diagrams in
our study because most of other approaches do not deal
with the behavioral aspect.

In this complexity study, we use the example in
Section 5.4 and draw five diagrams:

1. original UML,
2. UML with stereotype,
3. UML with stereotype on demand,
4. UML collaboration annotation, and
5. pattern:role annotation.

The first diagram is the original UML class diagram without
any pattern-related information (see Fig. 1). The second and
third diagrams are based on our static (Fig. 16) and dynamic
(Fig. 17) approaches, respectively. The fourth diagram uses
UML collaboration annotation [5] to represent pattern-
related information. The last diagram uses pattern:role
annotation [48]. As shown in Fig. 18, we consider several
metrics to analyze the graph complexity of these five
diagrams: number of edges and nodes, number of char-
acters, number of tokens, McCabe metric [34], diagram class
complexity [38], and graphic token count [38].

We first count the number of edges and nodes of all five
diagrams, as shown in Fig. 18a. The results show that our
approaches (the second and third diagrams) produce
similar number of edges and nodes as the original UML
class diagram, whereas the fourth and fifth diagrams have
significantly more edges and nodes, respectively, than the
original UML diagram. This is not surprising because the
UML collaboration annotation uses additional edges and
nodes to represent pattern-related information. Suppose

446 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

there are n patterns and each pattern has mi roles,
i ¼ 1 . . .n. Then, there are n additional nodes and

Pn
i¼1 mi

additional edges in the UML collaboration annotation. Only
the number of nodes of the pattern:role annotation increases

because it only uses additional nodes to represent pattern-
related information. In contrast, our dynamic approach only
adds, at most, one node at any point in time, and our static
approach does not add edges and nodes in representing

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 447

Fig. 17. Conference management system with pattern information shown.

pattern-related information. Instead, we use stereotypes

that may result in more textual information such as

characters and tokens. This leads us to study the number

of characters and tokens in Figs. 18b and 18c, respectively.

The tokens here refer to the words separated by spaces or

delimiters. A pair of delimiters such as () and {} are counted

as one token. For our dynamic diagrams, we count the

maximum number of visible tokens/characters at any point

in time. The UML with stereotype diagram appears to have

significantly more characters and tokens than all other

diagrams. The main reason is that we use stereotypes to

represent not only the role each class plays, but also the role

each operation/attribute plays in a pattern. The bar

representing the UML with stereotype approach in

Fig. 18b or Fig 18c includes two parts. The upper part

displays the number of characters or tokens in the

stereotypes representing the role of each operation/attri-

bute, whereas the lower part depicts that of each class. In

order to follow UML stereotype syntax, there are some

additional characters and tokens such as stereotype name

(for example, PatternClass and PatternOperation) and

delimiters (for example, {} and []) in the UML with

stereotype diagram, which still results in more characters

and tokens than other approaches.
McCabe metric [34] is a graphic metric for cyclomatic

complexity. It can be defined to compute the complexity of

448 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

Fig. 18. Graph complexity analysis. (a) Number of edges and nodes. (b) Number of characters. (c) Number of tokens (d) McCabe metric. (e) Diagram

class complexity. (f) Graphic token count.

a graph in the following way: For a graph G with n nodes,
e edges, and p connected components, vðGÞ ¼ e� nþ 2p.
McCabe metric tends to compute the graphic complexity
based on the numbers of the edges and nodes. We calculate
the McCabe metric of all five diagrams. Fig. 18d shows that
both the UML collaboration annotation and the pattern:role
annotation render the diagrams with significantly higher
McCabe complexity. This result converges with the one of
the number of edges and nodes in Fig. 18a.

The diagram class metric characterizes the complexity of
the class of diagrams being created. In this metric, not only
edges and nodes are considered, but also labels are
included. In contrast to previous metrics, this one takes
into account the types of edges, nodes, and labels, instead of
the numbers of them. An edge of different type from other
edges uses some visual attribute or appendage such as line
weight, fill pattern (dotted versus dashed), arrowhead type,
arrow tail type, or color. A node is of different graphic type
by means of some visual attribute such as shape, color, fill
pattern, or size. The type of a label differs from others
through graphic attribute such as font, font weight, size, or
capitalization. The diagram class complexity can be
computed as

Diagram Class Complexity =

number of node types + number of edge types

+ number of label types:

We compute the diagram class complexity of all five
diagrams with the result shown in Fig. 18e. Because all the
approaches add only a few new types of edges, nodes, and
labels, their diagrams are not significantly more complex than
the original UML diagram. Only the diagram with UML
collaboration annotation is slightly more complex than all
other diagrams in terms of diagram class metric.

The graphic token count is a measure of graph complex-
ity by counting the total number of all the nodes, edges, and
labels in a diagram. If a node contains another node, there is
a containment relationship. Thus, an implicit edge is
counted for such containment relationship. If a node is
directly adjoined to another node, there is an adjoinment
relationship causing an implicit edge to be counted. Labels
are text, whose count is done according to the rules of
textual token counting. The graphic token count complexity
can be computed:

Graphic token count =

number of nodes + number of edges + textual token count +

number of containment + number of adjoinments.

This metric considers labels, as well as nodes and edges,
and treats a textual token with the same complexity as a
node or edge. Fig. 18f shows the complexity of all five
diagrams in terms of this metric. The UML with stereotype
appears to be significantly more complex than other
approaches. As discussed previously, the main reason is
that we use stereotypes to represent operation/attribute
roles, as well as class roles in a pattern, which increases the
complexity of the diagram. If we remove the stereotypes of
operation/attribute roles as shown in the upper part of the

bar of UML with stereotype, then the remaining becomes
closer to other approaches.

In summary, our UML with stereotype approach is less
complex than other approaches in the complexity metrics if
not considering the number of characters or tokens. Overall,
our dynamic approach (UML with stereotype on demand)
is less complex than or equal to other approaches in all
graphic complexity metrics discussed previously. Our
measurement of the complexity metrics are mostly based
on the number of nodes and edges, which belong to the
category of geometrical complexity [10]. According to [10],
the simpler a diagram geometrically, the easier it can be
understood.

7 CASE STUDY

In this section, we study the Java.awt package from JDK
version 1.4. It consists of 485 classes stored in 345 files. The
total number of classes includes inner and anonymous
classes in the package. The total number of lines of the code
is 142.8 KLOC. The main goal of this case study is to
evaluate the scalability of our approach and tool in the
context of a widely used real-world application. To evaluate
the scalability, we use existing tools such as Rational Rose to
recover the design of the Java.awt package from its source
code. A snapshot of the reverse-engineering result is shown
in Fig. 19. Due to the large size of the class diagram, only
part of the design of Java.awt is shown in the figure. Other
parts of the design may be viewed by moving the horizontal
and vertical scroll bars. Inner and anonymous classes in the
package are not shown.

Based on the recent work on reverse-engineering design
patterns from Java.awt, in particular, the result in [39], we
manually add the stereotypes of pattern-related information
in the class diagram of Java.awt. Niere et al. [39] have
studied the Java.awt package and identified four design
patterns, one instance of the Strategy pattern, one instance
of the Composite pattern, and two instances of the Bridge
pattern. In addition to their discovery using their tool, we
manually identified some more design patterns in the
Java.awt package as shown in Table 3. The first four design
pattern instances, Strategy[1], Composite[1], Bridge[1], and
Bridge[2], are discovered automatically in [39], whereas the
last three pattern instances, Bridge[3], Adapter[1], and
Adapter[2], are through our manual discovery. The left
column in Table 3 lists the names of the design patterns and
their corresponding instance indices in the design. The
instance indices are put into the angle brackets following
the pattern names. The middle column in Table 3 lists the
roles in the corresponding patterns in the left column. The
right column lists the Java.awt classes that play the
corresponding roles in the middle column of the corre-
sponding patterns in the left column. For instance, the first
instance of the Bridge pattern in Table 3 has three roles:
Abstraction, Implementor, and ConcreteImplementor. The
Container class from Java.awt plays the role of Abstraction.
The LayoutManager class plays the role of Implementor,
whereas the FlowLayout and GridLayout classes play the
role of ComcreteImplementor in the Bridge pattern.

We manually add all the information related to these
seven pattern instances in the class diagram of Java.awt
based on our UML profile. We then use the UniSys plug-in
[54] to generate the XMI file as the input to our VisDP tool.
Our tool returns a Java applet, as shown in Fig. 20, which is

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 449

a screen shot of a part of Java.awt class diagram. The user

may use the horizontal and vertical scroll bars to view other

part of the class diagram.
Fig. 20 shows a snapshot of our tool when the user moves

the mouse cursor on top of the Component class from the

Java.awt package. The Component class participates in

three design patterns, Bridge, Strategy, and Composite. The

stereotype <<PatternClass{Abstraction@ Bridge[2]}{Strate-

gy@Strategy[1]}{Component@Composite [1]} shown in the

text bar describes that the Component class plays the role of
Abstraction in the second instance of the Bridge pattern, the
role of Strategy in the first instance of the Strategy pattern,
and the role of Component in the first instance of the
Composite pattern. The Component class displays three
colors in alternation because it is overlapped by the three
pattern instances. For brevity, we show only one snapshot,
instead of three.

8 CONCLUSIONS AND FUTURE WORK

The application of a design pattern may change the names
of classes, operations, and attributes participating in this
pattern to the terms of the application domain. Thus, the
roles that the classes, operations, and attributes play in this
pattern are lost [11], [13], [15], [48]. Without explicitly
representing pattern-related information, designers are
forced to communicate at the class and object level, instead
of the pattern level. The design decisions and trade-offs
captured in the pattern are also lost. The designers are not
able to trace design patterns into the system design. In this
paper, we have introduced a static and a dynamic technique
for explicit visualization of design patterns in system
designs. We present a UML profile for design patterns to
attach pattern-related information through stereotypes,
tagged values, and constraints in UML diagrams. Based
on this static technique, we have developed a tool for
dynamically displaying pattern-related information. Our
approach allows the user to identify design patterns by
moving the mouse cursor and viewing color changes in
UML diagrams. Additional pattern-related information can

450 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

Fig. 19. A snapshot of Java.awt package.

TABLE 3
Design Patterns Applied in Java.awt

be dynamically displayed based on the current cursor

location. Furthermore, our tool is deployed as a Web service

so that anyone can use it online by accessing our tool Web

site [54] and providing, as an input, an XMI file generated

by the plug-ins of a UML tool such as Rational Rose [53] or

ArgoUML [51]. In this way, we present a service-oriented

architecture that not only allows our service to work with

current UML tools but also allows new services to be

developed. We also use a case study to demonstrate and

evaluate our approach and perform a comparative study to

show the complexity of our approach. In summary, we have

achieved our goals presented in Section 2. To the best of our

knowledge, we are the first to define a UML profile for

visualizing design patterns and the first to provide dynamic

techniques for visualizing pattern-related information in

software system designs.
We are converting our tool as a plug-in of current UML

tools such as Rational Rose. Therefore, the user can not only

use the tool online but also download and use it as a plug-in

of a UML tool. Most of the current tools for design pattern

detections from source code only provide the number of

instances of each detected pattern. There is generally no

information about where these detected patterns are in the

context of the system design. We are working on the

techniques to automatically discover pattern instances from

source code [12] and add pattern-related information as

stereotypes directly into the XMI file. Thus, we can use

VisDP to visualize the detected patterns in system designs.
Based on our techniques and tool presented in this

paper, we are also working on explicitly tracing and
visualizing the evolutions of design patterns. As discussed
in [2], many design patterns document some ways for their
future evolution and change. Design for change [21] is one
of the important goals of design patterns. We plan to extend

our techniques and tool to help the designers to manage the
changes and evolutions of design patterns.

Using the same color scheme for the class and collabora-

tion diagrams, our approach is limited to consistence

checking between the class and collaboration diagrams, as

well as automated generation of the class and collaboration

diagrams of an application from those of a design pattern.

We plan to work on the consistence checking and automated

generation of application diagrams from pattern diagrams.

VisDP is developed based on the UML and XMI standards.

Thus, it can work with other techniques and tools following

the same standards. However, it does not work well with

software design and design patterns represented by other

incompatible techniques and standards. VisDP is constrained

by the standards we follow. Nevertheless, the ideas of our

approach can be applied to develop other tools to visualize

design pattern instances in software designs described by

other standards.
We plan to evaluate the usefulness of our techniques

and tool to software engineers by conducting controlled

experiments. Through these experiments, we can investi-

gate whether our tool provides information relevant and

also useful in contents, as well as format to software

engineers. This usability study may also be the source of

future improvement of our techniques and tool, for

example, including the improvement on the layout of

class diagrams. The layout of VisDP will be improved in

three aspects: First, reflecting the original layout such as

that of Rational Rose as much as possible so that the user’s

mental model is maintained. Second, developing effective

orthogonal drawing with bended edges by adapting some

existing algorithms [9], [46]. Third, introducing hierarch-

ical and clustered views so that the final layout is scalable

and can be easily navigated.

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 451

Fig. 20. A screen shot of VisDP.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their constructive and insightful comments that have

helped them to improve the presentation significantly.

REFERENCES

[1] P. Alencar, D. Cowan, and C. Lucena, “A Formal Approach to
Architectural Design Patterns,” Proc. Third Int’l Symp. Formal
Methods Europe, pp. 576-594, 1996.

[2] P. Alencar, D. Cowan, J. Dong, and C. Lucena, “A Pattern-Based
Approach to Structural Design Composition,” Proc. IEEE 23rd
Ann. Int’l Computer Software and Applications Conf. (COMPSAC ’99),
pp. 160-165, Oct. 1999.

[3] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best Practices
and Design Strategies. Sun Microsystems, 2001.

[4] S. Berner, M. Glinz, and S. Joos, “A Classification of Stereotypes
for Object-Oriented Modeling Languages,” Proc. Second Int’l Conf.
Unified Modeling Language (UML ’99), pp. 249-264, Oct. 1999.

[5] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, Pattern-Oriented Software Architecture: A System of Patterns.
John Wiley & Sons, 1996.

[7] E. Cerami, Web Services Essentials. O’Reilly and Assoc., 2002.
[8] J.O. Coplien and D.C. Schmidt, Pattern Languages of Program

Design. Addison-Wesley, 1995.
[9] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis, Graph

Drawing: Algorithms for the Visualization of Graphs. Prentice Hall,
1999.

[10] C. Ding and P. Mateti, “A Framework for the Automated Drawing
of Data Structure Diagrams,” IEEE Trans. Software Eng., vol. 16,
no. 5, May 1990.

[11] J. Dong, “Adding Pattern Related Information in Structural and
Behavioral Diagrams,” Information and Software Technology (IST),
vol. 46, no. 5, pp. 293-300, Apr. 2004.

[12] J. Dong, D.S. Lad, and Y. Zhao, “DP-Miner: Design Pattern
Discovery Using Matrix,” Proc. 14th Ann. IEEE Int’l Conf. Eng.
Computer-Based Systems (ECBS ’07), pp. 371-380, Mar. 2007.

[13] J. Dong and S. Yang, “Visualizing Design Patterns with a UML
Profile,” Proc. IEEE Symp. Human Centric Computing Language and
Environments, pp. 123-125, Oct. 2003.

[14] J. Dong, S. Yang, and K. Zhang, “VisDP: A Web Service for
Visualizing Design Patterns on Demand,” Proc. IEEE Int’l Conf.
Information Technology Coding and Computing (ITCC ’05), pp. 385-
391, Apr. 2005.

[15] J. Dong and K. Zhang, Design Pattern Compositions in UML.
Software Visualization—From Theory to Practice. Kluwer Academic,
pp. 287-308, 2003.

[16] A.H. Eden, J. Gil, and A. Yehudai, “Precise Specification and
Automatic Application of Design Patterns,” Proc. 12th IEEE Int’l
Automated Software Eng. Conf., pp. 143-152, Nov. 1997.

[17] G. Florijn, M. Meijers, and P. van Winsen, “Tool Support for
Object-Oriented Patterns,” Proc. European Conf. Object-Oriented
Programming, pp. 472-495, 1997.

[18] M. Fontoura, W. Pree, and B. Rumpe, “UML-F: A Modeling
Language for Object-Oriented Frameworks,” Proc. European Conf.
Object-Oriented Programming (ECOOP ’00), pp. 63-82, July 2000.

[19] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1997.

[20] R.B. France, D. Kim, S. Ghosh, and E. Song, “A UML-Based
Pattern Specification Technique,” IEEE Trans. Software Eng.,
vol. 30, no. 3, Mar. 2004.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns,
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[22] G.C. Gannod and B.H.C. Cheng, “A Framework for Classifying
and Comparing Software Reverse Engineering and Design
Recovery Techniques,” Proc. Working Conf. Reverse Eng., F. Balmas,
M. Blaha, and S. Rugaber, eds., pp. 77-88, 1999.

[23] Y.-G. Gueheneuc, K. Mens, and R. Wuyts, “A Comparative
Framework for Design Recovery Tools,” Proc. Conf. Software
Maintenance and Reeng. (CSMR ’06), 2006.

[24] Y. Gueheneuc, H. Sahraoui, and F. Zaidi, “Fingerprinting Design
Patterns,” Proc. 11th Working Conf. Reverse Eng. (WCRE ’04), 2004.

[25] J.H. Hausmann, R. Heckel, and S. Sauer, “Towards Dynamic Meta
Modeling of UML Extensions: An Extensible Semantics for UML
Sequence Diagrams,” Proc. 2001 IEEE Symp. Human-Centric
Computing Languages and Environments, pp. 80-87, Sept. 2001.

[26] D. Heuzeroth, T. Holl, and W. Löwe, “Combining Static and
Dynamic Analyses to Detect Interaction Patterns,” Proc. Sixth Int’l
Conf. Integrated Design and Process Technology (IDPT ’02), June 2002.

[27] M.M. Kande and A. Strohmeier, “Towards a UML Profile for
Software Architecture Descriptions,” Proc. Unified Modeling
Language, pp. 513-527, 2000.

[28] R. Keller, R. Schauer, S. Robitalille, and P. Page, “Pattern-Based
Reverse-Engineering of Design Components,” Proc. 21st Int’l Conf.
Software Eng., pp. 226-235, May 1999.

[29] C. Kramer and L. Prechelt, “Design Recovery by Automated
Search for Structural Design Patterns in Object-Oriented Soft-
ware,” Proc. Working Conf. Reverse Eng., Nov. 1996.

[30] S. Lahtinen and J. Peltonen, “Enhancing Usability of UML CASE-
Tools with Speech Recognition,” Proc. 2003 IEEE Symp. Human-
Centric Computing Languages and Environments, pp. 227-235, Oct.
2003.

[31] A. Lauder and S. Kent, “Precise Visual Specification of Design
Patterns,” Proc. European Conf. Object-Oriented Programming,
pp. 114-134, 1998.

[32] A. LeGuennec, G. Sunye, and J. Jezequel, “Precise Modeling of
Design Patterns,” Proc. Third Int’l Conf. Unified Modeling Language,
pp. 482-496, Oct. 2000.

[33] D. Mapdlsden, J. Hosking, and J. Grundy, “Design Pattern
Modelling and Instantiation Using DPML,” Proc. 40th Int’l Conf.
Object-Oriented Languages and Systems (TOOLS Pacific ’02), 2002.

[34] T. McCabe, “A Software Complexity Measure,” IEEE Trans.
Software Eng., vol. 2, no. 6, pp. 308-320, Dec. 1976.

[35] N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, and J.E. Robbins,
“Modeling Software Architectures in the Unified Modeling
Language,” ACM Trans. Software Eng. and Methodology, vol. 11,
no. 1, pp. 2-57, Jan. 2002.

[36] Y. Medynskiy, N. Ducheneaut, and A. Farahat, “Using Hybrid
Networks for the Analysis of Online Software Development
Communities,” Proc. ACM Int’l Conf. Human Factors in Computing
Systems (CHI ’06), pp. 513-516, Apr. 2006.

[37] T. Mikkonen, “Formalizing Design Pattern,” Proc. 20th Int’l Conf.
Software Eng., pp. 115-124, 1998.

[38] J.V. Nickerson, “Visual Programming,” PhD dissertation, New
York Univ., 1994.

[39] J. Niere, W. Schäfer, J.P. Wadsack, L. Wendehals, and J. Welsh,
“Towards Pattern-Based Design Recovery,” Proc. 24th Int’l Conf.
Software Eng., pp. 338-348, 2002.

[40] J. Peltonen and P. Selonen, “Processing UML Models with Visual
Scripts,” Proc. 2001 IEEE Symp. Human-Centric Computing Lan-
guages and Environments, pp. 264-271, Sept. 2001.

[41] W. Pree, Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

[42] S.P. Reiss, “Working with Patterns and Codes,” Proc. 33rd Hawaii
Int’l Conf. System Sciences, 2000.

[43] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

[44] S. Sauer and G. Engels, “UML-Based Behavior Specification of
Interactive Multimedia Applications,” Proc. 2001 IEEE Symp.
Human-Centric Computing Languages and Environments, pp. 248-
255, Sept. 2001.

[45] T. Schäfer, M. Eichberg, M. Haupt, and M. Menzini, “The
SEXTANT Software Exploration Tool,” IEEE Trans. Software
Visualization, vol. 32, no. 9, pp. 753-768, Sept. 2006.

[46] J.M. Six, “Vistool: A Tool for Visualizing Graphs,” PhD disserta-
tion, Univ. of Texas at Dallas, Oct. 2000.

[47] G. Sunye, A. LeGuennec, and J. Jezequel, “Design Patterns
Application in UML,” Proc. European Conf. Object-Oriented
Programming, pp. 44-62, 2000.

[48] J. Vlissides, “Notation, Notation, Notation,” C++ Report, Apr.
1998.

[49] G. Wagner, “A UML Profile for Agent-Oriented Modeling,” Proc.
Third Int’l Workshop Agent-Oriented Software Eng., July 2002.

[50] J.B. Warmer and A.G. Kleppe, The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1998.

[51] ArgoUML, http://argouml.tigris.org/, 2006.
[52] Object Management Group, Unified Modeling Language Specifica-

tion Version 1.4, http://www.omg.org, 2001.

452 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 7, JULY 2007

[53] IBM Rational Rose, http://www.ibm.com/software/rational/,
2006.

[54] VisDP, http://www.utdallas.edu/~jdong/VisDP, 2007.
[55] “Web Services Architecture Requirements,” W3C Working Draft

14, http://www.w3.org, Nov. 2002.

Jing Dong received the BS degree in computer
science from Peking University in 1992 and the
MMath and PhD degrees in computer science
from the University of Waterloo, Canada, in 1997
and 2002, respectively. He is an assistant
professor in the Department of Computer
Science at the University of Texas at Dallas.
His research and teaching interests include
formal and automated methods for software
engineering, software modeling and design,

service-oriented architecture, and visualization. He is a member of the
IEEE, IEEE Computer Society, and the ACM.

Sheng Yang received the BE degree from
Tsinghua University in 1994 and the MS and
PhD degrees in computer science from the
University of Texas at Dallas in 2001 and
2006, respectively. His research interests in-
clude automated software engineering methods,
model-driven architecture, software evolution
and analysis, and software engineering tools
and environment. He is an architect/lead en-
gineer in a cutting-edge mobile entertainment

company in Silicone Valley. His role in the company is to lead the
architecture and design of the entire platform. He is also remotely
managing a team of software engineers in China. He is a member of the
IEEE.

Kang Zhang received the BEng degree in
computer engineering from the University of
Electronic Science and Technology, China, in
1982 and the PhD degree from the University of
Brighton, UK, in 1990. He is a professor of
computer science and the director of the Visual
Computing Lab at the University of Texas at
Dallas. He previously held academic positions in
China, the UK, and Australia. His research
interests include visual languages, information

visualization, and their applications in software engineering and Web
engineering. He has had more than 150 publications in these areas (see
http://www.utdallas.edu/~kzhang). He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DONG ET AL.: VISUALIZING DESIGN PATTERNS IN THEIR APPLICATIONS AND COMPOSITIONS 453

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

