
Generation of Miro’s Surrealism

Lu Xiong
School of Computer Software

Tianjin Univers ity
No.135, Yag uan Rd, Tianjin 30000, China

xionglu@tju.edu.cn

Kang Zhang
Depa rtment of Computer Scien ce
The Univers ity of Texas at Dallas

800 W. Campbell Rd, Richardson, TX 75080, USA
kzhang@utdallas .edu

ABSTRACT
In this paper, we present a programmed experiment and the results
on automatic generation of Joan Miro style of surrealism.
Combining the artist’s aesthetic theory with the authors’
own understanding, the paper analyzes the characteristics of
Miro’s work and proposes a process modeling approach that
consists of four steps: structured drawing, adaptive coloring, space
filling and noise injection. The generation process is described in
details and sample generated images styled on Miro’s paintings
are also demonstrated and discussed. By extracting and coding
pictorial elements in paintings of Miro, different styled images
could be generated under different sets of parameters.

CCS Concepts
• Applied computing~Arts and humanities • Applied
computing~Fine arts

Keywords
Surrealistic paintings; Joan Miro; Process modeling; Generative
art

1. INTRODUCTION
Joan Miro was a sculptor, ceramicist and one of the greatest
surrealist artists in the 20th century. The formation of Miro style
is closely related to his life experience and his strong sensibility to
nature. He conveys the most powerful feelings of human beings
with symbolism and a quiet natural artistic language. The
symbolic and poetic paintings that came out in his thirties were
eventually dubbed Miro’s dream paintings [26]. In his middle age,
he tried to break through the rules of reason and logic, liberate the
mind of unconscious and non-logical, and probe the mystery of
the invisible realms and the visual world. Miro abstracted form
and structure as a point, a line, and a burst of color. Those
paintings are childlike and enjoyable, his constellations [10]
contributed to the emergence of American abstract expressionist
painters.

With the rapid advances of modern technology and particularly
digital display, digital art becomes more expressive than
traditional visual art. The development of computer graphics [16]
and information visualization enables computer-generated images
with aesthetic significance. Modern computer technology can
generate aesthetic forms of visual art [12][19][30]. Future design
of information visualization would also benefit from analysis of
aesthetics [29].

This paper reports a process modeling approach to automatic
generation of Miro style of surrealistic paintings using the
Processing programming language [21]. Basic graphics
algorithms and simple rendering techniques for generative art
could be easily programmed using Processing [20].

The rest of this paper is organized as follows. Section 2 gives a
brief review of related work. Section 3 analyzes Miro’s style
based on his art theory. The process modeling approach is
discussed in details in Section 4. Section 5 describes the
implementation of generating surrealistic paintings, including
algorithm design and detailed steps, together with the generation
results. Finally, Section 6 concludes the paper.

2. RELATED WORK
Generative art has long been discussed and attempted by
computer graphics researchers. Haeberli [9] has created abstract
images using an ordered collection of brush strokes, by
controlling the color, shape, size, and orientation of individual
brush strokes. Impressionistic paintings of computer generated or
photographic images can easily be created, and now the idea has
been made as apps.

Zhao and Zhu [33] presented an interactive abstract painting
system named Sisley which works upon the psychological
principle. Given an input photograph, Sisley decomposes it into a
hierarchy (effectively tree) of its constituent image components
with interactive guidance from the user, then automatically
generates corresponding abstract painting images, with increased
ambiguities of both the scene and individual objects at desired
levels. More recently, computer vision techniques with neural
networks have been used to transform input images to specific
styles of paintings [7]. All the above works require an input
photograph.

Computer graphics researchers and digital artists have also used
computers to generate abstract art works based on fractals without
image input [1][2]. It was first proposed by Taylor [24] in 1999.
Taylor [23][25] used fractals to model and analyze Jackson
Pollock’s dripping style of paintings and generated remarkable
results. Fogleman [6] has attempted to generate Mondrian-style of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
VINCI '16, September 24-26, 2016, Dallas, TX, USA
© 2016 ACM. ISBN 978-1-4503-4149-3/16/09 $15.00
DOI: http://dx.doi.org/10.1145/2968220.2968232

130

https://en.wikipedia.org/wiki/Sculpture
https://en.wikipedia.org/wiki/Ceramics_(art)

abstract paintings automatically. Their pioneering works have
inspired us for the present work.

Modeling Miro’s style was first discussed by Kirsch and Kirsch
[13]. They had not encoded the analysis into any grammar or
program but demonstrated the methods to generate new
compositions in Miro’s style with algorithmic descriptions. Their
approach stores typical Miro shapes into a database and then
manually analyzes the target composition using the stored shapes.
Our approach does not require a database, rather, parameterizes
and randomizes Miro shapes, with automatic generation.

More recently, Zhang and Yu [31] made an interesting attempt in
automatic generation of Kandinsky abstraction paintings using
Processing. Tao et al [22] generated abstract paintings in
Malevich style and Zheng et al [32] proposed a layered approach
to modeling Jackson Pollock’s dripping style of paintings. Based
on these experiences and practices, we designed a programmed
experiment to automatic generate Miro’s surrealistic style of
paintings.

3. STYLE ANALYSIS
Joan Miro is a prolific artist of multitudinous paintings which are
hard to conclude. His early modernist works show the influence of
Cézanne [4][5][15], and fill the canvas with a colorful surface and
a more painterly treatment than the hard-edge style of most of his
later works. Starting in 1920, Miro developed a quiet precise style,
picking out every element in isolation and detail, and arranging
the elements in deliberate compositions. The works,
including House with Palm Tree (1918), Nude with a
Mirror (1919), Horse, Pipe and Red Flower (1920), and The
Table - Still Life with Rabbit (1920), show clear influence
of Cubism [3][8], although in a restrained way, being applied to
only a proportion of the subject. In 1922, Miro explored
abstracted, strongly colored surrealism in at least one painting
[17]. Through the mid-1920s Miro developed the pictorial sign
language which would be central throughout the rest of his career.
Our research focuses on the works of Miro’s middle age and
analyzes the following set of paintings.

 The Nightingale’s Song at Midnight and the Morning
Rain (1940)

 Poetess (1940)

 Ciphers and Constellations in Love with a Woman
(1940)

 Women and Birds at Sunrise (1946)

 Women in Front of the Sun (1950)

 Blue III (1961)

 The Gold of the Azure (1967)

Having read papers on the analysis of Miro's artistic style [14][17],
and searched for images on the web, we summarize the artist’s
artistic features as below. His works are known as organic
abstraction. Organic means that he does not completely abandon
the objective of graphic arts like Mondrian [18], but chooses the
characteristics of the objects in the deformation. During this
period, the artist formed his own abstract pictorial sign language.
These abstract pictorial sign elements illustrated in Figure 1 came
from his fantasy and abstraction, and appeared in many paintings
composed of different shapes, sizes, colors and numbers. To
facilitate the discussion, we name these pictorial elements
according to their shapes.

Figure 1: Typical pictorial elements

The overall color of his works is bright and trenchant. Most of his
works use several specific colors, including red, blue, yellow,
white and black.

Figure 2: Process modeling approach

131

https://en.wikipedia.org/wiki/Cubism
http://dict.youdao.com/w/artistic/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/features/#keyfrom=E2Ctranslation

Color can affect mood and despite cross-cultural differences
regarding what different colors meant there are cross-cultural
similarities regarding what emotional states people associate with
different colors [27][28]. Usually, red is the most emotional color,
blue evokes broadness and peace, yellow means sun and warm,
white represents nobility and holy while black delivers fear and
depression. The artist communicated his emotions using these
simple colors, while also achieving harmony.

Composition of surrealism paintings delivers fantastic impression
through subtle combination of figurative and abstract expressions.
As for Miro, he pursues liberty and harmony. This is why some of
his paintings (like Poetess and The Nightingale’s Song at
Midnight and the Morning Rain) have more than one focus that
looks chaotic but absorbing while others (like Blue III and The
Gold of the Azure) are childlike but fragrant.

4. PROCESS MODELING
We start by presenting our modeling work on Poetess (1940,
Figure 2). As discussed above, the artwork has significant features.
The canvas is covered by colorful pictorial elements and curve
lines. These components are not independent, the interactions
between pictorial elements or between pictorial elements and lines
following certain rules. Ingenious combination of several different
pictorial elements creates semantic graphic objects and makes the
ensembles attractive.

Inspired by layered modeling approach [32], we designed a
process modeling approach after considering the features of the
painting to deliver desired results. Process modeling consists of
four steps, i.e. structured drawing, adaptive coloring, space filling
and noise injection, as shown in Figure 2. Each step composes of
rendering components of different graphical properties. The
shapes of components in each step are made consistent, and
distributed on the canvas with certain randomness, similar to the
drawing method developed by surrealists. The complete artwork
is generated after these four steps.

The details of each step will be discussed in the following
subsections.

4.1 Structured Drawing
After careful observation and analysis, we separate all
components into three groups according to the drawing sequence.
The first group contains long curve lines. The second group
consists of sematic graphic objects that are easy to recognize as
special assemblies of basic pictorial elements. Many smaller but
similar pictorial elements belong to the third group. The process
modeling approach draws these three groups successively.

The first step, i.e. drawing process, contains background coloring
and curve plotting. In the drawing process, long curve lines of the
first group are drawn with certain randomness. These curve lines
have a unique style and divides a pictorial element or semantic
graphic object it passes through into two or more parts, which are
colored differently with contrasts. Assume these long curve lines
to be drawn first in the artist’s painting process, we treat them as
part of background which will not be changed by other
components. Before drawing curve lines, we choose a single
background color to cover the entire canvas and provide the
fundamental tone of the artwork.

4.2 Adaptive Coloring
In the second step, i.e. the adaptive coloring process, we paint
various closed elements of the second group with colors, e.g.
irregular circles, irregular pentagram and sematic graphic objects

such as moon or robot. The size and position of each element are
randomly generated within a pre-determined range. A major
characteristic of Miro style is that the colors of an element are
relevant to the element’s position and its association with other
elements. If the element has no association with other elements, it
has one color. If an element is placed upon existing curve lines on
the canvas, or intersect with other elements, it may be divided into
several parts and each part is filled with a different color.

Miro’s style is dominated by primary colors, i.e. red, blue, yellow,
together with white and black. We also use a small amount of
other colors, such as brown and green, according to the original
painting.

Each semantic graphic object drawn in this step may be cut
through by one or more long curve lines. The parts of the object
divided by the long curve lines are filled with different and
contrasting colors depending upon the current color of the object.
To support this functionality, we adapt the flood fill algorithm to
color the objects, and call it adaptive fill algorithm. The color to
fill is determined by the existing color (which require the
background color to be single) of the element and the background
color. The coloring process provides the fundamental tone for the
final image as shown in Figure 2.

4.3 Space Filling
The third step is to fill the space on the canvas with the elements
of the third group, including stars, spirals, sharp or smooth angled
hourglasses and all kinds of compositions of irregular circles and
lines as shown in Figure 1. One can observe Poetess (1940, Figure
2, right) that it has nearly no blank space. The elements of the
third group are distributed throughout the entire canvas, fulfilling
the style of the artwork. These elements are small but abundant,
each having a different size, color and shape; even the same styled
elements do not look exactly the same.

To generate these elements, we code each styled element into a
function based on mathematical calculation, sized randomly
within a pre-determined given range. As these elements are small
and usually single colored, we ignore their interactions with other
elements and position them randomly onto the canvas.

Figure 3: Comparison of before and after ageing treatment

132

4.4 Noise Injection
The generation process has completed ninety percent after the first
three steps. The original paintings show obvious blocks of shades,
due to either special paint effects or ageing. To make generated
paintings more realistic, we design noise injection process as the
last step. On one hand, we need to simulate shade blocks, on the
other hand, we apply ageing treatment to the entire image. Figure
3 compares the effects before and after the ageing treatment. The
implementation details in Processing will be demonstrated in the
next section.

5. IMPLEMENTATION
We have implemented the process modeling approach in
Processing to generate images of Miro’s surrealistic style. This
section describes the generation algorithms in more details and
demonstrates the results.

5.1 Style Encoding
Based on the aforementioned analysis and design, we extract
abstract pictorial elements of Miro and code them into individual
functions.

Algorithm 1: Draw irregular circle

Input: centerX: the x-coordinates of center of the circle

centerY: the y- coordinates of center of the circle

radiusX: major semi-axis of circle

radiusY: minor semi-axis of circle

h: parameters to control curvature

drawRightBezier(centerX, centerY+radiusY, centerX+radiusX,
centerY);

drawRightBezier(centerX, centerY-radiusY, centerX+radiusX,
centerY);

drawLeftBezier(centerX-radiusX, centerY, centerX, centerY-
radiusY);

drawLeftBezier(centerX-radiusX, centerY, centerX, centerY+
radiusY);

We use Bezier function to simulate curve lines. Bezier function
generates a parametric curve and is frequently used to model
smooth curves that can be scaled indefinitely. By dividing the
curve lines in the original painting into several segments, each
implemented as a Bezier curve, and connecting the segments, we
could simulate long curves. We then use the scale or translate
function in Processing to change the size or position of the entire
curve lines after completing the drawing.

Researchers have shown that mathematics and painting are
interrelated in many ways [11]. Using mathematics, Bezier curves
could also be used to simulate irregular shapes, e.g. irregular
circles and sharp or smooth angle hourglasses as shown in Figure
1. Figure 4 is a schematic drawing of simulating a circle using
multiple Bezier curves, by dividing the circle into four quarter
arcs. Each quarter is implemented by one Bezier curve,
parameterized by two endpoints A and D, and two control points,
B and C. We can see that points B and C are symmetrical about
line OF.

Figure 4: Using Bezier curve to simulate a circle

We introduce a parameter h to represent the length of line AB so
we could get the coordinates of point B (h, 1) and point C (1, h).
According to the formula of Bezier curve:

P(t) = 𝐴 ∙ (1 − 𝑡)3 + 𝐵 ∙ 3(1 − 𝑡)2𝑡 + 𝐶 ∙ 3(1 − 𝑡)𝑡2 + 𝐷 ∙ 𝑡3,
𝑡 ∈ [0,1]

We could know from Figure 4 that when the value of t is 0.5, the
point P(0.5) is the midpoint of the quarter arc AD. With the
known coordinates of the points A and B, we could get the
approximate value 0.55 of h by calculation. By changing the value
of h around 0.55 we could control the curvature of the Bezier
curve. When connecting four Bezier curves with different value of
h together we could simulate an irregular circle. Algorithm 1
outlines the algorithm.

Algorithm 2: Draw star

Input: centerX: the x-coordinate of center of the star

centerY: the y- coordinate of center of the star

radius: the size of the star

bias1 = random(-BIAS,BIAS);

line(centerX-radius, centerY - bias1, centerX+radius, centerY
+ bias1);

bias2 = random(-BIAS,BIAS);

line(centerX-bias2, centerY-radius, centerX+bias2,
centerY+radius);

k = random(minK,maxK);

t1 = random(minR,maxR);

t2 = random(minR,maxR);

line(centerX + radius *t1, centerY – k* radius*t1,centerX –
radius * t2, centerY + k*radius*t2);

t3 = random(minR,maxR);

t4 = random(minR,maxR);

line(centerX - radius *t3, centerY – k* radius*t3,centerX +
radius * t4, centerY + k*radius*t4);

133

The algorithm for generating a star (Figure 1) is presented in
Algorithm 2. As Figure 1 shows, a star consists of four short
straight lines which meet in one center point. The approximate
slope of the four lines is 1, -1, 0 and none (which means the line is
vertical). Given the coordinates of the center point and the radius
of the star, we could randomly generate four deviation values in
the given range to control the slope of the four straight lines. Then
we calculate the coordinates of two endpoints of each line and
draw the line on the canvas. In this way, none of the stars we
drawn would be exactly the same.

Figure 5 shows the process of simulating sharp and smooth angled
hourglasses, that are both composed of two straight lines and two
curve lines. The generation algorithm is outlined in Algorithm 3.
Given the coordinates of the center point and radius for size
control, we use the same techniques as for stars to draw two
straight lines of an hourglass. Next we choose two control points
for the Bezier curve according to the position of endpoints A and
B. As shown in Figure 5, if the x-coordinates of control points C
and D are within the range of endpoints A and B, we could draw a
sharp angled hourglass. If they are out of the range, we could
draw a smooth angled hourglass.

Algorithm 3: Draw sharp (smooth) angle hourglass

Input: centerX: the x-coordinate of the element

centerY: the y- coordinate of the element

radius: size of the element

k: slope of the AB

type: type of the element

t1 = random(minR,maxR); t2 = random(minR,maxR);

t3 = random(minR,maxR); t4 = random(minR,maxR);

x1 = centerX + radius * t1; y1 = centerY - k * radius * t1;

x2 = centerX - radius * t2; y2 = centerY + k * radius * t2;

x3 = centerX - radius * t3; y3 = centerY - k * radius * t3;

x4 = centerX + radius * t4; y4 = centerY + k * radius * t4;

line(x1,y1,x2,y2);

line(x3,y3,x4,y4);

if (type == sharp){

bezier(x1, y1+1, x1-0.4*radius, y1-0.2*radius,
x3+0.4*radius, y3-0.2*radius, x3, y3+1);

bezier(x2, y2-1, x2+0.4*radius, y2+0.2*radius, x4-
0.45*radius, y4+0.2*radius, x4, y4-1);

}

else if (type == smooth){

 bezier(x1-1, y1+1, x1+0.7*radius, y1-1*radius, x3-
0.7*radius, y3-2*radius, x3+1, y3+1);

 bezier(x2+1, y2-1, x2-0.7*radius, y2+1*radius,
x4+0.8*radius, y4+1.5*radius, x4-1, y4-1);

}

Figure 5: Simulate sharp (smooth) angle hourglass

5.2 Algorithm Design
In the second step, i.e. coloring, we adopt color-filling algorithm
adapted from the flood fill algorithm. The algorithm is outlined in
Algorithm 4.

Algorithm 4: Adaptive fill

Input: startX: the x-coordinate of start point

startY: the y- coordinate of start point

newCol: fill color

Qx.add((int) start_x); Qy.add((int) start_y);

curCol = get(start_x, start_y); //get start point color

while (min (Qx.size (), Qy.size()) > 0) {

 curX = Qx.get(0); curY = Qy.get(0);

 Qx.remove(0); Qy.remove(0);

 addValidXY(curX+1, curY);

 addValidXY(curX-1, curY);

 addValidXY(curX, curY+1);

 addValidXY(curX, curY-1);

 set(curX, curY, newCol);

 }

while (min (BorderX.size (), BorderY.size()) > 0) {

 set(BorderX.get(0), BorderY.get(0), col);

 BorderX.remove(0); BorderY.remove(0);

 }

All the objects to be filled are closed shapes. The fill color for an
object is chosen based on the current color of the object, which
requires the background color of the canvas to be uniform.
Starting from one randomly chosen pixel point within the object,
the adaptive fill algorithm reads and saves the RGB values (curCol)
of the pixel and puts the point into a queue. It then begins looping;
during each literation of the loop, it takes the first point out of the
queue and replaces the point’s color with a new color. The
algorithm then retrieves the four neighboring points one by one

134

http://dict.youdao.com/w/deviation/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/value/#keyfrom=E2Ctranslation

and reads their RGB values. For each point, the algorithm checks
if its RGB values are the same as the initial point’s RGB values
curCol and if it is not in the queue, the algorithm inserts the point
into the queue. If the RGB values are not the same as those of the
start point, the algorithm pushes the point in stack as the object’s
border. The loop terminates once the queue is empty when the
object is completely colored. To achieve a smooth effect, we
replace the border’s color by the new color.

The adaptive fill algorithm requires only a new color and one
coordinate of a point in the object as input to fill the entire object
with multiple appropriate colors. By adding a list of points into
stack and using a conditional check, we could color any object
with different colors in different parts if the object is divided by
one or more external lines.

5.3 Layout
One of the problems we need to address is the layout of the
canvas as we put components on the canvas with controlled
randomness while avoiding overlaps yet creating a harmonious
picture. It is hard to detect whether two components are
overlapped because the boundary of each component is
irregular and varied. We assume a bounding circle around each
colored pictorial element or semantic graphic object composed by
several basic pictorial elements. Comparing the distance between
the two centers of the bounding circles with the radii of them, it is
easy to know the relationship of the two components. Before we
draw components on the canvas, we check if the component
overlaps with any other component already existing on the canvas.
We pick another position for the component once such a clash
happens.

As discussed before, one of the stylistic and significant features of
Miro’s artworks is partial overlapping of shapes. Using the
bounding circle technique, we could control the components’
overlapping ratio by pre-determining relevant parameters. For
example, we set the distance between the centers of two bounding
circles to be greater than 80% (partial overlapping) or 100% (no
overlapping) of the sum of the radii. Alternatively, we could
simply decrease the radius of each bounding circle so it would not
cover the entire component and the outside of the bounding circle
is allowed to overlap with other components.

5.4 Results
We have used our process modeling approach to generate an
image that mimics the original Poetess of Miro, as shown in
Figure 6(a). Abstract pictorial elements of Miro can be identified
clearly in Poetess. One can also easily observe long curve lines,
sematic graphical objects and other significant features, based on
which we divide the modeling process into four steps. We have
used our approach to generate the “Poetess” style of images by
randomly changing various parameters of the components, as
shown in Figure 6(b) and (c).

In the modeling process, we draw the background curve lines on
to the canvas using the Bezier function, then draw sematic
graphical objects composed of a few basic pictorial elements and
color them using the adaptive fill algorithm. We extract 13
graphical objects from the original painting and surround each of
them with a bounding circle. Their positions and sizes are
generated with controlled randomness. Next, we fill the remaining
canvas space with small abstract pictorial elements. The amounts
of small abstract pictorial elements are set at 20 to 40 stars, 50 to
70 irregular circles, 6 to 10 spirals, 10 to 15 hourglasses and
several compositions of irregular circles and lines. To achieve the

ageing effect, we retrieve each pixel’s color and replace it by a
color of the same shade with a small variation. A circular shade
block is generated by points of a gradient color that form a circle
and gradually fading outward. Irregular shade blocks are
composed by a combination of several circular shade blocks.

To prove that our modeling approach works in general, we also
generate abstract images based on another painting of Miro,
Ciphers and Constellations in Love with a Woman (1940) (we will
shorten it as “Cyphers”). This painting is also composed of
abstract pictorial elements and sematic graphical objects. Figures
6(d) and (e) show two generated results. The parameter setting is
similar to that in the generation process of Poetess, both
combining the stochastic and user-defined strategies. Shade
blocks are also added but with different colors and shapes.

(a) Modeling the original Poetess

(b) A varied version of Poetess

135

http://dict.youdao.com/w/partial/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/overlapping/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/overlapping/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/ratio/#keyfrom=E2Ctranslation

(c) Another varied version of Poetess

(d) A varied version of Cyphers

(e) Another varied version of Cyphers

Figure 6: Generated images of Miro style

The entire generated image is finally saved as a .jpg file, whose
size is determined by the canvas size set in the program. The
current size of “Poetess” image is set at 800×660, and “Ciphers”
image is set at 910×1133, but much larger images could also be
generated by changing the size and scale within the program.

6. Conclusion
This paper has introduced a process modeling approach to
generating abstract images in Miro surrealistic style. Based on the
distinguishing features of Miro’s works, especially those in his
middle age, we model the artworks in four steps: structured
drawing, adaptive coloring, space filling and noise injection. First
we draw long curve lines as part of background. Next we draw
sematic graphic objects and coloring them, and then fill the
remaining canvas space with small abstract pictorial elements. We
finally inject noises to simulate the ageing effects with the original
look. By resetting or randomizing various parameters, various
pictorial components could be reconstructed and recombined to
form a new image. Our approach is scalable and generic in
generating other artworks of Miro in the same period.

Our work generates encouraging results and establishes a solid
foundation for further refinement. Adding more artistic elements
may achieve unexpected effects. Moreover, generated styled
paintings could be more aesthetic when considering semantic
factors and interactions of various painting elements and coding
them into rules. As a future work, we will attempt to model
Miro’s works of other periods, and possibly combine them to
generate more dramatic Miro images. Furthermore, we would
attempt to display abstract paintings in dynamic forms.

136

7. REFERENCES
[1] Ammeraal, L. & Zhang, K. (2007). Computer graphics for

Java programmers. 2nd Edition, John Wiley & Sons.

[2] Barnsley, M. F. (2014). Fractals everywhere. Academic
press.

[3] Braun, E., & Rabinow, R. (Eds.). (2014). Cubism: The
Leonard A. Lauder Collection. Metropolitan Museum of Art.

[4] Chun, Y. P., & Pollock, G. (2008). Melancholia and
Cézanne’s portraits: Faces beyond the mirror.
Psychoanalysis and the Image: Transdisciplinary
Perspectives, 94-126.

[5] Danchev, A. (2012). Cézanne: A life. Pantheon.

[6] Fogleman, M. (2011). Procedurally generating images in the
style of Piet Mondrian.

[7] Gatys, L.A., Ecker, A.S., & Bethge, M. (2016) A Neural
Algorithm of Artistic Style, http://arxiv.org/abs/1508.06576.

[8] Golding, J. (1988). Cubism: a History and an Analysis,
1907-1914. Harvard Univ Pr.

[9] Haeberli, P. (1990, September). Paint by numbers: Abstract
image representations. In ACM SIGGRAPH Computer
Graphics (Vol. 24, No. 4, pp. 207-214). ACM.

[10] Hubert, R. R. (1964). Miró and Breton. Yale French Studies,
(31), 52-59.

[11] Jensen, H. J. (2002). Mathematics and painting.
Interdisciplinary Science Reviews, 27(1), 45-49.

[12] Judelman, G. (2004, July). Aesthetics and inspiration for
visualization design: bridging the gap between art and
science. In Information Visualisation, 2004. IV 2004.
Proceedings. Eighth International Conference on (pp. 245-
250). IEEE.

[13] Kirsch, J. L., & Kirsch, R. A. (1988). The anatomy of
painting style: Description with computer rules. Leonardo,
437-444.

[14] Lubar, R. S. (1994). Miró's defiance of painting.

[15] Machotka, P., & Cézanne, P. (1996). Cézanne: Landscape
into art. Yale University Press.

[16] Marcos, A. F. (2007). Digital art: when artistic and cultural
muse merges with computer technology. Computer Graphics
and Applications, IEEE, 27(5), 98-103.

[17] Miró, J., & Rowell, M. (1992). Joan Miró: selected writings
and interviews. Da Capo Press.

[18] Mondriaan, P. C., & Stijl, D. (1965). Piet Mondrian.

[19] Noll, A. M. (1966). Human or machine: A subjective
comparison of Piet Mondrian's" Composition With
Lines"(1917) and a computer-generated picture. The
psychological record.

[20] Pearson, M. (2011). Generative Art. Manning Publications
Co..

[21] Reas, C. & Fry, B. (2007). Processing: a programming
handbook for visual designers and artists (Vol. 6812). MIT
Press.

[22] Tao, W., Liu, Y., & Zhang, K. (2014, June). Automatically
generating abstract paintings in Malevich Style. In 2014
IEEE/ACIS 13th International Conference on Computer and
Information Science (ICIS) (pp. 201-205). IEEE.

[23] Taylor, R. P. (2002). Order in Pollock's chaos. Scientific
American, 287(6), 84-89.

[24] Taylor, R. P., Micolich, A. P., & Jonas, D. (1999). Fractal
analysis of Pollock's drip paintings. Nature, 399(6735), 422-
422.

[25] Taylor, R. P., Micolich, A. P., & Jonas, D. (2002). The
construction of Jackson Pollock's fractal drip paintings.
Leonardo, 35(2), 203-207.

[26] Umland, A. (2004). A Challenge to Painting: Miro and
Collage in the 1920s. Agnes De la Beaumelle. London: Paul
Holberton Publishing, 61-69.

[27] Whitfield, T. W., & Whiltshire, T. J. (1990). Color
psychology: a critical review. Genetic, social, and general
psychology monographs.

[28] Wiedemann, D., Barton, R. A., & Hill, R. A. (2012).
Evolutionary perspectives on sport and competition. Applied
evolutionary psychology, 290-307.

[29] Zhang, K. (2007). From abstract painting to information
visualization. Computer Graphics and Applications, IEEE,
27(3), 12-16.

[30] Zhang, K., Harrell, S., & Ji, X. (2012). Computational
Aesthetics: On the Complexity of Computer-Generated
Paintings. Leonardo, 45(3), 243-248.

[31] Zhang, K., & Yu, J. (2014). Generation of Kandinsky art.
Leonardo.

[32] Zheng, Y., Nie, X., Meng, Z., Feng, W., & Zhang, K. (2015).
Layered modeling and generation of Pollock’s drip style. The
Visual Computer, 31(5), 589-600.

[33] Zhao, M., & Zhu, S. C. (2010, June). Sisley the abstract
painter. In Proceedings of the 8th International Symposium
on Non-Photorealistic Animation and Rendering (pp. 99-
107). ACM.

137

http://arxiv.org/abs/1508.06576

