

ERELT: A Faster Alternative to the List-Based Interfaces
for Tree Exploration and Searching in Mobile Devices
Abhishek P. Chhetri

Computer Engineering Program
Erik Jonsson School of Engineering

and Computer Science
University of Texas at Dallas

Richardson, TX 65080-3021, USA
achhetri@utdallas.edu

Kang Zhang
School of Software Engineering
Tianjin University, Tianjin, China

Department of Computer Science
University of Texas at Dallas

Richardson, TX 65080-3021, USA
kzhang@utdallas.edu

Eakta Jain
Texas Instruments
Dallas TX, USA,

Department of Computer Science
University of Texas at Dallas

Richardson, TX 65080-3021, USA
eakta.jain@gmail.com

ABSTRACT
This paper presents ERELT (Enhanced Radial Edgeless Tree), a
tree visualization approach on modern mobile devices. ERELT is
designed to offer a clear visualization of any tree structure with
intuitive interaction. We are interested in both the observation and
navigation of such structures. Such visualization can assist users
in interacting with a hierarchical structure such as a media
collection, file system, etc.

In the ERELT visualization, a subset of the tree is displayed at a
time. The displayed tree size depends on the maximum number of
tree elements that can be put on the screen while maintaining
clarity. Users can quickly navigate to the hidden parts of the tree
through touch-based gestures. We conducted a user study to
evaluate this visualization for a music collection. Test results
show that this approach reduces the time and effort in navigating
tree structures for exploration and search tasks.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Graphical user interface (GUI), H.1.2
[User/Machine Systems]: Human factors, I.3.6 [Methodology
and Techniques]: Interaction Techniques

General Terms
Algorithms, Design, Human Factors

Keywords
Hierarchy Visualization, Mobile Devices, Navigation, RELT
(Radial Edgeless Tree), User Interface

1. INTRODUCTION
Current market trends show strong rise in smartphones and
tablets. Smartphones can now match the processing capabilities
of laptop/PCs from a few years ago with a fraction of the power
usage. With emails, contacts, documents, pictures and music all
stored in the cloud, one no longer needs to sit in front of a
personal computer to access data. There are, however, still many
challenges in mobile computing, such as smaller screens and lack

of separate input devices such as keyboard.

Although the screen resolution in mobile devices has been
increasing, in terms of screen size they are still much smaller than
laptops/PC monitors. This makes it difficult to present tabular and
hierarchical structures in mobile device when a large proportion
of application data are hierarchical in nature. For example, a file
system is a hierarchical structure, and a file list within a folder is
usually displayed in tabular format. A multimedia collection such
as music, pictures, videos, etc. may exist in hierarchical
structures, and is usually displayed in tabular form in
laptops/PCs.

Apart from the presentation issues, how we interact with these
data structures in mobile devices is also challenging. Modern
mobile devices are mostly equipped with touch screens, and soft
keyboards. Any keyboards or buttons displayed on screen take
space, which is already at a premium. Thus, it is necessary to
come up with intuitive methods of interaction without sacrificing
screen area for input. Most hierarchical structures are represented
by lists in mobile devices. Lists offer fast interaction but can only
display single level under one node at a time. This paper presents
a technique for visualizing and navigating hierarchical structures
on mobile devices that focuses on the two issues presented above.

1. Maximal utilization of screen area to display hierarchical
structures.

2. Intuitive interaction mechanism that allows rapid navigation
and exploration of the structures.

The research aims to utilize the screen estate to display maximum
possible information, without sacrificing clarity. The objective is
to use touch technology in most modern smartphones to
implement gesture based commands that are intuitive and mimic
real-world object interactions. The paper presents further
enhancement over our earlier prototype [1], and a user study
using media player application utilizing ERELT. Our user study
shows that ERELT supports faster exploration of tree structures
than traditional list based interfaces.

To date, considerable research has been done in the areas of
information visualization and human-computer interaction (HCI).
While many of these researches have produced a variety of
visualization techniques for hierarchical structures, little previous
work has focused on utilizing visualization as UI elements. Our
contribution is a hierarchy visualization technique for small
screens with a practical approach for user interaction. We
extensively evaluate the ease of user interaction with the
proposed ERELT visualization through a user study. Our results
show that it takes significantly less time and fewer number of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
VINCI '13, August 17 - 18 2013, Tianjin, China
Copyright 2013 ACM 978-1-4503-1988-1/13/08…$15.00.
http://dx.doi.org/10.1145/2493102.2493109

54

touches to perform exploration and search tasks. In some cases,
the number of touches is reduced by nearly 50%. This suggests
that ERELT is a more appropriate interface for users for
interacting with hierarchical data than, the traditional list
interface.

The next section reviews the previous research on the subject. We
discuss previous works on which our research is based including
our own, explore their shortcomings and propose improvements.
Section 3 describes our solution. Section 4 presents algorithms
and implementation details, followed by the evaluation of the
research through user tests. Finally, Section 5 presents conclusion
and ideas for future work.

2. RELATED WORK
Hierarchy visualization techniques can broadly be classified into
two types - implicit and explicit [2]. Explicit visualization
techniques display the edges between the connected vertices of
the hierarchy. In contrast, implicit techniques, also known as
enclosure techniques, show hierarchical relations through shape,
location and area of vertices [3]. The implicit techniques are
usually shape filling and better cover the display area than
explicit techniques [2].

One of the most commonly used implicit visualization techniques
is the Tree Map [4][5]. A Tree Map maximizes area utilization by
enclosing child nodes in their parent node. It is good at displaying
many leaf nodes in a small space but cannot clearly show parent-
child relationships. Thus, it is difficult to navigate between
different levels of a tree. Data Jewelry-Box [6] is a slight
variation on traditional Tree Maps. It attempts to better represent
intermediate nodes at the cost of maximum area usage. The
circular partition scheme [7] is another area division algorithm
where the thickness of division lines represents levels of the
nodes in the tree hierarchy.

The intermediate node relations are more effectively displayed in
implicit layout created through adjacency instead of enclosure
[3]. Sunburst [8] and Aggregate Tree Map [9] are examples of
this type of layout. Here, child nodes are drawn adjacent to one or
more sides of their parent node. In such a layout, the deeper the
tree level, more area it gets. This helps because trees usually have
more nodes at deeper levels. However, both Sunburst and
Aggregate Tree Map are independent of the shape of the display
area; thus, do not fully utilize the screen space. For example, a
Sunburst layout drawn at the center of a rectangular screen of a
smartphone leaves large spaces at the two ends while fully
occupying shorter width of the screen. Also, some of these and
other radial division algorithms, such as pitTree [10], are
designed for data visualization without many provisions for user
interaction for exploration.

Radial Edgeless Tree (RELT) [11] [12] [13] is another adjacency-
implicit layout technique. It combines the best features of Tree
Map and Sunburst. Like Tree Map, RELT divides the given
display area into several vertices to maximize the area utilization,
and like Sunburst, it allocates area for intermediate nodes.

However, our tests reveal some particular cases where RELT did
not produce good visualization output. For example, if the second
level of the tree has only one or two child nodes then the area of
the root node would totally collapse or be very small. Since the
shape of any node depends on radial lines dividing area between
its children, RELT sometimes cannot produce proper-shaped
nodes. Shape inconsistency in RELT forces the node labels to fall
in different directions hindering readability.

We previously built and explored a prototype ERELT (Enhanced
RELT) system [1] based on RELT. In ERELT the node shape
depends on a set of proportionate rectangles and radial division
lines, to ascertain that the node shapes are always in a proper
form. This allows the node labels to be written in a consistent
manner yielding high readability.

Beside visualization layout choices, user interactions and
implementation issues should also be considered. When designing
InterRing [14], authors had attempted to establish a set of
functionality that a good hierarchy visualization and navigation
system should provide. For example, users should be able to
select any particular node and interact with it. Different nodes or
levels should disappear or reappear based on use to preserve
memory and screen area. There should be a mechanism for users
to access hidden nodes by panning or rotating the tree view.
Karstens, et al. [15] proposed another set of considerations for
tree visualization aiming at effective implementation. They
suggest limiting the number of tree elements drawn on the screen
at a time. Visualization in 2D graphics is much faster than in 3D.
Also the paper encourages the use of simple graphical primitives
like straight lines instead of curves.

Additional design elements such as animation is also known to
drastically change the user experience [16]. Correct use of
animation can make GUI more intuitive and the delay in
application response appears shorter.

Based on our experience and user feedback from the initial
prototype, we made several improvements to RELT. These
changes affected both the performance and presentation. We
added color effects to indicate different node groups and to
provide context when users scroll through various nodes in the
tree. Visual effects were added to make tree elements appear like
interactive buttons rather than plain drawings on the screen. To
account for the performance cost of enhanced graphics, the
visualization algorithm was completely re-designed to make it
much faster. These changes are discussed in the next section.

Figure 1: Sample Music Library Segment (Language, Genre

& Artist Levels)

3. DESIGN
The main idea behind ERELT is to display a hierarchical
structure on a small screen where users can view multiple levels
of hierarchy in a single display and interact with it. This
technique divides the screen proportionally into various levels.
These divisions form multiple levels of rectangles one inside
another. The innermost rectangle contains the root. The area
between the innermost rectangle and the next rectangle contains
the level under root, and so on. This implies that the deeper levels
of the tree, which have more number of nodes, are represented by
larger rectangles. Radial lines starting at root separate the nodes
within a level. The space between two adjacent radial lines gets
wider farther from the root, which is ideal because there are

55

usually more nodes at levels farther away from the root. Figure 1
shows a sample music library and Figure 2 shows its ERELT
representation.

Figure 2: ERELT Visualization of the Structure in Figure 1

Unlike our previous prototype [1], the root has been fixed at the
top-left corner of the screen. Although it is more intuitive to place
the root at the center of the layout, our tests showed that placing
root at the center made the central region more crowded because
most smartphones have much larger length than width as drawn
in ERELT prototype [1] in Figure 3.

Figure 3: Center-rooted Layout in An Earlier Prototype: Less

Space for Labeling in Mid-Area

Having the root at the center and nodes populating at all sides of
the root creates wider and shorter nodes. Our labeling scheme,
however, works well with narrower and longer nodes. Though we
adopt corner-rooted layout for this user study, we can easily
generate center-rooted layout, which is more intuitive and better
suited for wider screens, e.g. tablets and PCs.

3.1 Layout
The display area is divided into various polygons, each
representing a node in the hierarchy. Two important
considerations are made:

 The division should consider the size and the shape of the
display area to maximize the space utilization.

 The division should distribute the area such that each node is
given a minimum space to fill the label.

Before starting the division algorithm, a setup process is
performed:

void setWeight (Node node) {

 if (node is Leaf_Node) {

 node.weight = 1;
 } else {

 for each (Node n in node.childNodes){
 setWeight (n);
 node.weight += n.weight;
} } }

Setting the leaf nodes weight based on any other property will
result in a display tree with area distribution that reflects that
property.

We start by selecting the top-left corner as the center for the
visualization tree. This choice was arbitrarily made for the current
user study and is not essential for the algorithm to work. The
algorithm works for the root at any location in the display area.

We also start with H virtual rectangles, where H is the total height
of the tree measured by number of levels. For large trees, H can
be limited to a maximum threshold value. Handling large trees
will be discussed in details later. These rectangles are "virtual"
because they are not yet drawn onto the screen but only exist as
variables in the algorithm. This definition of “virtual” will apply
to any lines or rectangles. The H virtual rectangles are created in
the following steps:

1. Connect four corners of the display area to the visualization
center by four virtual lines. These four lines will be referred
to as “sector lines”.

2. Divide the four lines into H equal segments (one for each
level).

3. Form virtual rectangles by connecting four division points at
each level.

Each virtual rectangle has the same aspect ratio as that of the
display area. It represents one level of the tree, with the size
proportional to the level of the tree. The four sections of the
display area divided in Step 1 by the sector lines will be referred
to as sectors. Virtual rectangles for corner-rooted layout for a tree
of 4 levels are shown in Figure 4. This layout helps utilize the
entire screen space.

Figure 4: Virtual Rectangles for Corner-Rooted Layout for A

Tree of Four Levels

56

For any given node, the division algorithm listed below calculates
area and draws each node as a polygonal button. Drawing the
nodes onto the screen is handled by an algorithm where the node
area is divided into smaller sections by radial lines to represent
child nodes. This algorithm runs recursively for each node and its
child nodes until the entire tree is plotted. The following symbols
are used in the algorithm:

N = given node

Nparent = parent of the given node

RectL = virtual rectangle at level L

RectL+1 = virtual rectangle at level L+1

Linestart = radial line forming the starting boundary of N

Lineend = radial line forming the ending boundary of N

WN = weight of N

Wparent = weight of Nparent

WcumulativeN = cumulative weight of all the sibling nodes
processed before N, under Nparent

The following function is called to recursively draw every node:
void drawNode (Node N) {
 if (N is Root_Node){
 // Innermost rectangle as the root
 plotNodeOnAreaEnclosedByShapes (Rect1);
 } else {
 Get WN, Wparent, WcumulativeN;
 // Divide the area under Nparent radially into Wparent parts with
 // equal areas, and get dividing lines
 Lines[] = divideArea (Nparent, Wparent);
 // Select the starting and ending radial lines for current node
 // based on cumulative weight of previous siblings and its own
 // weight
 Linestart = Lines[WcumulativeN];
 Lineend = Lines[WcumulativeN + WN];
 // Draw the polygonal node as the area between RectL, RectL+1,
 // Linestart & Lineend
 plotNodeOnAreaEnclosedByShapes (RectL, RectL+1, Linestart,
Lineend);
 }
}

3.2 Scalability
In theory the layout algorithm works for a tree of any size.
However, for applications that require labels on all the nodes,
drawing a large number of nodes in a single screen makes labels
unreadable and the visualization loses clarity. To handle such
situations the algorithm enforces some limitations.

1. Level threshold is the total number of levels displayed on the
screen at a time. For a normal sized smartphone screen (between
four and five inches) we found four to be the proper level
threshold. For a smartphone screen less than four inches the
threshold value of three is better for readability. Larger devices
(5-6 inches) can properly display trees with level threshold of five
or six.

2. Branching threshold is the total number of child nodes
displayed under each parent at a time. The threshold value of
three was found to be good for general cases. For smaller trees
however, the value of four works just as well.

After the two thresholds are set, the tree structure is pruned using
these values and only the sub-tree is included each time it is
displayed. The remaining tree is considered hidden. To display
any part of the tree, a node in that part is selected as the root and
the corresponding sub-tree is displayed.

Wherever the branching threshold is applied, arrow indicators are
used to show sibling nodes hidden to the left or right of the
displayed nodes, as shown in Figure 5.

Figure 5: The Arrow Markers Indicating Direction of Nodes

Hidden due to Branching Threshold

3.3 Coloring
Since the number of nodes increases away from the root, it
becomes difficult to distinguish two nodes of different parents
and two nodes of the same parent at deeper levels. To avoid
confusion and provide a clear structure at the first glance, the
algorithm uses a dynamic coloring scheme that allocates different
colors to the nodes based on their "nearness" to each other. Here,
nearness between two nodes at the same level refers to how far
the tree needs to be traversed in the direction of the root before
finding a common ancestor node for the two nodes. If there are
three nodes side by side with two of the nodes sharing the same
parent, then the two sibling nodes have less color variation than
the third node.

We use the HSL color space to distribute colors to the nodes.
HSL has three components - Hue (color), Saturation (Intensity of
color), and Lightness (Amount of black or white in the color).
The algorithm assigns the nodes with the same color as their
parent node and then changes hue, saturation or lightness based
on level and position.

Coloring Algorithm:

setColor (Node n) {
 if (n is Root_Node) {
 // set a predefined color for root

 n.color = HSL (h, s, l);
 else if (n.level == Leaf_Node)
 n.color = n.parent.color;
 else if (n.level == Level_2)
 n.color = HSL (hparent+N*∆h, sparent, lparent);
 else if (n.level == Level_3)

57

 n.color = HSL (hparent, sparent+N*∆s, lparent);
 else if (n.level == Level_4)
 n.color = HSL (hparent, sparent, lparent+N*∆l);
}

In the coloring algorithm, changing colors of leaf nodes of the
same parent is unnecessary. A leaf node inherits its parent node’s
color so it will always be different from the leaf nodes under
other nodes. The algorithm is designed to display for up to five
levels. As discussed above, four levels are appropriate for
displaying readable labels.

3.4 Labeling
The ERELT layout is designed with narrow and long nodes. This
allows a node to be labeled along the length of the node. The
consistent label style makes it easy for users to scan through the
tree. For each node the line bisecting the two radial lines forming
the node is calculated. The label is placed along the bisecting
radial line between the two neighboring rectangles forming the
node.

3.5 Navigation
The algorithm handles large trees by only displaying a sub-tree to
maintain clarity and readability. Thus it is essential to have an
effective interaction mechanism that allows users to navigate the
structure and display the desired nodes. The design supports
touch-screen interactions available on most smartphones, with
intuitive gestures making the response of the visualization and
interactions instantaneous.

The navigational gestures/actions from users are interpreted as
Tap or Scroll gestures. Tap actions allow users to navigate to the
tree levels hidden in the current view due to the level threshold.
Scrolling gestures allow users to navigate to the sibling nodes
hidden in the current view due to the branching threshold.

Figure 6: Left/Right Scrolling

3.5.1 Tap
There are three types of tapping interactions:

1. Whenever users tap on a node in the tree, that node becomes
the new root of the tree and a new layout will be drawn.

2. Tapping within the root node triggers an "Up" command. If the
current root is not the root of the main tree then tapping on it sets
the parent of the current root as the new root and the new tree
layout is drawn.

3. Tapping on the back button of the device triggers a "Back"
command. ERELT maintains a limited history of user
interactions. The back command loads the previous segment of
tree into the display. This allows users to quickly move into and
out of several nodes, multiple levels down the tree.

3.5.2 Scroll (Drag)
Scrolling gestures illustrated in Figure 6 occur when users touch
the screen with one finger and drag the finger across the radial
lines to a different point in the display, before raising the finger
from the screen. This gesture starts at one of the nodes whose
sibling nodes have been hidden due to the branching threshold.
The direction of the drag then moves to the opposite direction of
the hidden nodes to simulate the action of dragging the nodes to
give room to display the hidden nodes. This gesture results in
left/right scrolling of the nodes under the initial point of touch.

3.6 Complexity Analysis
Computation time for ERELT does not depend on the size of the
tree because the algorithm only displays a sub-tree at a time.
Thus, the level threshold and the branching threshold values
determine the time complexity.

For a tree with N nodes,
 Level threshold = d

 Branching threshold = b

 Maximum nodes to be drawn = bd
-1

Thus,
 Computational complexity = O(b

d
)

For a given device, b and d do not depend on the size of the tree
and can be set as constants, therefore,
 Computational complexity = O(1)

3.6.1 Comparison between ERELT and RELT
Since RELT [11] [12] [13] only describes method to draw the
complete tree, following assumptions are made for comparison:

1. Level threshold is larger than the tree height
2. Branching threshold is larger than the node with the largest

number of child nodes.
The RELT algorithm operates by keeping one radial line around a
node fixed and moving the other radial line along the display area
border, one pixel at a time. At each step, the area within the two
radial lines is calculated. The process continues until the area
obtained is equal to the required area for the node. The number of
calculations to obtain the area for a node depends on number of
pixels traversed along the border. Thus, even when the tree size
remains constant, the computation cost increases with the
increase in the size of the display.

The ERELT algorithm computes the display area by calculating
the required angle at the center between the two radial lines.
Given the required area value, this angle can be directly
calculated using trigonometric functions. Thus, the computation
does not depend on the display size, but only on the number of
nodes to be displayed.

For a clear and readable layout the number of nodes to be
displayed at any level must be smaller than the pixels along the
border. Thus the computation in ERELT is much cheaper than in
RELT for displaying trees of the same size.

58

3.7 Implementation
ERELT was implemented and tested on an Android platform. It
has been tested in Froyo (2.2), Gingerbread (2.3), Ice-Cream
Sandwich (4.0) and Jelly-Bean (4.1) versions of Android OS. The
application was written in Java to run in Dalvik VM in Android.
We used Eclipse IDE with Android SDK for development. It has
been tested to run in Android simulator (Android 2.2, 2.3.3, 4.0
and 4.1), Motorola DroidX (Android 2.3.3) and Samsung GS3
(Android 4.1) during the development.

For prototyping and developer testing, ERELT was built into two
different Android applications: A File-system Explorer and a
Media Player. These test applications also had traditional list
based layout for comparison with the tree layout. An ERELT
application uses Android 2D graphics functions to draw tree
layout and animations onto a bitmap object. This image is then
displayed on an Image View controller and presented to the user.

4. EVALUATION
4.1 User Study
In order to evaluate whether ERELT provides an efficient
interface for navigation, a user study was performed to compare it
against a traditional list based interface for accessing hierarchical
structures. The objective of the test was to compare ERELT and
List view in terms of effort and time taken to perform a set of
tasks.

In the usability study of an interface, the physical effort can be
estimated by the number of physical interactions required [17].
Thus, the number of touches required to perform any task was
selected as the metric for the measurement of effort [18]. In
addition, mental or cognitive effort also affects the user
experience [17]. However, the measurement of cognitive effort
requires complex supervised techniques, such as eye-tracking,
which is beyond the scope of this study.

4.2 Setup
A media player application was chosen for user testing, where the
media library has a hierarchical structure, composed of various
levels such as language, genre, artist, albums and tracks. We
chose this application as a test case because 63% of smartphone
users use mobile phones as a music player [19]. This was the fifth
highest use after GPS/navigation, social media, local search and
news reading.

An Android application was created that allows users to navigate
the music library in ERELT interface to find the track they want
to listen to. Figure 8 shows the media control interface of the
application. Pressing the “Add Song” button in the control
interface opens up the music library in ERELT layout. The level
threshold of four and branching threshold of three were chosen.
“Up” and “Back” gestures were disabled in the user study to
reduce the complexity of the learning curve for new users. Users
can click on the root node for “Up” functionality, and use
Android’s “Back” button for “Back” functionality.

The application also includes an option for navigating the library
through a list-based interface for comparison. The application
stores logs of user interaction events with timestamps. This log
can be manually or automatically uploaded to a data collection
server. Each user enters an ID into the application, which helps to
organize the log files in the data server.

For the study to be meaningful, all the users perform the same
test. For this purpose, instead of making the application pull up

media files from the user’s individual smartphone, the application
was created with built-in music library of 8 languages, 22 genre,
38 artists, 49 albums and 138 tracks. Including the complete
media files with this library structure would have made the
application huge in size. Thus, we only included short (1 minute)
snippets of about 24 tracks, and associated all of 138 tracks in the
library listing with one of these 24 tracks.

Figure 8: Media Control Interface of the Media Player

Application

The music library was based on a collection of music pieces from
the real international artists providing their music freely over the
Internet. The advantage of using independent international artists
from various parts of the world was that there was a very little
chance that users were already familiar with the entire library
before the test. This initial library was then altered to change the
structure and names of various elements so that it would be better
suited for creating a variety of tests. For example, some of
branches were removed from one place and added to another to
create sections of the tree that were much denser or sparser than
the rest of the tree. Another reason for this renaming and
restructuring was to create multiple segments of the tree that had
similar structures but differently named elements. This allowed us
to create comparable tests for List view and Tree view (using
ERELT) that looked different on names but similar on the
structure.

4.3 Test Design
The user task consisted of a paper based test and application test,
consisting of four components:

4.3.1 Test for Basic Understanding:
The first part of the test provided users (called subjects from here
on) with a simple ERELT diagram containing four levels and
asked subjects to answer five basic questions about it. The
purpose here was to know whether or not they had basic
understanding of the ERELT layout before starting on application
test. If a subject could not complete this part correctly, it meant
he/she did not understand the ERELT structure, and the test data
needed to be ignored.

59

4.3.2 Familiarization with the Music Library:
The second part of the test asked subjects to answer five
questions about the music library. This would require subjects to
browse the music library in the test application and perform tasks,
such as counting albums with certain names, albums under certain
artists, languages with certain genre, etc. This part of test was not
timed and only analyzed for general correctness. The purpose of
this test was to familiarize the subjects with the music library
before performing the timed-tasks. We felt this step was
necessary because the subjects are somewhat familiar with of
most of the structures in their smartphones.

4.3.3 Timed Tasks:
The third part of the test asked subjects to find and add various
tracks to the media player playlist. They had six tasks to perform
in this section. In Tasks 1 & 2, the entire path from the root to the
track was given. Tasks 3, 4 and 5 involved searching various
parts of the tree for a certain genre or album and adding multiple
tracks to the playlist. Finally, Task 6 involved adding multiple
tracks from given path in the library. The time and the number of
touches required to complete these tasks were stored in the log
files. A list of timed tasks is shown below.

Timed Tasks Sets:

Task Set A

1. Add the track “Etelemelo” from the album “Nzambe” by
the artist “Jose Konda” in the “Afrobeat” genre of the
“African” music.

2. Add the track “Paga” from the album “Elegante” by the
artist “Konsum” in the “Electro” genre of the “Spanish”
music.

3. Add any two tracks from the “Electro” genre (can be from
the same artist or album).

4. Add any two tracks from the “Northern” genre of any two
different languages.

5. Add three tracks from three different “Singles” albums.
6. Add all tracks from the “Rock” genre of the “Spanish”

language.

Task Set B

1. Add the track “Digitale” from the album “Pas de tigre” by
the artist “Divans” in the “Afrobeat” genre of the “African”
music.

2. Add the track “Radium” from the album “Elegante” by the
artist “Konsum” in the “Electro” genre of the “Spanish”
music.

3. Add any two tracks from the “Dance” genre (can be from
the same artist or album).

4. Add any two tracks from the “Folk” genre of any two
different languages.

5. Add three tracks from three different “Live” albums.
6. Add all tracks from the “Dance” genre of the “Latin”

language.

4.3.4 Feedback:
The final part of the test was a feedback survey. The feedback
section asked subjects their opinion on quickness of using
ERELT vs. traditional list layout. In addition, we also collected
their input on UI mechanism, missing features,
change/enhancement requests, etc.

The aforementioned second [4.3.2] and the third [4.3.3] parts of
the tests had to be done in application in both list-based layout

and tree-based layout. All 11 tasks (5 from the second part [4.3.2]
and 6 from the third part [4.3.3]) were designed in pairs, one for
list and one for tree. These were designed in such a way that they
looked different based on names of elements in the tasks but
involved navigating similar structures in the tree. This variation
allowed the same subject to take two tests without learning
effects. To remove bias, half of the subjects were asked to
perform the list view test first followed by the tree view test, and
the other half had to perform the tree view test first followed by
the list view test.

4.4 User Profile
Most subjects participated in the study were volunteers from a
population of undergraduate and graduate students in the
Computer Science, and the Arts and Technology programs at the
University of Texas at Dallas, USA and School of Software
Engineering at Tianjin University in China, between the ages of
18-30. About three-fourth of the subjects taking the test were
completely new to the ERELT interface. The remaining quarter
were familiar with the visualization technique but had not used it.
Almost all the subjects used their own Android smartphones for
the test, thus, were assumed to be familiar with the Android OS
and the device.

4.5 Results
A total of 38 subjects participated in the test as evaluation, out of
which 26 results were selected. 12 subjects results were rejected
for one or more of the following reasons: incomplete test,
incorrect actions, and distracted during test. A subject was
considered distracted if he/she took long pauses when performing
the tasks. This was measured by checking time spent in the
middle of a task without any action. The mean time between
actions during the whole test was measured to be approximately 2
and 3.5 seconds for list and tree layouts respectively. A subject
who spent more than 20 seconds on the same screen without any
action was removed from the analysis in the final result.

Figure 9: Time Comparison between the First and the Second

Testers Showed No Appreciable Difference
(X-Axis: Tasks, Y-Axis: Time in Seconds)

Out of the 26 valid test data, 12 subjects took list first test and 14
took tree first test. Comparing the average time and the average
number of touches for the same tests done first and second did
not, however, yield any significant result showing that second test
has any advantage over the first. This check verifies that the
counterbalancing was effective and the subjects who did the tree
layout test after the list layout test did not complete it faster or
with fewer touches than those who did the tree layout test before
the list layout test. The comparisons in time and the number of
touches are shown in Figures 9 and 10 respectively.

60

Figure 10: Touches Comparison between the First and the

Second Testers Showed No Appreciable Difference
(X-Axis: Tasks, Y-Axis: Number of Touches)

Comparing the average number of touches (actions) required to
complete each of six different tasks between list and tree showed
significant improvement in ERELT based layout. The mean
values of number of touches and time for each task are shown in
Table 1. In all but Task 2, there was a reduction of about 40% or
higher in number of touches required when subjects switched
from list based interface to ERELT interface. This anomalous
result for Task 2 is discussed in Section 4.7. The comparison data
is shown in Figure 11.

Figure 11: Touch Count Comparison: Percentage Values

Show ERELT Improvement Over List Layout

Comparing the average time taken by subjects to complete each
of the six tasks in list and tree showed two different results for
two different types of tasks (direct path and exploratory). This is
discussed in detail in Section 4.7. The comparison data is shown
in Figure 12.

Figure 12: Time Comparison: Percentage Values Show

ERELT Improvement Over List Layout

4.6 T-Test
We ran two-tailed paired T-tests to measure the significance of
these results. The T-test results are shown in table below.

Table 1: Mean Time and Touches for Each Task with Two-
Tailed T-Test Results

Task Type
Task

Tree

Mean

List

Mean
p-value

Statistical

Significance

Touch Comparison

Direct Path

Task
1 3.269 5.385 p < 0.05 Yes

Task
2 8.885 6.769 p < 0.05 Yes

Exploration
& Search

Task
3 7.230 13.615 p < 0.05 Yes

Task
4 7.0769 16.923 p < 0.05 Yes

Task
5 29.038 68.846 p < 0.05 Yes

Hybrid Task
6 8.115 14 p < 0.05 Yes

Time Comparison (seconds)

Direct Path

Task
1 16.385 15.885

p =
0.4040 >

0.05
No

Task
2 35.615 21.923 p < 0.05 Yes

Exploration
& Search

Task
3 21.308 26.808 p < 0.05 Yes

Task
4 22 26.038

p =
0.0658 >

0.05
No

Task
5 64.192 91 p < 0.05 Yes

Hybrid Task
6 19.115 19.885

p =
0.3930 >

0.05
No

The difference in touch count is statistically significant for all the
tasks. In time comparison, however, the differences in Task 1,
Task 4 and Task 6 are insignificant.

4.7 Interpretation
The average touches and time spent can be interpreted on the
basis of tasks in following ways:

1. Tasks 1 and 2 (Direct path task):

In these tasks, the subjects were given the full paths to their
targets. Here, ERELT did not have any advantage in time because
subjects could just as quickly select paths to their targets in the
list. Using ERELT in Task 1 gave subjects a significant
advantage in the number of touches because the path was partially
visible in the first screen. However, in Task 2, the path to the
target was initially hidden due to the branching threshold. Thus
the subjects had to scroll to the hidden nodes before a direct path
to the target was found and therefore required more touches. Task
2 proved to be the worst in both time and touches for ERELT.

2. Tasks 3, 4 and 5 (Exploration/Search tasks):

The subjects were asked to search for tracks in certain genres,
albums, etc, in Tasks 2,4 and 5. ERELT interface was much faster
in these tasks because it allowed subjects to quickly move in and

61

out of various depths of the media library tree. ERELT also
displays multiple branches at the same time thus making it easy to
search for a tree node. ERELT showed more than 45%
improvement in number of touches and 15-30% improvement in
time taken to complete these tasks, over the list layout. However,
the 15% time difference in Task 4 was found to be statistically
insignificant from the T-test. Unlike Task 3, Task 4 requires
subjects to navigate back and forth between multiple branches.
Thus, this caused large variance in the subject’s performance
affecting statistical significance.

3. Task 6 (Hybrid):

This task asked subjects to add multiple tracks from a certain
genre of a certain language. The first part of the task for the
subjects to reach the genre node is similar to direct path tasks.
The second part of the task for the subjects to reach various
artist/albums in the genre node to add various tracks is similar to
exploration task. Since ERELT allows subjects to jump multiple
levels up and down, the number of touches was much fewer (10.6
touches per user per task versus 20.9 touches for the list view).
Since list view interfaces are advantageous when the path is
knows, (especially due to subjects’ familiarity with List views),
ERELT did not show significant improvement in time.

On average the result shows that ERELT has definite advantage
over list-based interfaces in most cases. The fewer touches mean
less physical effort from the subjects [18]. Except in the cases of
direct and defined path, the ERELT gives comparable or better
time performance. We conclude that the ERELT provides a better
user interface for exploration/searching tasks. Qualitatively, about
85% of the subjects said they felt tree layout was quicker to work
with, as shown in Figure 13.

Figure 13: Most Subjects Said Using ERELT Felt Faster

5. CONCLUSIONS
The paper has presented ERELT, a tree visualization technique,
designed for displaying and navigating small screens on
smartphones. ERELT not only focuses on visual presentation of
hierarchical structures, but also contributes on exploration and
navigation of such structures through intuitive user interactions,
unlike most other tree visualization techniques. The paper
addresses two main issues, optimal space usage and rapid
navigation of hierarchical structures. Through a user study we
have found ERELT to be a faster and less tiring alternative to the
traditional list based interface for exploring hierarchical
information.

Our immediate future work is to further improve the design based
on the feedback from the user study. We will experiment with
motion-based gestures for user interactions. Another direction is

to explore the capability and usage of ERELT in larger screens
such as desktop and laptop PCs, and for visualizing patterns and
trends in big data applications.

6. REFERENCES
[1] A. P. Chhetri and K. Zhang, "Modified RELT for Display

and Navigation of Large Hierarchy on Handheld Touch-
Screen Devices," in IEEE/ACIS 11th International

Conference on Computer, Shanghai, China, 2012.

[2] H.-J. Schulz and H. Schumann, "Visualizing Graphs - A
Generalized View," Information Visualization, vol. 9, no. 2,
pp. 115-140, 2010.

[3] H.-J. Schulz, S. Hadlak and H. Schumann, "The Design
Space of Implicit Hierarchy Visualization: A Survey," IEEE

Transcations on Visualization and Computer Graphics, vol.
17, no. 4, pp. 393-411, April 2011.

[4] B. Johnson and B. Shneiderman, "Tree-Maps: A Space-
Filling Approach to the Visualization of Hierarchical
Information Structures," Proc. IEEE Conf. Visualization

(Visualization ’91), pp. 284-291, 1991.

[5] B. Shneiderman, "Tree Visualization with Tree-Maps: 2-d
SpaceFilling Approach," ACM Trans. Graphics, vol. 11, no.
1, pp. 92-99, 1992.

[6] Y. Kajinaga, T. Itoh, Y. Ikehata and Y. Yamaguchi, "Data
Jewelry-Box: A Graphics Showcase for Large-Scale
Hierarchical Data Visualization," Technical Report RT0427,
IBM Research, 2002.

[7] K. Onak and A. Sidiropoulos, "Circular Partitions with
Applications to Visualization and Embeddings," in
Proceedings of the twenty-fourth annual symposium on

Computational geometry (SCG '08), New York, 2008.

[8] J. Stasko and E. Zhang, "Focus+Context Display and
Navigation Techniques for Enhancing Radial, Space-Filling
Hierarchy Visualizations," Proc. IEEE Symp. Information

Visualization (InfoVis ’00), pp. 57-65, 2000.

[9] M. Chuah, "Dynamic Aggregation with Circular Visual
Designs," Proc. IEEE Symp. Information Visualization

(InfoVis ’98), pp. 35-43, 1998.

[10] A. Dix, R. Beale and A. Wood, "Architectures to make
Simple Visualisations using Simple Systems," in AVI '00

Proceedings of the working conference on Advanced visual

interfaces, 2000.

[11] J. Hao, K. Zhang and M. L. Huang, "RELT—Visualizing
Trees on Mobile Devices," Proc. Int’l Conf. Visual

Information Systems (VISUAL ’07), pp. 344-357, 2007.

[12] J. Hao, C. A. Gabrysch, C. Zhao, Q. Zhu and K. Zhang,
"Visualizing and Navigating Hierarchical Information on
Mobile User Interfaces," International Journal of Advanced

Intelligence, vol. 2, no. 1, pp. 81-103, July, 2010.

62

[13] J. Hao, K. Zhang and C. A. Gabrysch, "Managing
Hierarchical Information on Small Screens," Proc. Joint

Int’l Conf. Advances in Data and Web Management

(APWeb/WAIM ’09), pp. 429-441, 2009.

[14] J. Yang, M. O. Ward and E. A. Rundensteiner, "InterRing:
An Interactive Tool for Visually Navigating and
Manipulating Hierarchical Structures," IEEE Symposium on

Information Visualization, 2002. INFOVIS 2002., pp. 77-84,
2002.

[15] B. Karstens, M. Kreuseler and H. Schumann, "Visualization
of Complex Structures on Mobile Handhelds," in In

Proceedings of International Workshop on Mobile

Computing, 2003.

[16] C. Gonzalez, "Does Animation in User Interfaces Improve
Decision Making?," in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI

'96), New York, 1996.

[17] C. J. Mueller, D. E. Tamir, O. V. Komogortsev and L.
Feldman, "Using Designer's Effort for User Interface
Evaluation," in IEEE International Conference on Systems,

Man and Cybernetics, 2009.

[18] L. Feldman, C. J. Mueller, D. Tamir and O. V.
Komogortsev, "Usability Testing with Total-Effort
Metrics," in 3rd International Symposium on Empirical

Software Engineering and Measurement, 15-16 Oct. 2009.

[19] Adobe, "Adobe Mobile Experience Survey: What Users
Want from Media, Finance, Travel & Shopping," October
2010. [Online].

63

