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ABSTRACT

The mandala thangka, as a religious art in Tibetan Buddhis-
m, is an invaluable cultural and artistic heritage. However,
drawing a mandala is both time and effort consuming and
requires mastery skills due to its intricate details. Retaining
and digitizing this heritage is an unresolved research
challenge to date. In this paper, we propose a computer-
aided generation approach of mandala thangka patterns to
address this issue. Specifically, we construct parameterized
models of three stylistic patterns used in the interior
mandalas of Nyingma school in Tibetan Buddhism according
to their geometric features, namely the star, crescent and
lotus flower patterns. Varieties of interior mandalas are
successfully generated using these proposed patterns based
on the hierarchical structures observed from hand drawn
mandalas. The experimental results show that our approach
can efficiently generate beautifully-layered colorful interior
mandalas, which significantly reduces the time and efforts
in manual production and, more importantly, contributes to
the digitization of this great heritage.
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Figure 1: Examples of mandala thangka patterns.
The images are scanned from the published book
[28].
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1 INTRODUCTION

The thangka, or scroll painting, usually depicting a Buddhist
deity, scene, or mandala, is a special art of Tibetan
Buddhism. As a religious art, thangka retains high cultural
and artistic values. In 2006 the Tibetan Thangka was
recorded in the first list of national intangible cultural
heritages in China and, in 2009, Regong Arts was inscribed
on the Representative List of the Intangible Cultural
Heritage of Humanity by the UNESCO. Mandala is an
important subject in thangka which is a spiritual and
ritual symbol representing the universe [14, 22]. In various
spiritual traditions, mandalas may be employed as a spiritual
guidance tool for focusing attention of practitioners and for
mediation. In addition to its religious significance, mandalas
have favorable psychological effects, as noted in [12].

In its most common form, a mandala appears as a series of
concentric circles. It depicts deities which are enclosed in the
square structure situated concentrically within these circles,
as shown in Figure 1 [28]. Drawing a mandala is both time
and effort consuming, since it first needs to be sketched onto
the canvas in the right proportions following the ancient grid
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(a) (b) (c)

Figure 2: Examples of interior mandala patterns: (a)
Star pattern; (b) Crescent pattern; (c) Lotus flower
pattern. The images are scanned and cropped from
the published book [28].

patterns, after which the long painting procedure starts, with
fine brushes. The time required to finish drawing a mandala
usually ranges from one month to several months, depending
on the complexity of the mandala.

Mandalas on one hand are beautiful and intricate, on
the other hand are highly geometric and regular, thus it
is possible to model mandala mathematically. The modelled
mandalas can be further applied to multiple areas: structural
analysis in image analysis and retrieval; modern artistic
pattern and card design; mental clarity and spiritual growth
in psychology.

In Buddhism there are more than 700 deities, each
having his or her own mandala. Modeling a large number
of mandalas is beyond the scope of this work. We
focus on modeling the central part, called the interior
mandala, which is the most important part in any mandala.
Specifically, in this paper we propose a computer-aided
generation approach by modeling three stylistic patterns
used in the interior mandalas of Nyingma school in Tibetan
Buddhism [28]: star (Figure 2(a)), crescent (Figure 2(b))
and lotus flower patterns (Figure 2(c)). The key idea of our
method consists of two steps: first, we construct models of
parameterized motifs according to the geometric features
in each pattern; second, we place these parameterized
motifs in a hierarchical structure of concentric circles
outside-in to generate final interior mandalas, where the
parameter values are determined by a uniformly-spaced
reference grid. Comparative results show that our approach
can efficiently generate beautifully-layered colorful interior
mandalas comparable with the hand drawn mandalas.

To our knowledge, this study is the first attempt in
constructing parameterized models of interior mandala
patterns. Our work provides a reference for computer-aided
generation of both traditional mandala patterns used in
Buddhism and mandala-like patterns used in modern art
design, which also contributes to the digitization of this great
heritage.

2 RELATED WORK

Previous works in computer generation of traditional
art patterns can be classified mainly into the following

categories: Islamic geometric pattern, Indian kolam pattern,
Chinese paper-cut pattern and Uygur fabric pattern.

Islamic geometric patterns are built on stars, squares
and circles, typically repeated, overlapped and interlaced
to form the overall intricate connected patterns. Earlier
works [9, 15, 21] used symmetry groups to analyze forms
of organization and structures of islamic star patterns.
The strap work approach to create shapes which were
formed by straightedge and compasses was used in [26, 36].
By using polygonal network as the base, the polygons-in-
contact technique was adopted to create a variety of islamic
geometric patterns [3, 19, 20]. The modular design system
based on the star, cross and traditional islamic pattern
modules was introduced in [1, 4–6] to generate different
family of geometric star and rosette patterns. Based on
shape rules, [2, 10, 18, 33, 34] applied the parametric shape
grammar approach to generating islamic geometric patterns.

Indian kolam patterns consist of an symmetrical matrix
of dots and curving lines which wind around the dots
on the geometry. A tiling-based approach using diamond-
shaped tiles placed corner to corner to construct square loop
kolam was presented in [31]. Gopalan et al. [13] proposed a
topological method which can generate all possible kolams
for any spatial configuration of dots. Other approaches
include encoding kolams using graph, picture and array
grammars [7, 8, 30], converting Kolam patterns into numbers
and linear diagrams [39], L- and P-systems [35], extended
pasting schemes [32], gestural lexicons [37], stroke chain-code
[27] and knot theory [17].

For Chinese paper-cut patterns and Uygur fabric patterns,
Liu et al. [25] studied the cyclic and dihedral symmetries
of different annuli in paper-cut designs, and synthesized
new designs with different rotational orders. Li et al. [24]
designed a set of tools for annotating animated 3D surfaces
with holes derived from traditional paper cutting motifs. By
using independent patterns as basis, a library of complex
paper-cut patterns was established in [23]. Zhao et al. [42]
proposed a method of automatic generation of Uygur fabric
patterns based on configuration styles such as hexagonal,
brick-shaped and diamond structure tile.

For other traditional art patterns, Persian floral patterns
were created by using NURBS and circle packing [11, 16].
Yoon et al. [40] constructed Korean Danchong patterns
based on triangular, hexagon and circle. Zhang and Yu [41]
generated Kandinsky art based on styled patterns. The Miro
style of surrealism was generated by extracting and coding
pictorial elements in Miro’s paintings [38].

Patterns in the interior mandalas of Buddhism differ
from aforementioned patterns both in geometric shape and
composition structure. Poelke et al. [29] created mandala like
patterns by creating polynomials with L-symmetric zero set
and applying the classical Schwarz reflection principle, the
resultant patterns however differ dramatically from those
in the interior mandala patterns both in shape variation
regularity and hierarchical structure. It is therefore necessary
to construct parameterized motifs according to geometric
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features in each pattern and place them in a hierarchical
structure to generate different interior mandalas.

3 STAR PATTERNS

Star patterns are widely used in interior mandalas, which
may contain 4, 8 or 16 isosceles triangles inscribed in a
circle (red lines in Figure 3(a)), with their vertices pointing
outward. Two adjacent isosceles triangles are connected by
a small circular arc called the connecting arc (blue curves in
Figure 3(a)).
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Figure 3: A star pattern: (a) Basic structure; (b)
Geometric model.

To model the star pattern, we first place a circumscribed
circle centered at the origin O and set its radius as Rs,
and then calculate the coordinates (Vix, Viy) of the isosceles
triangle’s vertex Vi (red points in Figure 3(a)) with the
following formulae:{

Vix = Rs · cos((i− 1) ∗ 2π/ns)

Viy = Rs · sin((i− 1) ∗ 2π/ns)
(1)

where i ∈ [1, ns], and ns is the number of isosceles triangles.
Assume that the distance between O and the connecting

arc’s center Q is d = |OQ|, the coordinates (Qx, Qy) of Q
are calculated as: {

Qx = d · cos(π/ns)

Qy = d · sin(π/ns)
(2)

As indicated in Figure 3(b), the altitude of an isosceles
triangle can be increased or decreased when d is decreased or
increased, thus we can change the shape of isosceles triangles
by adjusting d.

Next we determine the size of connecting arcs and their
end points coinciding with end points of the base in two
adjacent isosceles triangles. To clearly illustrate, we enlarge
the connecting arcs in Figure 3(b). Setting the arc radius as

r and chord length |AB| = m, the deviation angle from OQ

to QA is calculated as α = arcsin(m/2r).

The connecting arc ÂB can be defined by the following
equations: {

ÂBx(θ) = Qx + r · cos(θ + π/ns)

ÂBy(θ) = Qy + r · sin(θ + π/ns)
(3)

where θ ∈ [α, 2π − α].

Once the arc ÂB is obtained, we simply rotate ÂB around
O with 2π/ns to produce ns − 1 arcs so that all adjacent
isosceles triangles can be connected by those arcs to form
the final star pattern. Also, by tuning parameters Rs, ns, d,
r and m, variants of star patterns can be obtained, as shown
in Figure 4.

Figure 4: Variants of star patterns.

4 CRESCENT PATTERNS

Crescent pattern is usually used in mandalas for dakinis. It
consists of a relatively large arc (red curve in Figure 5(a))
and an inverted T-shaped structure at the bottom (blue line
in Figure 5(a)).
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Figure 5: A crescent pattern: (a) Basic structure; (b)
Key points in the geometric model.

We label several key points on the large arc and the T-
shaped structure with C1 ∼ C7, as shown in Figure 5(b).
Assume that the arc center is at the origin O and the arc
radius is Rc, the distance from O to the chord is |OP | = h1,

as shown in Figure 5(b), the deviation angle from OP to

OC2 is calculated as β = arccos(h1/Rc).
We set the following two parameters w1 = |PC3| and

h2 = |C3C4|, with which the width and height of the vertical
rectangle in the T-shaped structure can be determined. The
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width of the protruded horizontal rectangle in the T-shaped
structure is determined by w2 = |C4C5|. All key points can
be determined by the formulae given in Table 1.

Table 1: Coordinates of key points in the crescent
pattern.

Key points Coordinates of key points

Ĉ1C2(θ) (Rc sin(θ), Rc cos(θ)), θ ∈ [β, π]

C3 (w1, Rc cos(β))

C4 (w1, Rc cos(β) + h2)

C5 (w1 + w2, Rc · cos(β) + h2)

C6 (w1 + w2, Rc)

C7 (0, Rc)

We connect Ĉ1C2, C3, C4, C5, C6 and C7 to generate
the right part of the crescent pattern, and then flip it over
horizontally to obtain the left part of the pattern. Moreover,
variants of crescent patterns can be generated by tuning
parameters Rc, h1, h2, w1 and w2, as shown in Figure 6.

Figure 6: Variants of crescent patterns.

5 LOTUS FLOWER PATTERNS

Lotus flower patterns are used in mandalas for deities in the
lotus flower family. They may contain 4, 8, 10 or 16 petal
patterns from the inner core to the outer rings (Figure 2(c)).
Here we take the 4-petal pattern as an example to describe
how to model the lotus flower patterns. The model is divided
into skeletal and shape levels: the skeletal pattern globally
defines the structure of the entire petal pattern and locally
defines petal contours, as shown by Figure 7(a), where each
petal pattern has an outer line depicting petal’s contour (red
curves) and an internal line depicting petal’s texture (blue
curves). Decorative shapes are then added inside the outer
and internal lines in the skeletal pattern to form the final
petal pattern, as indicated by red and blue curves in Figure
7(b), respectively. Small decorative shapes are finally added
between every two adjacent petal patterns (green curves
in Figure 7(b)). Next, we describe the construction of the
skeletal patterns and decorative shapes in detail.

5.1 Skeletal patterns

In the 4-petal pattern, a petal is restricted to a quarter circle
in a unit circle, as shown in Figure 8(a). Since the petal

(a) (b)

Figure 7: Model of a lotus flower pattern: (a) Skeletal
patterns; (b) Decorative shapes.

shape is symmetric about its central axis, we can model the
right half of the petal by first specifying 9 control points
as the original set of control points (red points in Figure
8(b)) and then interpolating those points with a B-spline.
The positions of 9 control points are defined with polar
coordinates. We use a three dimensional array to store the
radius ri, the angle θi and the relative angle ∆i = |θref −θi|,
where i = 1, 2, ...9, and θref is the angular coordinate of a
reference control point taken from the given control points,
in this example we take the 9th point as the reference point.
Using a relative angle allows us to flip control points about
the given axis and control the petal width with great ease.

(a) Skeletal patterns

O

Y
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3

4

5

6
7

8
9

(b) Control points

Figure 8: Construction of 4-petal skeletal patterns.

The left half of the petal can be obtained by flipping
all control points about petal’s central axis, i.e, the line
goes through the center O and the 9th control point, as
shown in Figure 8(b). This can be achieved simply by adding
angular coordinate of the petal’s central axis to ∆i to obtain
the angular coordinates of control points flipped over, and
keeping the radius coordinates of control points flipped over
unchanged. For the petals in the remaining 3 quarter circles,
we repeat the above procedure to obtain a complete 4-petal
pattern.

For patterns with np > 4 petals, we modify relative angles
∆i in the original control point set by ∆′

i = ∆i ∗4/np, a new
set of control points with polar coordinates (ri, θref − ∆′

i)
define petal’s shape which is narrower than that defined with
the original set of control points. We can use this new set of
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control points to generate the patterns with np petals in a
similar manner. Figure 9(a)-9(c) show skeletal patterns with
8, 10 and 16 petals.

(a) 8 petals (b) 10 petals (c) 16 petals

Figure 9: Skeletal patterns with different number of
petals (please zoom in to see details).

5.2 Decorative shapes

Skeletal patterns described in the previous section define the
structure of lotus flower patterns. Decorative shapes need
to be added inside the skeletal patterns to obtain the final
patterns. As shown in Figure 10(a), decorative shapes are
irregular thus can be modeled using splines. Again, we take
the 4-petal pattern as an example to demonstrate how to add
decorative shapes onto skeletal patterns. The right half of the
decorative shape is divided into 4 segments, as the purple,
green, blue and orange curves in the right half of the quarter
circle, as indicated by the red rectangle in Figure 10(a) and
its enlarged portion in Figure 10(b). We specify 31 control
points all together for those 4 segments, and then proceed to
interpolate those points associated with each segment with
the B-spline to generate corresponding decorative shapes.
We take the 31th point as the reference point and repeat the
same procedure described in Section 5.1 to obtain decorative
shapes in the remaining 3 quarter circles. Figure 11(a)-11(c)
show decorative shapes with 8, 10 and 16 petals.
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(a) Decorative shapes (b) Control points

Figure 10: Construction of 4-petal decorative shapes.

5.3 Complete lotus flower patterns

In addition to patterns in Section 5.1 and 5.2, there are
other patterns in the local parts of the lotus flower pattern,
such as the internal pattern in the petal with a heart shape,

(a) 8 petals (b) 10 petals (c) 16 petals

Figure 11: Decorative shapes with different number
of petals (please zoom in to see details).

and small decorative shapes between every two adjacent
petals near the outer part of the entire pattern. They
are all generated with B-splines that interpolate control
points specified, we omit the trivial description of their
construction.

With all models constructed for different patterns in the
lotus flower patterns, we can generate a complete lotus flower
pattern with the following procedure. First, we specify np

as the petals number in the pattern, and then divide the
unit circle into np sectors. In the first sector, we proceed
to generate the skeletal patterns for both outer and inner
patterns in the petal and add decorative shapes inside
skeletal patterns to obtain a complete petal pattern. The
petal patterns in the remaining sectors of the unit circle
can be generated by rotating the petal pattern in the first
sector around the center with 2π/np. Finally we add small
decorative shapes between every two adjacent petals to
obtain a complete lotus flower pattern.

(a) 8 petals (b) 10 petals (c) 16 petals

Figure 12: Lotus flower patterns with different
number of petals (please zoom in to see details).

By changing np, lotus flower patterns with different petals
can be generated, as shown in Figure 12. Note that when np

increases, the petal width decreases correspondingly, which
requires decrease of small decorative shapes between every
two adjacent petals in both width and height, so that they
can be added at the outer part of petals. Since each small
decorative shape spans from the 4th control point of its
left to right petals in the outer skeletal pattern (Section
5.1), it also touches a vertex shared by two neighboring
sectors on the unit circle. We take the triangle determined by
those three points as a reference triangle and define control
points of small decorative shapes inside the reference triangle
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(a) (b) (c) (d)

Figure 13: Generation process of central part of Black Yamaraja mandala (please zoom in to see details): (a)
Hand drawn mandala with a grid overlayed; (b) 1st and 2nd ring; (c) 3rd∼5th ring; (d) Colored mandala.

(a) (b) (c) (d)

Figure 14: Generation process of central part of Zhitro Narag Dongprug mandala (please zoom in to see
details): (a) Hand drawn mandala with a grid overlayed; (b) 1st∼4th ring; (c) 5th∼8th ring; (d) Colored
mandala.

using local coordinates, thus, small decorative shapes change
accordingly when the petal’s width changes.

Since the lotus flower pattern is restricted to a unit circle,
we can scale up the radial coordinates of all control points in
the entire pattern by Rf to obtain the lotus flower pattern
within the circumscribed circle of radius Rf .

6 GENERATION OF INTERIOR
MANDALAS

With models available for the star, crescent and lotus flower
patterns, it is possible for us to generate corresponding
interior mandalas composed of related patterns. Globally the
interior mandala has a hierarchical structure of concentric
rings. On each ring, corresponding patterns are added.

To generate the interior mandalas within a specified area,
such as a square of side length W , we need to first determine
the distance between neighboring rings in the square. Since
the radius of each ring varies from mandala to mandala, we
first overlay a uniformly-spaced grid of size w = W/24 as the
reference grid over a mandala, as thangka artists do when
they draw mandalas manually, and then generate each ring
according to its radius denoted by Rr in the reference grid
from the outer rings to the inner core. We choose this outer-
in order to generate concentric rings because we can color

patterns associated with each ring conveniently during the
rendering phase.

Once all rings in an interior mandala are generated, we
add proper patterns with parameter values indicated by the
reference grid on the corresponding rings and color them
according to the hand drawn interior mandalas. Finally,
small circles depicting different deities are added inside
patterns, with flat or gradient colors specified interactively.
Our system is implemented in Matlab R2013b and performed
on a platform of Core i5-4590 3.30GHz CPU and PC with
8GB memory. We choose 4 interior mandalas from [28] as
the hand drawn images and simulate them with our models.
The generation time for the 4 interior mandalas ranges from
22.02 to 46.75 seconds, which indicates that our approach
can efficiently generate colorful interior mandala patterns
compared with the hand drawn mandala images.

Figures 13 and 14 present the generation process of the
central parts of Black Yamaraja and Zhitro Narag Dongprug
mandalas with star patterns, respectively. The pattern in
Black Yamaraja mandala consists of 5 rings counted outside-
in, with a 8 pointed stars on the 2nd ring and 4 pointed
stars on the 3rd ring. The pattern in Zhitro Narag Dongprug
mandala consists of 8 rings counted outside-in, with a 16
pointed stars on the 2nd ring, a 8 pointed stars on the 4th
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(a) (b) (c) (d)

Figure 15: Generation process of central part of Yangdag Nine Crescent mandala (please zoom in to see details):
(a) Hand drawn mandala with a grid overlayed; (b) 4 concentric large crescent patterns; (c) 9 crescent patterns
with different orientations; (d) Colored mandala.

(a) (b) (c) (d)

Figure 16: Generation process of central part of Dumdo’s Auxiliary Yangsem mandala (please zoom in to
see details): (a) Hand drawn mandala with a grid overlayed; (b) 1st ring; (c) 2nd and 3rd rings; (d) Colored
mandala.

and 6th rings. The area surrounded by the 8th ring is divided
into 9 parts.

Figure 15 shows the generation process of the central part
of Yangdag Nine Crescent mandala with crescent patterns.
There are 4 concentric large crescent patterns and 9 crescent
patterns with different orientations in the 9 parts divided in
the central circle.

Figures 16 presents the generation process of the central
parts of Dumdo’s Auxiliary Yangsem and Dumdo’s Auxiliary
Nyanthos mandala pattern, respectively. The pattern in
Dumdo’s Auxiliary Yangsem mandala consists of 3 rings
counted outside-in, with lotus flower pattern of 10 petals
on the 1st ring and 4 petals on the 2nd ring.

7 CONCLUSION AND FUTURE WORK

This paper has introduced a computer-aided generation
approach of mandala thangka patterns. The experimental
results show that our method can efficiently generate
beautifully-layered colorful interior mandalas compared with
the hand drawn mandalas. In addition to mandalas used
in Buddhism, mandala patterns that are in any number of
shapes, sizes and colors can be modelled for a wide range
of applications, including coloring book for children and
adults, textile pattern, card and package design, etc. Thus,

our work provides a reference for computer-aided generation
of both traditional mandala patterns used in Buddhism and
mandala-like patterns used in modern art design. In the
future, we plan to explore the generation methods for other
types of decorative patterns in surrounding regions other
than the interior area. Moreover, investigating aesthetic rules
of coloring mandala patterns is another interesting research
topic.
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