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Abstract—Discovering program behaviors and functionalities can ease program comprehension and verification. Existing program

analysis approaches have used text mining algorithms to infer behavior patterns or formal models from program execution. When one

tries to identify the hierarchical composition of a program behavior at different abstraction levels, textual descriptions are not

informative and expressive enough. To address this, we present a semi-automatic graph grammar approach to retrieving the

hierarchical structure of the program behavior. The hierarchical structure is built on recurring substructures in a bottom-up fashion. We

formulate the behavior discovery and verification problem as a graph grammar induction and parsing problem, i.e., automatically

iteratively mining qualified patterns and then constructing graph rewriting rules. Furthermore, using the induced grammar to parse the

behavioral structure of a new program could verify if the program has the same behavioral properties specified by the grammar.

Index Terms—Visual language, graph grammar induction, program comprehension, reengineering.

Ç

1 INTRODUCTION

WITH the wide deployment of software systems, soft-
ware maintenance has become a challenging and

costly task [41] due to increasing software size and
complexity, incomplete and incorrect documentation, etc.
Software maintainers usually need to understand a system
before making changes. Studies [42] have shown that
50 percent of a maintainer’s time is spent on understanding
the system to be maintained. Effective reverse engineering
tools can facilitate this practice [9]. As defined by Chikosky
and Cross [9], reverse engineering is the process of analyzing a
subject system to 1) identify the system’s components and their
interrelationships and 2) create representations of the system in
another form or at a higher level of abstraction. Discovering a
program’s structure/behavior and representing them appro-
priately have been major challenges in reverse engineering.

Since the first generation of software systems, many
techniques and tools have been developed for mining
program structures and specifications. Some previous work
has focused on discovering static program architectures,
e.g., mining high-level similarity patterns in a program [6].
Others have aimed at revealing software dynamic behavior
[22] by recovering functionalities [25], [38] and locating
runtime bugs [11], [47]. There are also considerable efforts
on automatically mining software specifications [1], [10],
[44], e.g., inferring user-system interaction patterns [48].
Existing methods [37], [48], [49], [53] have reflected a clear
trend toward combining machine learning and statistics

techniques, such as clustering and frequent pattern mining,
with domain knowledge of software engineering.

In addition to traditional data mining approaches,
noticeable achievements have been made on mining
program behavior and specifications by grammar/automata
inference algorithms [17], [19], [46]. A foundation research
on behavior mining proposed by Cook and Wolf [17] uses
event data in the form of an event stream, collected from
program execution, to infer a formal behavioral model. They
cast the behavior discovery issue as the problem of
constructing a grammar from given example sentences in
that language [17]. The resulting grammar rules form a
hierarchical lattice. Another pioneering work on specifica-
tion mining [1] generates specifications about program
behavior models by inferring probabilistic finite-state auto-
mata from program execution traces. The transitions and
system states in the automata represent clustered events
occurring more frequently.

The above approaches, however, are built based on
formal methods which require a deep learning curve and
domain knowledge for maintainers to comprehend. To
alleviate the cognitive loads, an integration of sophisticated
structure mining algorithms with visual representations is
desirable to fill the gap between expert practice and users’
comprehension. Being extensively used, visual program-
ming languages have been recognized effective in software
modeling and specifications [43], e.g., UML diagrams. A
visual language [20], [21], [35] is formed by a set of visual
sentences over a set of visual symbols from an alphabet, and
the spatial arrangement of the visual symbols obeys the
syntax of that language [14]. Graph grammars, the founda-
tion of visual languages, can precisely specify the syntactic
and semantic information in multidimensions with dia-
grammatical structures. With supporting visual program-
ming environments [12], [40], [47], [57], [60], developers can
benefit from a graph grammar’s formal specifications and
expressiveness in visually representing information.

As an enhancement to previous text-based automata/
grammar inference approaches, this paper addresses the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010 431

. C. Zhao and K. Zhang are with the Department of Computer Science,
University of Texas at Dallas, Richardson, TX 75080.
E-mail: {cxz051000, kzhang}@utdallas.edu.

. J. Kong is with the Department of Computer Science, North Dakota State
University, 258 IACC #2740, 1320 Albrecht Blvd., Fargo, ND 58102.
E-mail: jun.kong@ndsu.edu.

Manuscript received 8 Feb. 2009; revised 12 Sept. 2009; accepted 30 Nov.
2009; published online 8 Jan. 2010.
Recommended for acceptance by H. Schmidt.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-02-0029.
Digital Object Identifier no. 10.1109/TSE.2010.3.

0098-5589/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 19,2010 at 19:36:29 UTC from IEEE Xplore.  Restrictions apply. 



program behavior mining and verification problem from a
visual language perspective using graph grammar induc-
tion and parsing techniques. We exploit the power of a
graph grammar in specifying information visually with a
precise meaning. More especially, method calls in the
execution trace of a program can be naturally represented
as a graph in which nodes represent methods and edges
indicate method calls. Given such a graph, searching for
frequent calling patterns assists in discovering the behavior
of a program [54]. When the call graph is considered as a
visual sentence, the discovery process is essentially a
grammar induction. Integrating graph grammar with
grammar induction can support an automatic analysis of
a program behavior. The result with a visual presentation
can improve user comprehension with a precise meaning.

As a motivating example, Fig. 1a depicts a simple call
graph of a program. The call graph represents the behavioral
structure when the program executes certain functionalities.
The graph consists of two common substructures: a-b-c. We
apply a graph grammar induction algorithm on the call
graph and then generate a graph grammar as depicted in
Fig. 1d. The syntax of the grammar represents the behavioral
properties of that program.

Apart from comprehension, we can use the induced
grammar for program behavior verification. The formal
specification of a graph grammar is capable of checking the
syntactic correctness of a call graph by parsing, i.e.,
verifying if the behavior of a program observes the

properties specified by the grammar. Source code realizing
certain functionality could be reused for different programs.
Therefore, programs may have similar behavioral proper-
ties when they execute similar functionalities. For instance,
if developers want to check whether a new program has the
same behavior with the old one, he/she can parse the new
program with the graph grammar inferred from the old
program. A valid parsing result means that the new
program satisfies the same behavioral properties as the
old program. Consequently, two types of behavior verifica-
tion can be performed [55]:

. verify acceptable call sequences in a scenario and

. detect illegal behaviors or security-related activities,
such as access control.

Using the induced graph grammar in Fig. 1d, we can
check if the call graphs in Fig. 1b and Fig. 1c satisfy the
structural properties specified by the grammar. A valid
parsing result will be generated for Fig. 1b. Therefore, we
can conclude that the graph in Fig. 1b maintains the
behavior properties specified by the induced grammar.
However, Fig. 1c cannot be parsed successfully due to an
erroneous method call from d to b. To automate the whole
process of graph grammar induction and parsing corre-
sponding to behavioral structure mining and verification,
we use a visual programming environment called VEGGIE
[2], [3], the Visual Environment for Graph Grammars: Induction
and Engineering.

The rest of the paper is organized as follows: Section 2 is
an overview of our approach. Section 3 introduces pre-
liminary concepts of visual languages, including graph
grammars, grammar induction, and parsing. Section 4
provides detailed specifications of our approach. Section 5
presents the architecture and usage of a visual environment.
Section 6 describes experiments on an open-source project
and discusses the empirical results. Section 7 reviews
related work, and finally, Section 8 concludes the paper.

2 APPROACH OVERVIEW

Fig. 2 depicts the approach overview. The graph-grammar-
based approach essentially consists of two major function-
alities: behavioral structure discovery and behavior verifica-
tion. We use Abstracer [56], a multicriteria trace abstraction
tool, to construct and trim call graphs from program
execution traces. Then we use VEGGIE [2], [3] to infer
recurring structures from observed program execution, and
finally, verify the program with expected properties.

VEGGIE, initially designed for graph grammar induction
and parsing, essentially incorporates two subsystems: Sub-
dueGL [28], [30] and Spatial Graph Grammar (SGG) [31],
[32]. The former is a graph grammar induction system for
mining recurring behavioral patterns from execution traces.
The latter is a graph grammar formalism with an efficient
parser that we use for checking whether an observed
behavior in a call graph satisfies the design specifications
expressed in the graph grammar.

The upper flow in Fig. 2 describes a behavior discovery
process. We first run a program under study together
with instrumentation code implemented with AspectJ [29].
AspectJ is an aspect-oriented extension to Java.
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Instrumentation aspects are automatically woven with
Java byte code during compilation instead of being
inserted into the source code, which is less intrusive to
the original system. Then, execution traces of method
invocations are collected during program execution. We
construct call graphs from the execution traces using
Abstracer and then abstract the call graph based on
abstraction criteria [56]. Abstracer removes execution traces
that play less significant roles in representing the program
behavior and then represents the abstracted call graph in
GraphML [58]. The abstracted call graph is the input to the
grammar induction engine of VEGGIE. VEGGIE can
automatically derive a set of graph rewriting rules from a
given graph using a compression-based substructure
mining algorithm. Additionally, an expert can also manu-
ally draw or modify the grammar in the Grammar Editor of
VEGGIE. The induced grammar represents the hierarchical
structure of the program’s behavior.

The lower part of Fig. 2 describes a behavior verification
process. A graph grammar (either automatically induced or
manually designed) is used as specifications to verify the
valid behavioral properties, e.g., valid call sequences of
methods. Based on the graph grammar, we can check
whether the given instance graph satisfies the properties
specified by that grammar. With a valid parsing, a parse tree
representing the composition of the input program behavior
will be generated and visually displayed to the user.

In the current implementation, we use call graphs to
represent program behavior and apply the induction and
parsing on the call graphs. The approach is general enough
to discover and verify other program structural properties.

3 GRAPH GRAMMARS AND THEIR PARSING

Graph grammars extend Chomsky’s generative grammars
into the domain of graphs by using diagrammatic and
graphical structures, such as boxes and arrowed lines. In a
graph grammar, a graph G is denoted by a tuple <N;E>,
where N is a set of nodes and E � N �N is a set of edges
in the graph. A graph rewriting rule, also called produc-
tion, consists of a left graph and a right graph. A production
is in the format of S :¼ P1jP2 . . . , in which both S and Pi
are graphs.

This paper uses the SGG [31], [32] formalism. SGG is
context-sensitive graph grammar formalism, which sup-
ports an arbitrary number of nodes in both the left and right
graphs in a production. Therefore, SGG is adequate to
specify program behavioral properties in call graphs, e.g.,
valid call sequences. SGG is expressed in a node-edge

format. Nodes are organized into a two-level hierarchy,
where a large rectangle representing the node itself is the
first level with embedded small rectangles at the second
level called vertices.

Fig. 3a depicts a typical SGG node including two
vertices. In a node, each vertex is uniquely labeled. A
node can be viewed as a module, a procedure, or a
variable, depending on the design requirements and data
granularities. A vertex functions as a port to connect other
nodes by edges. Edges can denote any type of commu-
nications or relationships between nodes. Fig. 3b depicts an
SGG production.

SGG uses a marking technique [32], [51] to address the
embedding issue, i.e., building connections between a
replacing subgraph and the surrounding of a replaced
subgraph, during subgraph replacement. In a production, a
vertex is marked by prefixing its label with a unique integer.
For example, in the above production of Fig. 3b, vertex U of
the node Server is marked, while vertex D is unmarked. If a
vertex v in a replaced subgraph maps to a marked vertex, v
will be preserved during graph transformation to establish
connections between the surrounding of a replaced sub-
graph and a new subgraph. Fig. 3c shows an isomorphic
subgraph (in the dotted rectangle) corresponding to the right
graph of the production in Fig. 3b, and the vertex with gray
background maps to the marked vertex. The gray vertex will
be preserved in a graph transformation, as shown in Fig. 3d,
and the transformed graph is shown in Fig. 3e.
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Fig. 3. Spatial graph grammar. (a) A node. (b) A production. (c) Before
transformation. (d) Preserve context information. (e) After transformation.

Fig. 2. Approach overview.
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Graph grammar induction and parsing are two core

concepts in visual languages. Grammar induction, also

known as grammatical inference, is defined as [17]:

Given some sample sentences in a language, and perhaps some
sentences specifically not in that language, infer a grammar that
represents the language.

A graph grammar induction algorithm iteratively finds

common substructures from the given graph and organizes

the hierarchical substructures in a grammatical form. When

a common frequent substructure is found, a production will

be created. The substructure consisting of terminal and

nonterminal symbols identified from the graph is repre-

sented as the right graph of the production, and new

nonterminal symbols will be created as the left graph. Then,

the new production will be applied to the current data set. In

other words, a substructure matching that of the right graph

will be replaced by the left graph. The procedure of pattern

mining—production creation—substructure replacement will be

recursively performed on the original graph until there are

only nonterminal symbols, or a threshold (i.e., a stop

criterion defined by the user) is reached. Graph grammar

induction could apply to many standard graphical repre-

sentations, e.g., call graphs and dependency graphs.
Fig. 4 depicts a grammar induction process applied on

the call graph (see Fig. 1a). In each iteration, a production

is created.
Graph grammar parsing is to verify the membership of a

graph in a language. If a given graph, typically called a host

graph, is eventually transformed into an initial graph �, the

parsing process is successful and the graph is considered to

satisfy the structural properties specified by the graph

grammar. Fig. 5 depicts a parsing process on the host graph

in Fig. 1b based on the grammar in Fig. 1d.
Grammar parsing has been used in checking software

design. One successful example in software engineering is

design pattern discovery [13], in which the structure of a

design pattern is encoded as a grammar. By parsing a given

UML class diagram with the grammar, the user can identify

and verify the existence of a design pattern. Such a parsing

process when applied to behavior verification can check the

behavioral structure of the given program and reveal the

hidden hierarchical composition of that program behavior.
The time complexity of the SGG parser is critical to the

overall system performance. The SGG parser uses efficient

string matching technique, instead of graph matching, to

search for an appropriate substructure that matches the

right graph of a production. SGG parser is developed based

on confluent graph grammars. Informally, the confluence

requires that different orders of applications of productions

achieve the same result, and therefore, the parsing only tries

one parsing path. Under the confluence condition, the SGG

parser has a polynomial time complexity [32].

4 PROGRAM INDUCTION AND VERIFICATION

This section first describes the program behavior models

and then discusses our approach in detail, including trace

processing, behavior discovery, and behavior verification.

4.1 Program Behavior Model

Scenarios can be derived from an execution trace based on

causal relationships. Causality characterizes the interactions

between events, i.e., a causal order between methods. Fig. 6

presents three objects in which ei represents a method. A

directed edge from ei to ej means that method ei calls
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Fig. 4. A grammar induction process.
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Fig. 6. An application scenario.
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method ej. Such a calling relation indicates a causal relation
between ei and ej.

Definition 1. If a method e1 (i.e., the caller) calls another method e2

(i.e., the callee), there is a causal relationship between e1 and
e2, denoted by e1 ! e2.

Definition 2. A causal link l is an ordered set of methods
E ¼ fe1; e2; . . . ; emg, where ei ! eiþ1, 0 < i < m.

For instance, in Fig. 6, e1 ! e3 ! e4 ! e5 and e1 ! e3 !
e4 ! e6 ! e7 ! e8 form two causal links. Due to the
transitivity of causality, any two methods in a causal link
are of a causal relationship, e.g., e1 ! e4 is true.

Definition 3. A scenario S consists of a set of causal links L =
{l1; l2; . . . ; ln}, where 8 li; lj 2 L; 9 ek 2 E ¼ e1; e2; . . . ; ep;
li \ lj ¼ ek (0 < i; j � n and 0 < k � p).

The execution trace generated from an instrumented
program provides the clue to the discovery of causal links
in a scenario diagram. Since we record the enter-exit of
method invocations, the nested enter-exit relations in
method calls reveal the calling relationships between
methods. Fig. 7 depicts a method invocation. A causal
relationship A:m! B:n can be derived from the trace: enter
A.m—enter B.n—exit B.n—exit A.m.

A scenario model could guide the reasoning about object
interactions from execution traces and provide a foundation
to define program behavioral specifications. Based on the
causality of methods in a scenario, we can derive several
properties. These properties are the basic conditions to
ensure the correctness of a scenario.

Property 1. The causal links in a traced scenario are connected,
i.e., each causal link must share at least one node with another
link in the same scenario. Disjoint links could be directly
initiated by separate external events, such as a user interaction.

This property ensures that events in a scenario are
connected through causality such that every event has at
least an internal or external initiating event.

Property 2. A scenario is cycle-free, i.e., no causal link can form
a cycle.

For instance, a link e1 ! � � � :! ei ! � � � :! ei ! ej !
� � � : is an illegal scenario in which a cycle exists.

The program behavior is represented as a call graph to be
parsed in the grammar system. Specifications of the proper-
ties in the program behavior are represented as productions.

More formally, a call graph is a tuple G ¼ <N; V ;E; L;
s; t; f>, where

. N is a set of nodes.

. V is a set of vertices in N .

. E is a set of edges.

. L is a set of labels of the nodes, vertices, and edges.

. s : E ! V and t : E ! V are two functions that
specify the source and target vertices of each edge.

. f : E [ V [N ! L is a function assigning labels to
nodes, vertices, and edges.

A graph grammar representing program behavioral
properties is defined as a tuple G ¼ <T;N;E; P>, where

. P is a finite set of productions specifying the
behavior properties, e.g., acceptable valid sequences
of method invocations with certain constraints
satisfied.

. T is a finite set of terminal nodes in P , representing
methods occurring in the scenario.

. N is a finite set of nonterminal nodes in P .

. E is a finite set of edges in P , connecting callers
and callees.

4.2 Trace Preprocessing

Many trace collection approaches insert additional codes to
the original program to record execution traces. Developers
have to prune the inserted codes from the original program
after instrumentation, which is usually error-prone. To
obtain execution traces, we have implemented an aspect-
oriented instrumentation approach instead of putting extra
tracing codes into the original system. Using AspectJ [29],
instrumentation aspects are created and seamlessly com-
piled with Java byte code.

AspectJ modularizes the concern of a user’s interest
tangled in a complex system. The modularized crosscutting
concern is called an aspect. To define an instrumentation
aspect using AspectJ, we need to declare 1) join points (i.e.,
the specific points in the execution of the program),
2) pointcuts (i.e., the collection of join points), and 3) advice
(i.e., the piece of code that is executed when a pointcut is
reached). In the current implementation, the following
informations are recorded for each method invocation:

. names of classes, objects, and methods,

. method invocation: enter-exit of every static or
nonstatic method.

Fig. 8 depicts a call graph of a toy program. Intuitively,
data traced from a running program record the actual
behavior of the program. For each scenario, we build a call
graph based on the program behavior model, and then an
abstraction and behavior induction/verification process is
performed on this call graph. Initially, the call graph is
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Fig. 7. A method call.

Fig. 8. A call graph of an example program.
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implemented as a linked list. Each caller maintains a pointer
to each of its callees. To be compatible with the data format
in the induction and verification systems, call graphs are
represented in GraphML [58]. The information of objects
and method invocations corresponds to the GraphML
syntax, such as elements, attributes, nodes, and edges.

A data processor called Abstracer is built for tracing the
system under study. It produces logs, reduces redundant
and noise traces with tunable parameters, and generates
GraphML files. Following the GraphML syntax, we
represent caller-callee relationships in schemas, where
method invocations are denoted by a node-edge format.
Each node representing a caller or a callee has a unique
integer id, a type for its name, and a position in the
VEGGIE’s Graph Editor. Method names are included in the
corresponding nodes’ attributes. Similarly to the edges in
call graphs, each edge in GraphML representing a method
invocation is directed, and explicitly connects a starting
node (a caller) to an ending node (a callee).

A GraphML example for a method invocation “main !
multiply” is shown as follows:

<?xml version = “1.0” encoding = “UTF-8”?>

<!- - SGG Graph Data - ->

<graphml xmlns =

http://graphml.graphdrawing.org/xmlns>

<graph edgedefault = “directed” xmlns =
http://viscomp.utdallas.edu/VEGGIE>

<node id = “1” type = “main” pos = “995 945”>

<port id = “{main}”/>

<data key = “attrib”>

<attrib id = “Terminal” type = “2” bool =

“true”/>

</data>

</node>
<node id = “2” type = “multiply” pos = “878 252”>

<port id = “{multiply}”/>

<data key = “attrib”>

<attrib id = “Terminal” type = “2”

bool = “true”/>

</data>

</node>

<edgetype = “E” directed = “true” source = “1”
target = “2” sourceport = “{main}” targetport =

“{multiply}”/>

</graph>

</graphml>

When analyzing program execution, developers are
usually overwhelmed by the large volumes of the execution
traces, which prevent effective mining and verification.
Thus, we need to abstract and simplify the trace by
eliminating information that contributes little to the program
behavioral structure. To achieve this goal, the following
criteria have been developed to prune an execution trace:

. continuous repetitions,

. low-level methods.

The first abstraction criterion aims at reducing possible
redundant traces. Loop is one of the major sources
causing redundant information. In our approach, a loop is

represented as one instance with a repetition number.
Eliminating the redundant or fine-grained structures can
help the induction process to focus on high-level behavior.
It can also avoid mining redundant behavior. Fig. 9a
shows an abstracted graph after removing the loop on
method addOne in Fig. 8. In order to eliminate low-level
details, our approach allows a user to specify a threshold. If
a method has a call depth that is greater than the user-
specified threshold in a call chain, this method is pruned.
For instance, if the threshold is set as 2, addOne and getNum,
which have a depth of 3 or more in Fig. 8, are considered to
be low-level details with respect to multiply. The abstracted
graph is shown in Fig. 9b. Developers may decide whether
to reduce low-level structures or not. Low-level structures
are collapsed if a developer is only observing high-level
behavior between different objects. Otherwise, they are
preserved for a detailed analysis.

The abstraction ensures equivalent behavior semantics
between the original call graph and the abstracted one, and
allows users to focus on the activities they are interested in.
The abstraction on loops and low-level methods satisfies the
safe property, meaning that methods in an abstracted
scenario comply with the causality properties of the original
call graph. In other words, the causal relationship between
any two methods in an abstracted scenario S’ remains if
there exists a causal relationship between the two methods
in the uncompressed scenario S. Therefore, our behavior
pattern mining and verification can be performed on
abstracted call graphs.

4.3 Assigning Patterns with Temporal Properties

A behavioral pattern describes activities that happen in an
order. To reflect this, we assign nodes in a call graph with
temporal attributes. Without a temporal order, the inferred
common patterns may not be correct even if they are
graphically isomorphic. We use logical time stamps to keep
track of methods’ order. A sequence method A occurred
5 seconds before method B is considered the same as the
sequence method A occurred 2 seconds before B.

Each substructure G is represented as a tuple <N;E>,
where N is a set of nodes and E is a set of edges connecting
nodes in the substructure (i.e., subgraph). Each node in the
subgraph has one additional attribute: time stamp represented
by tni for node ni. The time stamp is generated when the node
is produced. In the GraphML representation, each node in the
graph has an integer time stamp. A node vector vG represents
an ordered sequence of nodes within the substructureG, i.e.,
vt ¼ n1; n2; n3; . . . ; nn, where if i < j, then tni < tnj. This
means that ni happens before nj. Two substructures G1 ¼
fN1; E1g and G2 ¼ fN2; E2g are considered equivalent if
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and only if they are isomorphic and have the same node
vector.

The time attribute is considered when grammar induc-
tion performs subgraph matching. For instance, two
graphs in Fig. 10, where the integers represent logical
time stamps, are not equivalent since their node vectors
(Multiply, getNum, addOne) and (Multiple, addOne, getNum)
are not equivalent.

4.4 Program Behavior Discovery and Verification

Graph grammar induction uses graph-based substructure
mining algorithms instead of text mining techniques. A
substructure is defined as a representation of recurring
subgraphs. An instance is one occurrence of such a
substructure in the graph data set. The substructures
recognized by the grammar induction procedure reveal
hidden recurrent patterns within the graph data set. The
hierarchical relations within the grammar can aid the
developers in understanding and analyzing the composi-
tion of large and complex legacy systems. Those grammars
can also be used to build graphs to simulate the execution of
a system.

A variety of substructure mining algorithms [27], [33],
[34], [45], [49] promotes the development of several graph
grammar induction systems [17], [19], [28], [30]. For
instance, Li and Zhou [33] used frequent subgraph mining
to find substructures. Instead of using frequency, VEGGIE
[2], [3] uses a compression-based frequent pattern discovery
algorithm (SubdueGL) to identify substructures, and
compresses the substructures having the highest compres-
sion ratio. VEGGIE emphasizes on the compressing of
graph data sets rather than purely searching for the
frequent subgraphs. The compression ratio for each sub-
structure is calculated based on a minimum description
length (MDL), and the substructure with the highest
compression ratio among the competing substructures is
selected. Therefore, the substructure found in each iteration
may not be the most frequent one, but it can achieve the best
compression ratio for the given graph, i.e., the ratio between
the original and resulting graphs after the subgraphs is
replaced with a nonterminal node.

VEGGIE generates candidate substructures and evalu-
ates them using the following measure [30]:

sizeðGÞ
sizeðSÞ þ sizeðG=SÞ;

where G is the input graph, S is a substructure, and GjS is
the graph derived from G by replacing each instance of S
with a single node. The size of a substructure S is computed
by summing the number of its nodes and edges, i.e.,
sizeðSÞ ¼ nodeðSÞ þ edgeðSÞ, as a simplified measurement
of MDL [16].

By iteratively discovering substructures with the largest
compression ratio, VEGGIE replaces subgraphs in a given
graph. The iterations ultimately convert the given graph
into one or more nonterminal nodes until no qualified
substructures exist. Users can also set a threshold for the
number of iterations. Multiple compressions on the given
graph constitute a structural hierarchical lattice that
corresponds to a graph grammar.

A frequency-based pattern mining approach may not
necessarily compress the graph best. For instance, the
compression ratio of substructures (highlighted in a dotted
circle in Fig. 11a), which have size 1 and frequency 3, is less
than that of the substructures, which have size 3 and
frequency 2 in Fig. 11b. Hence, frequency as used in many
previous systems is not always the best factor in graph
compression. The beauty of this grammar induction system
for behavior discovery lies in its compression capability
since it needs the least number of iterations to reduce a
graph to the minimum.

VEGGIE provides a graphical user interface to define
grammars using diagrammatic symbols. A graph grammar
defines all of the acceptable method call sequences in call
graphs. Each production is associated with a semantic action
code. Action code is a piece of Java code that is executed
when the right graph of the production is applied to a host
graph. The architecture of the verification process via graph
grammar parsing is shown in Fig. 12.

Considering the scenario in Fig. 13, object A has no
authority to access methods in object C, thus object A can
only indirectly invoke a method in object C via some
methods of object B. The solid lines depict the legitimate
scenario, while the dashed line illustrates an illegal
scenario. Both the legal and illegal behaviors can be checked
using predefined specifications. Likewise, other types of
behaviors such as a missing connection in a causal link and
a cycled causal link can also be detected. A legal scenario
describes a valid call sequence and an illegal scenario
indicates a call sequence which is not supposed to exist in
the program behavior.

ZHAO ET AL.: PROGRAM BEHAVIOR DISCOVERY AND VERIFICATION: A GRAPH GRAMMAR APPROACH 437

Fig. 11. Graphs with different reduction ratios.

Fig. 12. Architecture of the verification system.

Fig. 10. Two graphs with temporal attributes.
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Fig. 14a shows the corresponding productions (P1, P2, and
P3) for the legal behavior. Users can use this set of
productions to automatically verify the behavior of a call
graph. A valid parsing result indicates a correct behavior in
the verified call graph. Otherwise, the tested program does
not satisfy the behavioral properties defined by the grammar.
Fig. 14b shows an illegal call graph in which a method in
Object A directly calls a method in Object B. Parsing this call
graph based on the graph grammar in Fig. 14a results in an
invalid result.

5 THE VEGGIE SYSTEM

5.1 Constructing VEGGIE

Based on graph grammar formalism, various visual
programming environments [36], [40], [52], [57], [60] have
been developed to support visual interaction and program-
ming. Those systems allow a user to directly manipulate
visual objects in a two-dimensional fashion, and have been
successfully deployed to model, analyze, simulate software
artifacts with a graphical representation [5], [20], [21]. The
Visual Environment for Graph Grammars: Induction and
Engineering (VEGGIE) [2], [3] improves previous work by
incorporating a grammar induction algorithm into a visual
programming environment, which reduces the learning
curve since a graph grammar can be automatically

produced, instead of being designed manually. Therefore,
users do not need to know the formal theories underlying a
graph grammar.

Though many efforts have been made on developing
various visual language environments supporting grammar
construction and parsing, few studies have been conducted
on inducing a context-sensitive graph grammar [28]. To our
knowledge, there are no tools combining grammar con-
struction, graph parsing, and grammar induction in one
environment. Developing such a unified system is challen-
ging as there are no widely accepted standards and
specifications for different visual language environments.
Standardizing on a common framework is a goal for
developing VEGGIE.

VEGGIE is essentially an integration of the SubdueGL
and SGG systems with many novel enhancements. It merges
graph grammar induction, grammar construction, and
parsing functionalities in a unified system. VEGGIE uses a
node-edge representation that can be easily converted to a
UML-like presentation [4], which can assist the under-
standing of a production due to the popularity of UML.

Fig. 15 shows the architecture of VEGGIE. It mainly
consists of three independent editors: the Type Editor, the
Grammar Editor, and the Graph Editor, and two functional
engines: a SubdueGL induction engine and an SGG parser.
The three visual editors are closely related and seamlessly
working together in VEGGIE. The combined views ease the
switching between different editors with a consistent look
and feel, which enhances a coherent understanding. The
user can either manually create visual objects, i.e., node
types, in the Type Editor, or import existing node types.
Then with these predefined nodes, the user can create
graphs in the Graph Editor or define productions in the
Grammar Editor. The data files storing nodes, grammar,
and graph are shared and interoperated by all editors. The
user can either induce a graph grammar from a host graph
in the Graph Editor using the induction engine or parse a
given graph with the productions in the Grammar Editor
with the SGG parser.

More technical details on the construction of VEGGIE
can be found in our previous work [2], [3]. The following
sections explain the design specification and usage of each
module in VEGGIE.

5.2 Visual Object Generation

The Type Editor of VEGGIE in Fig. 16 is used to define
nodes. It allows developers to specify various properties of
a node, such as types, attributes, and ports. On the left panel
of the Type Editor, each node denotes a method, and each
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Fig. 14. Example productions. (a) A legal call sequence with the
corresponding productions. (b) An illegal method call.

Fig. 15. The VEGGIE system.

Fig. 13. An example scenario.
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edge represents a calling relationship between two meth-
ods. The head node is used as a root without any special
meaning. To avoid cluttering the display space and
confusing the user, in the current version of VEGGIE, we
only explicitly display nodes. If the mouse moves over a
node, detailed information of the node, e.g., ports (i.e.,
vertices), will be displayed as depicted in Fig. 16a. The user
can select one method from the list. Then the node will be
displayed on the right panel. On a selected method, the user
can make several modifications, e.g., removing, adding
ports, or changing attributes (Fig. 16b).

VEGGIE provides two ways to specify methods. A user
can create a visual object, i.e., a round rectangle with a name
inside, via “add node type,” as shown in Fig. 17a. After
creating all of the nodes, the user can click these nodes and
display them on the right panel, and then connect the
methods via the “add edges” operation in the Graph Editor.
Manually creating a list of nodes is mostly used when the
user wants to create productions or graphs manually.

A more efficient way of defining methods in VEGGIE is
to import a type file (Fig. 17b), which is automatically
generated from a call graph. When we load a graph file
representing a call graph to the Graph Editor, VEGGIE will
pop up a window for the user to generate a type file from

the graph. By selecting “yes,” the nodes and edges will be
generated automatically. If the type file has already been
created, the user can import the graph directly and merge
new nodes appearing in the graph with existing nodes. Both
the type file and graph file are stored in GraphML.

5.3 The Induction Procedure

Fig. 18a shows a call graph in the Graph Editor. In this
graph, each edge directs from a node with a smaller integer
to a node with a larger integer. The integers associated with
nodes specify a temporal order.

The Calc menu in the interface provides two actions for
end users to perform either grammar induction or
grammar parsing on a given graph. By clicking on the
command “Infer Grammar,” a parameter-setting window
will popup (Fig. 18b). It includes all the parameters for the
induction algorithm, such as the iteration limit. Different
settings of the parameters may produce different results.
Detailed meanings of these parameters can be found
elsewhere [3]. After setting the parameters or using the
default ones, the user can get the induction results
automatically generated by VEGGIE. For instance, VEGGIE
derives five productions from the call graph in Fig. 18a.
The productions are automatically added to the Grammar
Editor as shown in Fig. 18c.
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Fig. 16. Modifications on visual objects.

Fig. 17. Method generation.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 19,2010 at 19:36:29 UTC from IEEE Xplore.  Restrictions apply. 



The leftmost panel of the Grammar Editor in Fig. 18c lists
all of the productions inferred from the toy program. By
clicking on one of the productions, the corresponding
details are displayed in the middle and right panels,
representing the left graph and right graph of the selected
production, respectively. The sequence of the productions
indicates the order that the productions are created by the
induction algorithm.

For instance, Fig. 18c shows the first graph production
inferred by VEGGIE. The right graph of the first production is
the first substructure found by the induction algorithm.
During the induction process, after replacing the substruc-
ture that matches the right graph with the left graph, the
induction algorithm begins the next round and then searches
for the next substructure. Iteratively, a set of productions is
generated. By analyzing these productions, developers can
get a sense of the hierarchical structure of the program
behavior. Apart from displaying the productions on the

interface of Grammar Editor, the induced productions can
be exported and saved in the GraphML format. The saved
productions encode the structural properties of call graphs
and could be reused for checking the structures of other
programs.

5.4 The Parsing Procedure

VEGGIE’s parsing subsystem includes an SGG parser as
described before. In addition to the productions automati-
cally generated by the VEGGIE’s induction subsystem, the
user can define productions on the Grammar Editor
following the node-edge specification of SGG. To define a
production, users do not have to draw each node and edge.
Instead, they can select nodes from a node list, and then
define the left graph and right graph of each production.

One can verify the program’s properties by parsing the
given call graph using the specified grammar. To realize it,
developers can use the parse command in the Graph Editor,
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Fig. 18. An induction procedure. (a) A call graph in the graph editor. (b) Parameter setting. (c) Induction results in the grammar editor.
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as shown in Fig. 19. Then VEGGIE pops up a window, and
reports the verification result: valid or invalid. For a valid
host graph, a hierarchical parse tree will be produced. The
parse tree illustrates the behavioral structure of a given call
graph. If the parsing fails, an invalid parsing result “Invalid
Graph” will be generated, with a partial parse tree
including only the structures that could be recognized.

Considering the call graph in Fig. 19a, after the user issues
the “Parse Graph” command, the given graph will be parsed
based on the graph grammar listed in the Grammar Editor. In
this example, we used the productions automatically
generated by the induction procedure in Fig. 18c. Fig. 19b
shows a valid parsing result. The hierarchical parse tree can
be collapsed at different abstraction levels. Such a parsing
tree reveals behavior patterns underlying a given call graph.
Therefore, a user could understand the composition of the
given program behavior together with the relationships
between the components. In another parsing attempt, we try
the same grammar used in the first parsing and a different
call graph in Fig. 19c. The second parsing turns to be

unsuccessful and produces an “Invalid graph” result, as
depicted in Fig. 19d. The hierarchical structure shows a
partial parsing result. A partial parse tree means that the
given graph syntactically satisfies only a subset of the
productions of that grammar. As the graph represents a
program behavior, the result indicates that the program
behavior only satisfies part of the structural properties of the
specifications. The satisfied portion can be derived from the
partial parse tree.

6 EMPIRICAL RESULTS

We designed two experiments for program behavior struc-
ture discovery and verification using an open-source project
JHotDraw [59]. After intercepting the execution traces of
drawing activities in JHotDraw and abstracting the traces, we
first used VEGGIE to discover the composition of program
behavior. Each induced production represents a hidden
substructure in the behavior. A parse tree of a call graph
reveals the behavioral structure at different abstraction levels.
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Fig. 19. A verification procedure.
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The second experiment aims at verifying the program
behavior based on a graph grammar. We successfully located
a program bug that was previously unidentified.

6.1 Open Source Project JHotDraw

JHotDraw is a GUI framework with structured drawing
editors written in Java and was initially designed to illustrate
the application of design patterns. We use Version 6.0 Beta
that contains 136 classes, 1,380 methods, and 19 interfaces.

JHotDraw supports many drawing activities. Commonly
occurring activities include the following:

. run JHotDraw and initiate the drawing environment;

. create new display view;

. draw graphs such as rectangle and triangle;

. start and end animation;

. close JHotDraw, etc.

Using AspectJ, we defined the instrumentation aspect by
specifying the pointcut as follows:

execution (* *. * (..)) && ! within (org. lib. instrumentation)
&& within (org. jhotdraw. samples. *. *).

6.2 Program Behavioral Induction

We designed four scenarios to trace and analyze JHotDraw
behavior.

Scenario 1: Draw a rectangle. No abstraction was made on
the raw trace. This intends to evaluate the grammar induction
ability of identifying structures without abstraction.

Scenario 2: Draw one triangle four times. By applying the
first criterion in abstraction process (refer to Section 4.2), we
intend to evaluate if the induction can identify the repeating
behaviors of drawing.

Scenario 3: Draw one triangle four times. We apply the two
criteria to abstract the raw execution traces. We intend to
compare with Scenario 2, and evaluate the influence of the

abstraction on induction. We used the same raw trace as in

Scenario 2.
Scenario 4: draw a triangle and an ellipse, and start and

end animation twice. Continuous redundant traces were
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Fig. 20. An abstracted graph of scenario 3.

Fig. 21. Induced productions 1 and 2 from scenario 3.
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eliminated. This intends to evaluate the inference power
on substructures that represent various activities.

Fig. 20 shows the abstracted graphical representation of
Scenario 3 after trace reduction. Eight productions are
induced from the call graph. The first two productions are
shown in Fig. 21. From the productions, we observed that
the drawing activity that appears four times in this scenario
is identified as the first substructure (i.e., the right graph of
Production 1) by VEGGIE, which is a recurring pattern.

The parse tree in Fig. 22 illustrates a hierarchical
structure of the program behavior. Hidden substructures
and composition are revealed. A user can view the parsing
tree at different levels by collapsing uninterested/low-
level substructures.

The induction results for the four scenarios are summar-
ized in Table 1. We evaluated our approach based on
different metrics, e.g., the size of trace, the number of
reductions, and execution time.

Table 1 shows that reduction on loops and pruned traces
can substantially increase the efficiency of induction.
Compared with Scenario 1, Scenario 4 has much larger
traces; its execution time, however, is less than Scenario 1
due to the abstraction. Similarly, Scenario 3 spent less time
than Scenario 2 because its lower level branches were
pruned. We also notice that the number of inferred

productions has no direct relation to the number of events
in the system, as proven by Scenarios 1 and 4. Moreover, the
abstraction parameters are the same for all the scenarios. It
may depend on the topology of the graph.

Since the induction algorithm is a compression-based

subgraph mining, the substructure found during each

round of iterations could be improved if we can apply

preliminary semantic constraints before the induction. In

other words, a user can define some desirable productions

to guide the induction process. Then the induction algo-

rithm can derive additional productions based on the

predefined ones.

6.3 Experiments for Behavior Verification

As another experiment, we verify program behavior by

checking the acceptable call sequence defined in a graph

grammar. If the traced behavior does not satisfy the call

sequence, it is considered erroneous/illegal behavior.
The JHotDraw drawing environment allows users to

create a drawing view, draw different shapes, move them,

and save the view into a user-selected directory. One

specification in JHotDraw is that a “new” action must

precede the “save as” action. This specification holds

naturally since a drawing view cannot be saved before it is

created. If the rule is violated (i.e., the “save as” action

happens before the “new” action), the program will

terminate abnormally. This experiment aims at verifying

such a specification and illustrating how to check the

correctness of program behavior based on a graph grammar.
We define the behavioral property (a new event should

precede a save event) through a graph grammar. In other

words, we define a graph grammar based on SGG notations

describing the call sequence of creating a view (by “new”)

and saving (by “save as”) the view. The expected behavior

is illustrated in the dashed boxes in Fig. 23. Developers can

customize the specification by pruning branch nodes

deeper than a certain threshold in the call tree.
The verification process is as follows:

. We instrumented JHotDraw using AspectJ with the
following pointcuts, and then executed it:

before (): execution (* *. *(..)) && !within (org. lib.

drawApplication. *)
after ():execution (* *. * (..)) && !within(org. lib.

drawApplication. *)
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Fig. 22. A hierarchical parse tree.
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Induction Results of Four Scenarios
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. We automatically constructed an abstracted call
graph from the execution trace.

. Finally, we imported the call graph to VEGGIE and
automatically parsed it using the graph grammar
representing the program specification.

Based on the call graph in Fig. 23, we induced a
corresponding graph grammar as shown in Fig. 24. Then,
based on the grammar, we verified a use-case scenario,
which was invoked by merely clicking the “save as” on the
JHotDraw menu. The behavior was identified to be
erroneous from the parsing result. The produced partial
tree indicates the cause of the erroneous behavior.

In this scenario, we first collected all of the execution
traces including the initiation of JHotDraw, a user-issued
saving event (by “save as”), and closed the environment.
Then we constructed an abstracted call graph in GraphML
for this scenario through Abstracer, and imported the call
graph into the Graph Editor of VEGGIE, as shown in
Fig. 25. To improve the performance, in this scenario we
had pruned the branch nodes with a call depth greater than
4 in the call tree. Pruning lower branch nodes, which are
just temporarily folded, does not affect the basic structure of
the call graph and the behavioral property of the scenario.

Using the grammar in Fig. 24, we automatically parsed the
given program behavior represented in Fig. 25. A parsing
result “invalid graph” was produced by VEGGIE, as shown
in Fig. 26a. Compared with the expected parse tree generated
from a correct behavior (Fig. 26b), we can detect the missing
call sequences in the erroneous behavior, as shown in dashed
rectangles in Fig. 26b, which is the cause of the error,
although the partial structures in the parse tree (Fig. 26a) did
prove the existence of a partial substructure represented as
SUB 2, i.e., the “saving as” activity. The given scenario only
has the call sequence for “saving a view” but did not perform
the call sequence of “creating a view,” thus it does not satisfy
the specification. Therefore, a partial parse tree with a
parsing result “invalid graph” indicates that the given
program behavior does not satisfy the behavioral properties
defined in the graph grammar. A program bug, i.e., saving a
view before creating it, is thus identified. We can use this
approach to verify other specifications by encoding the
specification in a grammar and then parsing program
behaviors upon different test inputs.

7 RELATED WORK

There has been a considerable amount of research on visual
languages, program behavior discovery, and verification.
Various techniques and algorithms used include grammar
induction, machine learning, and trace summarization.

Several successful applications of visual language tech-
niques in software engineering [12], [13], [15] and other
areas [8] have been proposed by Costagliola et al. For
instance, they applied visual language parsing techniques
to the discovery of design patterns [13] in which design
patterns were specified as a set of productions. A successful
parsing on a given graphical representation of a program
indicates the existence of a design pattern in the program.
This work aims at recovering design patterns from static
program structures rather than execution traces.

When analyzing software behavior using grammar
induction, one can interpret events as tokens and event
streams as sentences in the language. The intuition behind a
grammar is that a parse tree forms a hierarchical structure,
where a child node represents a more detailed substructure
while a parent node is an abstract summarization of its
children contents. Such a hierarchical structure can reveal
hidden structures of program behavior at different levels. A
foundation work proposed by Cook and Wolf [17] uses
event data in the form of an event stream, collected from
software’s execution, to infer a formal behavioral model
from execution traces. They cast the behavior discovery
issue to the problem of constructing a grammar from given
example executions [17]. They also evaluated the strengths
and weakness of Ktail, Markov, and neural-network-based
discovery methods. A most recent work on grammar
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Fig. 23. Expected calling sequences.

Fig. 24. Inferred productions as specifications.
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induction by Walkinshaw et al. [46] applied the QSM
algorithm of Dupont et al. [19] to reverse engineer finite
state machine of program behavior from execution traces by
interactive grammar inference. They mapped the methods
in execution traces to six predefined functions to reduce the
traces. This means that there are six symbols in that
language. The QSM algorithm first selects and merges the
symbols and then generates a state machine. A pioneering
work on specification mining [1] generates specifications
about program behavior models by inferring probabilistic
finite state automata from program execution traces. The
transitions and system states in the automata represent
clustered events appearing more frequently. Based on the
fact that finite state machines essentially cannot specify
nested call structures such as recursive calls, Hughes and
Bultan [26] proposed an interface grammar for modular
software model checking, which allows developers to
specify nested call sequences using grammars. The main
factor that differentiates our work from Hughes and
Bultan’s work is that we define grammars based on actual
method invocations, and parse program execution traces.

Apart from grammar/automata approaches, there are
numerous proposals on discovering program scenarios using
other techniques. Frequent pattern mining is a commonly
used technique to analyze program behavior. Sartipi and
Safyallah [39] combined sequential pattern mining and
concept analysis to recover software structures from loop-
free execution traces. Patterns were mined and then used to
build a concept lattice. In our work, common patterns are
subgraphs representing method invocations between objects.
Furthermore, we built hierarchical lattice naturally during
the construction of grammars. Our lattice can express the
construction of program behavior for one scenario while their
work can help to identify the distribution of functions in the
lattice within the scenario. Other researchers have con-
structed metamodels to retrieve program behavior. Briand
et al. [7] proposed an instrumentation infrastructure based on
AspectJ for reverse engineering of UML sequence diagrams
from distributed software systems. They built a metamodel to
map traces to scenarios.

Researchers have also proposed to summarize program
behavior by pruning less significant program traces.
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Fig. 25. An abstracted call graph of the program behavior.
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Hamou-Lhadj and Lethbridge [23] proposed a framework
for trace compression without loss of information based on
data compression. They designed algorithms to first remove
contiguous redundancies. Then they cast the compression
problem to a common subexpression problem and removed
the remaining noncontinuous redundancies. In this way, a
procedure-call tree representing execution traces was
transformed into a directed acyclic graph (DAG), and
common substructures appear only once in the DAG. Their
work greatly reduced the volume of trace by removing
contiguous and noncontiguous redundancies. To support
program comprehension and scenario discovery, Hamou-
Lhadj and Lethbridge [24] developed a utilityhood metric
based on fan-in and fan-out for each routine, and removed
the routines considered as implementation details. The
rationale behind it is discriminating traces that implement
key system components from those implementing details.
Similarly, Zaidman et al. [50] applied a Web mining
technique to discover closely interacting classes that play
key roles in scenarios. Diep et al. [18] extended the concept
of redundancy by defining both reorderable and repeated
events as the sources of irrelevant trace variations. They
aimed at identifying distinct and valuable traces, and if the
reordering or repetition of events does not lead to different
fingerprints, they can be removed. The above summariza-
tion work can greatly remove less significant execution
traces, but does not aim at revealing the hierarchical
composition of program behavior.

8 CONCLUSION AND FUTURE WORK

This paper has presented a graph grammar approach to the
discovery and verification of a program’s actual behavior
using a semiautomatic visual language environment. We
represent program behavior as a call graph, and apply the
Spatial Graph Grammar formalism to discover and analyze

the behavior pattern within the call graph. An inferred
graph grammar and a syntactic parse tree visually represent
the hidden structures of the program behavior at different
abstraction levels. The substructures found by a grammar
induction algorithm are reusable software components.

VEGGIE is developed based on the Spatial Graph
Grammar with an efficient parser. The usage of grammar
induction can further improve the effectiveness since it
supports automatically deriving a graph grammar instead of
designing a graph grammar manually. The syntactic speci-
fications in a graph grammar enforce a sequence of method
invocations that satisfies certain functional or nonfunctional
properties in that system.

In VEGGIE, the parsing result which reveals a hierarchical
structure of program behavior is visualized as a tree. In the
case of a complex program, such a parsing tree could be very
complicated, which may prevent users from easily under-
standing the result. We will design a more effective
visualization of the parsing tree to display the hierarchical
composition of the graph. It is also desirable to provide users
the flexibility to customize the view. Based on the user’s
customization, the fundamental behavioral structures, which
a user is interested in, will be highlighted.

Currently, we use call graphs as the host graphs, and the
acceptable call sequence as specifications. Our approach is
not limited to discovering and analyzing the behavioral
patterns from call graphs. In fact, it can be extended to
analyzing software artifacts with a graphical representation,
such as flowchart, UML diagrams, dependency graphs, etc.

As future work, we will conduct more experiments on
real-world systems to investigate issues like scalability,
efficiency. A usability study on the use of VEGGIE is
important for the evaluation of our approach and is also
planned for our future study. Empirical evaluation will be
performed to involve experts and novices to test the
usefulness of the induced grammar. Supervised induction
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Fig. 26. Parsing results from erroneous and correct behavior. (a) A partial parse tree of the given behavior. (b) The expected parse tree of a correct
behavior.
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can be included in the subgraph mining algorithm of

VEGGIE, while currently we only enforce the temporal

constraint.
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[40] A. Schürr, A.J. Winter, and A. Zündorf, “The PROGRES
Approach: Language and Environment,” Handbook on Graph
Grammars and Computing by Graph Transformation: Applications,
Languages and Tools, H. Ehrig, G. Engels, H.J. Kreowski, and
G. Rozenberg, eds., pp. 487-550, World Scientific, 1999.

[41] I. Sommerville, Software Engineering, sixth ed. Addison-Wesley,
2000.

[42] T. Standish, “An Essay on Software Reuse,” IEEE Trans. Software
Eng., vol. 10, no. 5, pp. 494-497, Sept. 1984.

[43] Software Visualization: Programming as a Multimedia Experience,
J. Stasko, J. Domingue, M.H. Brown, and B.A. Price, eds. MIT
Press, 1998.

[44] M. Taghdiri, R. Seater, and D. Jackson, “Lightweight Extraction of
Syntactic Specifications,” Proc. 14th ACM SIGSOFT Symp. Founda-
tion of Software Eng., pp. 276-286, Nov. 2006.

[45] R.M.H. Ting and J. Bailey, “Mining Minimal Contrast Subgraph
Patterns,” Proc. Sixth SIAM Int’l Conf. Data Mining, pp. 638-642,
Apr. 2006.

[46] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. SalaHuddin,
“Reverse Engineering State Machines by Interactive Grammar
Inference,” Proc. 14th Working Conf. Reverse Eng., pp. 209-218, Oct.
2007.

[47] W. Weimer and G.C. Necula, “Mining Temporal Specifications for
Error Detection,” Proc. 11th Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems, pp. 461-476, Apr. 2005.

[48] T. Xie, J. Pei, and A.E. Hassan, “Mining Software Engineering
Data,” Proc. 29th Int’l Conf. Software Eng., pp.172-173, May 2007.

[49] X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern
Mining,” Proc. Int’l Conf. Data Mining, pp. 721-724, Dec. 2002.

[50] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens, “Applying
Webmining Techniques to Execution Traces to Support the
Program Comprehension Process,” Proc. Ninth European Conf.
Software Maintenance and Reeng., pp. 134-142, Mar. 2005.

[51] D.Q. Zhang, K. Zhang, and J. Cao, “A Context-Sensitive Graph
Grammar Formalism for the Specification of Visual Languages,”
J. Computer, vol. 44, no. 3, pp. 186-200, 2001.

[52] K. Zhang, D.Q. Zhang, and J. Cao, “Design, Construction, and
Application of a Generic Visual Language Generation Environ-
ment,” IEEE Trans. Software Eng., vol. 27, no. 4, pp. 289-307, Apr.
2001.

[53] X. Zhang and R. Gupta, “Matching Execution Histories of
Program Versions,” Proc. 10th European Software Eng. Conf. held
jointly with 13th ACM SIGSOFT Int’l Symp. Foundations of Software
Eng., pp. 197-206, Sept. 2005.

[54] C. Zhao, K. Ates, J. Kong, and K. Zhang, “Discovering Program’s
Behavioral Patterns by Inferring Graph-Grammars from Execu-
tion Traces,” Proc. 20th IEEE Int’l Conf. Tools with Artificial
Intelligence, pp. 395-402, Nov. 2008.

[55] C. Zhao and K. Zhang, “A Grammar-Based Reverse Engineering
Framework for Behavior Verification,” Proc. 11th IEEE High
Assurance Systems Eng. Symp., pp. 449-452, Dec. 2008.

[56] C. Zhao, K. Zhang, and Y. Lei, “Abstraction of Multiple
Executions of Object-Oriented Programs,” Proc. 24th Ann. ACM
Symp. Applied Computing, pp. 549-550, Mar. 2009.

[57] http://www.fujaba.de, 2010.
[58] http://graphml.graphdrawing.org/, 2010.
[59] http://www.jhotdraw.org/, 2010.
[60] http://user.cs.tu-berlin.de/~gragra/agg, 2010.

Chunying Zhao received the BE and ME
degrees in computer engineering from Nankai
University, Tianjin, China, in 2002 and 2005,
respectively. She is currently working toward the
PhD degree in the Department of Computer
Science at the University of Texas at Dallas. Her
research interests include software visualization,
program comprehension, reverse engineering,
and visual languages.

Jun Kong received the BS, MS, and PhD
degrees in computer science from Huazhong
University of Science and Technology, China,
in 1998, Shanghai Jiao Tong University, China,
in 2001, and the University of Texas at Dallas
in 2005, respectively. He is an assistant
professor of computer science at North Dakota
State University. His research and teaching
interests include software modeling and design,
pervasive computing, human-computer interac-

tion, and visual languages.

Kang Zhang received the BEng degree in
computer engineering from the University of
Electronic Science and Technology, China, in
1982, and the PhD degree from the University of
Brighton, United Kingdom, in 1990. He is a
professor of computer science at the University
of Texas at Dallas (UT-Dallas). Prior to joining
UT-Dallas in 2000, he held academic positions
in China, the United Kingdom, and Australia. His
current research interests include software

visualization, information visualization, visual programming and visual
languages, and Web engineering. He has authored and edited five
books, and published more than 180 papers in journals and conference
proceedings. He is on the editorial boards of the Journal of Visual
Languages and Computing and the International Journal of Software
Engineering and Knowledge Engineering. He is a senior member of the
IEEE. More information about his research can be found at
www.utdallas.edu/~kzhang.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

448 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 3, MAY/JUNE 2010

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 19,2010 at 19:36:29 UTC from IEEE Xplore.  Restrictions apply. 


