
Spatial Graph Grammars for Web Information Transformation

Mei Kang QIU Guang Lei SONG Jun KONG Kang ZHANG

Department of Computer Science, University of Texas at Dallas
Richardson, Texas 75083-0688 USA

kzhang@utdallas.edu

Abstract

 This paper presents an approach to spatial specifications
for Web information transformation1. Extended from the
Reserved Graph Grammar (RGG), a Spatial Graph
Grammar (SGG) is proposed. The paper illustrates a
detailed example that applies the SGG to transform a XML
Web document to a WML structure for the display on
mobile devices. The SGG formalism is general enough for a
wide range of applications such as multimedia interfaces,
electronic publishing and XML document conversion.

1. Introduction

With the rapid development of the Internet technology,
more graphs and media-rich contents are delivered on the
Web. There are various kinds of viewing conditions when
surfing the Internet, such as varying screen sizes, style
preferences, and different device capabilities. In order to
adapt to different clients, we need an executable
mechanism to automatically transform the presentation
layout. There are increasing demands for the ability of
automatic transformation and visualization to meet the
client side requirements.

Visual programming languages (VPLs) are capable of
expressing and communicating structural information more
effectively than textual languages. As the underlying theory
of VPLs, graph grammars provide a sound and well-
established foundation in defining logic relations among
the language components [13]. The recently developed
Reserved Graph Grammar (RGG) formalism is powerful in
expressing various types of diagrams, with a parsing
complexity of polynomial time under a non-ambiguous
condition [17][18]. Zhang et al. presents a visual approach
to XML document design and transformation, which uses
RGG to define the XML syntax and specify the
transformation among different XML formats [20].

Although RGGs are expressive and efficient, they
cannot be used in document layout transformations without
support for spatial specifications. This paper presents a
spatial extension to the RGG, called the spatial graph
grammar (SGG), and illustrates its application in Web
information transformation. The process of Web
transformation is illustrated in Figure 1, where there are

1 The work was partially supported by the National Science Foundation
under grant number IIS-0218738.

two types of input documents: XML/XSL or XHTML
specified, or graphs representing envisaged document
structures. We first obtain the tree structure of the input
Web document, which is then transformed to a host graph
to be processed by a spatial graph grammar. The SGG is
defined to transform the host graph to the desired
presentation layout. The layout graph is finally
automatically translated into a WML (Wireless Markup
Language) document for displaying on mobile devices or
XML/XSL/XHTML document for desktop displaying. This
paper presents our approach to this process but omitting the
conversion part for textual or graphical documents to their
tree structures (i.e. the white boxes in Figure 1). WML [16]
is a markup language based on XML, and is intended for
use in specifying the content and user interface for
narrowband devices, including cellular phones and pagers,
and more recently PDAs.

Document
Tree

Host
Graph

Layout
Graph

XHTML
XML/XSL

Graphical
W eb Editor

WM L

Figure 1 W eb page transformation process

SGG

Section 2 briefly introduces the RGG formalism. Section

3 describes the Spatial Graph Grammar, in particular, the
notations for spatial specifications and their application in
layout transformation. Sections 4, 5, and 6 walk through an
example to illustrate the application of the SGG to the
transformation of a XML/XSL or XHTML tree into a
WML document. Section 7 discusses related works,
followed by the conclusion and future work in Section 8.

2. Reserved Graph Grammars
Most graph grammars consist of a set of rewriting rules

called productions as shown in Figure 2. Each production
consists of two sub-graphs, called left graph and right
graph. Graph transformation is a sequence of applications
of productions. Applications are classified into L-
applications and R-applications. An L-application (or R-
application) is to replace a sub-graph (called a redex) in the
host graph, which is isomorphic to the left (or right) graph

of a production, with the right (or left) graph of a
production. One of the most difficult problems with graph
transformation systems is to decide which applications are
allowed and which are disallowed. Even for the most
restricted classes of graph grammars, the membership
problem is NP-hard [12].

The Reserved Graph Grammar (RGG) combines the
approaches of embedding rules and context elements to
solve the embedding problem. A RGG is a collection of
productions represented as labeled graphs. It is context-
sensitive and its right and left graphs can have an arbitrary
number of nodes and edges. The grammar uses an
enhanced node structure with a marking mechanism in its
graph representation, as shown in Figure 2. The outer
rectangle of a node is called a super-vertex and each small
rectangle embedded inside a super-vertex is called a vertex.
Semantically, there is no difference between a vertex and a
super-vertex. It is this structure with the marking
mechanism that makes a RGG effective in specifying a
wide range of visual languages and efficient in parsing the
visual programs in such languages [18].

The RGG handles the context information with simple
embedding rules and is sufficiently expressive to handle
complicated programs. In order to identify any graph
elements that should be reserved during transformation, we
simply mark each involved vertex in a participating
production by prefixing its label with a unique integer. The
purpose of marking a vertex is to preserve the context and
to avoid ambiguities. If a super-vertex or a vertex is marked,
it will retain its outgoing edges connected to the vertices
outside the redex after the application of a production.

3. Spatial Notations and Applications
The Spatial Graph Grammar (SGG) is an enhanced

RGG with notations for spatial specifications. This section
presents the SGG’s three sets of notations and their uses in
some typical Web transformations.

3.1. Spatial Specifications
The spatial graph grammar consists of three categories

of specifications: direction, topology, and alignment, as
described below.

3.1.1. Direction specification
In order to specify the direction between two nodes, one

of the most important spatial relationships, the SGG defines
a node’s super-vertex as a grid of three rows by three
columns, occupying nine areas as shown in Figure 3. The
central area represents the super-vertex itself. Surrounding
the center area, the eight areas represent eight directions: N
(North), NE (Northeast), E (East), SE (Southeast), S
(South), SW (Southwest), W (West), NW (Northwest), in
clockwise direction. Each of these directions indicates the
relative position of a node connected to the current node.

Each of the eight areas surrounding the central area may
contain more than one vertex. The nodes connected to the
vertices in the same area are in the same direction. For
instance, in Figure 3, the East area of the node has two
vertices, namely E1 and E2, indicating that the nodes
connected to E1 or E2 are both on the East side of the
current node.

3.1.2. Topology specification
We can generally define four topological relationships

between two nodes: non-overlapping, overlapping,
touching, and containing. Assume that Dx is the set of all
the points on an object x, and Bx (⊆ Dx) is the boundary
point set of x. Considering a primary object a and a
reference object b and Da ∩ Db = C, four topological
relationships are defined as the following:
• a is non-overlapping with b iff C= NULL;
• a is overlapping with b iff C≠ NULL, and further

o a is touching with b iff C ⊆ (Ba ∩ Bb); or
o a is containing b iff Db ⊆ Da.

Using a

rectangle to
represent an object,
Figure 4 shows the
four types of
topological
relationships. Non-
overlapping
indicates that there
is no common point
on both involved
objects.
Overlapping means
that there are
common points
between the two
objects. It is
represented by
dotted lines on the
boundary of the
overlapped area. We define touching and containing as two
special cases of overlapping. If common points only exist
on the boundaries of two objects, the objects are touching
with each other. The touched part is represented by a dotted

Figure 4 Topological relations

 (b) Illustration (a) Notation

Non-overlapping

Touching

Overlapping

Containing

W

 N NW NE

S SW SE

E1
C

E2

Figure 3 Node structure
with directions

1:T

Figure 2 A graph grammar
production

 Statement

2:B
T

:=

1:T
 Statement

B

2:B

 Statement

Figure 7 Grammatical representation of distance
transformation for differential scaling in Figure 6

B- A- C- B- A

B

C

line. Containing means that all the points on one object
belong to the other. In Figure 4, the boundary of an object
is totally dotted, indicating that the object is contained in
the other object.

3.1.3. Alignment specification
Two objects

may be aligned
vertically or
horizontally.
Figure 5
illustrates three
alignment
relations in the
horizontal
direction: the
alignment on the
top, bottom or
the center of the
involved objects.
We use a bold line segment to represent the part that needs
to be aligned at the same horizontal level. The alignment
relations in vertical direction are similarly defined.

3.2. Layout Transformations
This subsection relates the above spatial specifications

to some typical examples of Web transformations. We will
focus on transforming Web pages for small-screen display
on mobile devices, such as PDAs. To reduce the
presentation space while maintaining the original contents,
the simplest method is linear scaling (or normal zooming),
which does not usually produce satisfactory results. A more
elaborate technique is differential scaling [8], in which
different components of a document are scaled differently.
For example, as illustrated in Figure 6, each white space is
compressed, while the box sizes are unchanged. We will
discuss three types of transformations, i.e. distance,
zooming and location transformations, in the context of
spatial graph grammars.

3.2.1. Distance transformations
To represent a distance change between two nodes, we

postfix a “+” to the vertex label to indicate a distance
increase, “-” to indicate a distance decrease, and blank to
represent no distance change. For example, the
transformation in Figure 6 can be specified as in Figure 7.
There is a postfix “-” in vertices A, B and C, implying a
decreased distance between the three nodes.

When transforming a Web presentation to suit a PDA
screen, we may use a viewing technique known as semantic
zooming [8]. For varying interests, the presentation may
show a particular area and/or level of details. Semantic
zooming allows the viewer to zoom in hierarchically, while
adapting the layout level of each individual component or
group of components to the available screen size or to the
viewer’ s preference. For example, we may need to enlarge
one part, in which the user is particularly interested, while
compressing unrelated parts, as illustrated in Figure 8. We
need to look into the detail of object A first (since a mobile
device screen cannot display all the details in one page, so
we may view the details of A and B separately. Figure 9
depicts the combined use of distance, zooming, and
location transformations (see below) to achieve this effect.

3.2.2. Zooming transformations
Transforming a Web page from the desktop presentation

to the PDA presentation may involve many size changes.
To represent the change of a node, we use “+” in the node’ s
center box to indicate that the node will zoom in (becoming
larger) in the transformation, “-” for zoom out (smaller),
and blank for unchanged size.

3.2.3. Location transformations
When transforming the layout of a Web presentation,

not only may the distance between two objects and the size
of an object change, but also the relative positions between
the two objects may be changed. As shown in Figures 8(a)
and 9 (a), originally node B is on the right of node A. After
transformation, as in Figures 8(b) and 9(b), node B is at the

 A

 B

A

B
(a) (b)

Figure 8 Semantic zooming

A

A B

B

B

A

-

B-

A-

-

A A

B B

(a) (b) (c)

Figure 9 Grammatical transformations achieving
 semantic zooming

A B C

C B A

(a)

(b)

Figure 6 Differential scaling

 (a) Notation (b) Illustration

Figure 5 Alignment relations in
horizontal direction

bottom of node A, thus the locations of vertices A and B
have also changed.

4. A Web Example

In order to illustrate our approach, we use a popular
page in Figure 10 as an example. Our graph grammar based
approach is able to adjust the appearance intelligently to
different displaying environments. The approach has two
major advantages. First, a graphical transformation tool can
be automatically generated by a visual language generator,
such as VisPro [19]. Second, the generated transformation
tool can be used by novice users who have no computing
knowledge. We will transform this Web page into the
WML format to be displayed on mobile devices. The XML
description for the above Web page is as the following:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<page>
 <section1>
 <block1>
 <Logo>
 <pic>
 <id> nasa </id>
 <source> ./images/nasa.bmp </source>
 </pic>
 </Logo>
 <text>
 02.01.03 Building Planets in Cyberspace
 </text>
 </block1>
 <block2>
 <theme>
 <pic>
 <id> shuttle </id>
 <source> ./images/shuttle.bmp </source>
 </pic>
 </theme>
 <button>
 <link>
 <pic>
 <id> missions </id>
 <source> ./images/missions.gif </source>
 </pic>
 <href>
 http://www.nasa.gov/missions/current/
 </href>
 </link>
 ……
 </button>
 </block2>
 </section1>
 <section2>
 <pic>
 <id> improve life </id>
 <source> ./images/improvelife.bmp </source>
 </pic>
 ……
 </section2>
</page>

Assume the desirable outcome as illustrated in Figure 11.

We divide the original Web page into four small pages
based on the four images. Each page contains three parts:
the top part contains date and title (tagged “Text”) and
NASA logo (“Logo”), the middle part is an image
(“Theme” or “Picture”) and the bottom part contains three
hyperlinks (“Link”).

The output tree structure is translated into a WML
document. Each page or a single interaction between a user
agent and a user is known as a card. The beauty of this
design is that multiple screens can be downloaded to a
client in a single retrieval and vice versa. Our task is simply
to transform the XML description into several cards, each
to be displayed as a PDA page. The transformation from
the XML structure to the WML PDA pages demonstrates
the power of the SGG.

Following is part of the WML document for the PDA
presentation in Figure 11, where “card” represents a
separate page:
<wml>
 <card id="section1" Title="nasa">
 <p>

 02.01.03 Building Planets in Cyberspace
 </p>
 <p>

 </p>
 <p>

 </p>

Figure 10 The original NASA home page

Figure 11 Resulting presentation as four pages on a
PDA

 </card>

 <card id="improve" Title="improve life">
 <p>

 02.01.03 Building Planets in Cyberspace
 </p>
 <p>

 </p>
 <p>

 </p>
 <card>
 …………
</wml>

5. Structural Transformation
We first analyze the structure of this Web page. Each

Web page has a layout constructed by many objects. In our
Spatial Graph Grammar, each object is presented by a node.
If we consider all the relationships between every pair of
nodes, there will be O(n2) relationships for a total of n
nodes. When n is large enough, the number of relationships
will become prohibitively large. A Web page in XML is a
tree structure whose elements can be grouped in a hierarchy.
We can obtain the tree structure of the Web page from the
XML description as shown in Figure 12. We adopt a
hierarchical approach by grouping the nodes. A large group
is further divided into smaller groups until they will be
conveniently processed. Thus we obtain a hierarchy of the
Web page objects. The tree structure will greatly reduce the
total number of relationships among the objects of a Web
page. To convert the tree to a more structured arrangement
suitable for transformation, we need to introduce the
concepts of logical nodes and grouping.

Pic

Page

Figure 12 Tree structure of the Web page

Button

Pic Pic

Text Theme Logo

Block1

Section1 Section2

Block2

Link Link Link

…

…

The tree contains several logical nodes (LNs) such as

Page, Section1, Section2, etc. Page is the root and contains
two Section nodes. Section1 contains two Block nodes.
Block2 contains Theme and LN Button. Button contains
three Link nodes. Section2 has a number of child nodes,
called Pictures (three in the example). Such hierarchical
relationships can be automatically derived from the XML
document and used to generate the data structure in Figure
13.

We can add a Group Header if a group has many
objects of a single type. A Group Header has a generic set
of attributes applicable to the whole group. It inherits from
its parents attributes such as vertices with spatial
information. This will greatly improve the presentation

efficiency. Using the concepts of groups and LNs, we only
consider spatial relations of a node with its parent, child
and sibling (i.e. direct relatives). For example, since LN
Block1 and Block2 are siblings, we will consider the
relationship between LN Block1 and LN Block2, but not the
relationships between the members of N(Block1) (such as
Logo, Text) and those of N(Block2) (such as Theme,
N(Button)). Combining the spatial information from Figure
10 and above logical and hierarchical information from
Figure 13, the host graph as in Figure 14(a) can be
automatically generated to be processed by the spatial
graph grammar. The application of the SGG generates the
new layout structure in Figure 14(b) for PDA presentations,
which will be explained in the next Section.

Logo Text

LN(Section1) N(Page) LN(Section2)

N(Section1))

LN(Block1) LN(Block2)

N(Section2)

N(Block1)

Figure 13 A hierarchical data structure

Theme

N(Block2)

Link Link Link

Pic Pic Pic

LHead

PHead

LN(Button)

N(Button)
LHead

 Non-terminal

 Terminal

 Abstract
node

Figure 14 (a) Host graph of the original structure
(b) The resulting layout structure

Logo

Theme Text

Pic

LHead

Pic Pic

Link

Link

PHead

Card1

Logo

Theme

LHead Link Link Link

(a)

Card2

Logo Text

Pic

LHead Link

(b)

Link

Link Link

Text

6. Spatial Grammatical Specification
In order to perform the desired transformation, we

define a set of productions as illustrated in Figure 15. There
are two right graphs for some productions. The right graph
not enclosed in a dashed box participates in syntactical
parsing, and, together with the left graph, will be called a
syntax production or simply S in the following description.
The right graph enclosed in a dashed box is used for the
layout transformation, and, together with the left graph,
will be called a layout production or simply L.

6.1. Syntax Productions.
Syntax production <1> (or simply S<1>) expresses the

initial state. If a parsing eventually reaches the state λ
(initial state), it is regarded as successful [17][18].

S<2> illustrates that such a page (NASA Homepage)
consists of Card and PHead, and Card is on the top of
PHead. S<3> abstracts a Card from Section1.

S<4> specifies that Section1 contains two blocks, and
Block1 is side by side with Block2. The vertex in gray color
in a node means that it is marked and will be reserved
during parsing. For example, the vertex labeled P is marked,
and will stay unchanged after parsing.

S<5> specifies that Block1 consists of Text and Logo,
and Text is directly on the top of Logo. The vertices labeled
P and D are marked.

S<6> indicates that Block2 includes Theme and LHead.
LHead is a Group Header in the Link structure, and used to
inherit the attributes from its parents. If the Link structure
contains many members, using LHead will significantly
improve the efficiency of the graphical presentation. To
represent the containing relationship between Theme and
LHead, we use dotted boundary in LHead, and connect the
two nodes’ central grids, which represent the super-vertices.

S<7> specifies that the Link structure consists of several
terminal nodes of Link, stacked on top of each other.

S<8> and S<9> indicate that Section2 includes several
Pictures. In S<8>, PHead and Card can be reduced to
PHead. Card is an intermediate node and can be abstracted
from Picture (Pic for short) by using S<9>. We can apply
S<9> continuously until no terminal node exists.

The R-application in the SGG is a parsing process,
which in general consists of: selecting a production from
the grammar and applying an R-application of the
production to the host graph, and the process continues
until no productions can be applied. If the host graph is
transformed into an initial graph λ, the parsing process is
successful and the host graph belongs to the language
defined by the graph grammar. We first use S<9> and S<8>
to reduce the Picture structure to PHead. S<7> is used to
reduce the Link structure to LHead. S<6> is then used to
reduce LHead and Theme to Block2, and S<5> to reduce
Logo and Text to Block1. Then we use S<4> to obtain
Section1. Finally, S<2> reduces Card and PHead to Page
and S<1> to λ. Therefore the parsing process is successful.

6.2. Layout Productions
Based on the above syntax productions for parsing the

original graph, we add several extended productions
enclosed in dotted boxes called layout productions for
transforming the presentation in Figure 10 to the one in
Figure 11. The layout productions are thus an additive set
to the syntax productions. Combining these two sets of
productions, we can generate the desirable layout.

Layout production <4> (or simply L<4>) transforms
Block1 and Block2 from the horizontal relationship to
vertical relationship with Block1 on top of Block2.

L<5> transforms Text and Logo from a vertically
touching relationship to a horizontally touching relationship.

L<6> specifies how to transform two objects from a
containing relationship to a vertical relationship. Before the
transformation, Theme contains LHead. After the
transformation, Theme is on the top of LHead.

L<7> transforms a sequence of Links from vertically
touching relationships to horizontally touching
relationships it is repeatedly applied.

In L<9>, when Picture with left and right vertices is
matched, it is converted to a Block1-Pic-LHead structure,

λ := Page

<1>

Block1 :=

Logo Text
T E

<5>

D:1

Text

Logo

E

T

P:1

P:1

P:1

<2>

PHead

Page :=

C
D

Card

P

<4>

Block1

Block2

P:1

D

T

:= Section1

P:1

Block1 D Block2

P:1

T

<8>

PHead := Card P D PHead

<7>

LHead Link
D T D:1

LHead

:=

LHead

Link

D

T

 C:1

 C:1

D:2

D:2

<6>

Block2 :=
LHead

T:1 C
Theme

L T:1

LHead

Theme

L

 C

T:1

D

D

<9> Card
:=

Picture
P:1 P:1

Block1

D

Picture
P

D

LHead
C

P

D

Card := Section1

P:1 P:1

<3>

- -

-

Figure 15 Productions for the transformation from the
presentation in Figure 10 to the one in Figure 11

D:1

D:1

D:1

D:1

 C:1 C:1

D:1

D:1 D:1

whose three nodes are vertically aligned along the left
edges.

We first parse the host graph in Figure 14(a) to λ.
During parsing, a stack is used to record the sequence of
the productions being used. Then from λ we retrieve the
original parsing tree. At each step, the corresponding layout
productions are popped from the stack to perform layout
transformations. For example, when Card with its southern
vertex is matched, S<3> is used to generate Section1. Then,
we use L<4> to obtain a new layout in which Block1 and
Block2 hold a vertical relationship. For Block1, L<5> is
used to derive a horizontal relationship between Logo and
Text. Using L<6>, Theme is moved to the top of LPHead.
L<7> is used to obtain the horizontal Link structure. Now
we obtain the first PDA page, represented as Card1 in
Figure 14(b). L<9> is used to expand Card to the Block1-
Pic-LHead structure. Logo and Text are then generated
using L<5> and the Link structure generated using L<7>.
We therefore obtain the second PDA page (marked Card2
in Figure 14(b)). The third and fourth pages, also of the
Card2 structure, are generated in the same fashion. The
layout in Figure 14(b) can be automatically transformed to
the final layout illustrated in Figure 11.

7. Related Work
Much research has been conducted in the areas of text

summarization, graph compression, hierarchical and
dynamical interfaces, and graph grammar transformations,
as summarized below.

In text summarization, Buyukkokten et al. [4] presents
important ideas of extracting semantics from the Web text
yet greatly shortening the length of text. Usually, each text
page is broken into a number of text units that can be
hidden, partially displayed, fully visible, or summarized.
Some research has been done on dynamic text presentation
on mobile device using Rapid Serial Visual Presentation
(RSVP) [10].

Our work is partly inspired by Six’ s work on graph
compression [14] and Brandenburg’ s layout graph
grammars [3]. Six et al. proposed a post-processing
technique (after some major graph layout process), called
refinement, which can significantly improve the quality of
orthogonal drawings by reducing a graph’ s area, bends,
crossings, and total edge length. Layout graph grammars [3]
are context-free. With layout specifications, they can be
used to draw limited classes of graphs.

Hierarchical menu structure has been used in user
interface design based on spatial organization of
information [6]. For a mobile device, content hierarchy or
Hierarchical Atomic Navigation (HANd) has been
proposed as a new philosophy to improve Web navigation
on small displays [5]. The idea is to divide an original page
into zones and make the navigator page as a reduced
overview of the original page.

Dynamical interface constraints can be used to specify
the desired presentation of a Web document through layout
adaptation. Borning et al. [2] proposes a constraint-based
system architecture in which both the author and the viewer
can negotiate for the layout of a Web document. Marriott et
al. [8] extends Scalable Vector Graphics (SVG) with
constraint-based specification. Such an extension supports
client-side adaptation of documents to different viewing
conditions. These approaches rely on constraint solvers.
There are also a number of systems and approaches for the
presentation and dynamic authoring. Here, “authoring”
refers to creating the content for any kind of presentation or
document [9]. Dynamic authoring advocates that capture-
based systems should support flexible hypertext structures
generated by linking through interactive operations [Pim00].
Some user interface toolkits use the approach of
recognition and mediation by constructing a library of
reusable error correction and mediation tools, that can
resolve ambiguity at the input event level [7].

Weitzman and Wittenburg applied a kind of graph
grammar formalism, Relational Grammar, to the automatic
presentation of multimedia documents [15]. Another
related work is the RGG approach to XML document
design and transformation [20]. Rather than using DTD and
XSL, the Reserved Graph Grammar formalism is used to
define the XML syntax and specify the transformations to
other markup languages. Recently, we proposed a spatial
extension of the RGG, and used it to transform adaptive
multimedia presentations [21].

8. Conclusion and Future Work
This paper has presented the Spatial Graph Grammar

(SGG) and demonstrated its application in the
transformation Web presentations to suit small screen
displays, such as a PDA screen. To graphically represent
this kind of transformations, we have proposed the notation
of grid nodes, and spatial relationships about direction,
topology, and alignment. We have also presented three
types of transformations for location, zooming and distance.
A detailed example illustrates the transformation of a
desktop Web page to the WML cards in three steps:
transforming an XML file into a host graph automatically
or using a Web graph; using the SGG to transform the
layout of the host graph into a presentation suitable for
multiple small pages; and finally, generating the equivalent
WML document.

There are increasing demands for interactively changing
the detail of specific parts of a Web page when viewing it.
Such a mechanism is called interactive semantic zooming
[8]. For example, two nodes, such as A and B, may expand
their sizes alternatively. The viewing interface is changed
dynamically. Temporal specifications determine the
sequence of presentation. Allen presented some common
temporal relations such as during, before, meet relations [1],
which are potentially adaptable to Web info

transformations. We will investigate how to equip our
spatial graph grammar with temporal specification
capability and apply our SGG to the areas such as
intelligent adaptation and dynamic interfaces.

References
[1] F. Allen, “Maintaining Knowledge about Temporal

Intervals”, Communications of the ACM, 1983,
Vol.26, No.11, pp.832 – 843.

[2] A. Borning, R. K. Lin, K. Marriott, “Constraint-
based Document Layout For The Web”, Multimedia
system, Vol.8, 2000, pp.177-189.

[3] F. J. Brandenburg, “Layout Graph Grammars: the
Placement Approach”, LNCS 532, Graph
Grammars and Their Application to Computer
Science, Springer-Verlag, Berlin, 1991, pp. 144-
156.

[4] O. Buyukkokten, H. Garcia-Molina and A.
Paepcke, “Text Summarization of Web Pages on
Handheld Devices”, Proc. Workshop on Automatic
Summarization 2001, June 2001, Pittsburgh, PA.

[5] F. J. González-Castaño, L. Anido-Rifón and E.
Costa-Montenegro, “A New Transcoding
Technique for PDA Browsers Based on Content
Hierarchy”, Proc. Mobile HCI’2002 - 4th
International Symposium, LNCS 2411, Pisa, Italy,
Sep. 18-20, 2002, pp.69-80.

[6] G. Lorho, J. Hiipakka and J. Marila, “Structured
Menu Presentation Using Spatial Sound
Separation”, Proc. Mobile HCI’2002 - 4th
International Symposium, LNCS 2411, Pisa, Italy,
Sep. 18-20, 2002, pp.419-424.

[7] J. Mankoff, G. D. Abowd and S. E. Hudson,
“OOPS: A Toolkit Supporting Mediation
Techniques for Resolving Ambiguity in
Recognition-Based Interfaces”, Computers and
Graphics, Vol.24, No.6, Dec. 2000, pp.819-834.

[8] K. Marriott, B. Meyer, and L. Tardif, “Fast and
Efficient Client-side Adaptivity for SVG”, Proc
WWW’2002, 2002, pp.496-507.

[9] B. A. Myers, “Authoring Interactive Behaviors for
Multimedia”, Proc. 9th NEC Research Symposium,
Nara, Japan, Aug.-Sep., 1998

[10] G. Öquist and M. Goldstein, “Toward an Improved
Readability on Mobile Devices: Evaluating
Adaptive Rapid Serial Visual Presentation”, Proc.
Mobile HCI’2002 - 4th International Symposium,
Pisa, Italy, Sep. 18-20, 2002, pp. 255-240.

[11] M. Pimental, G. Abowd, and Y. Ishiguro, “Linking
by Interacting: A Paradigm for Authoring Hypertext
and Hypermedia”, CACM, May 2000, pp. 39-48.

[12] G. Rozenberg and E. Welzl, “Boundary NLC Graph
Grammars – Basic Definitions, Normal Forms, and
Complexity”, Information and Control, Vol.69,
1986, pp.136-167.

[13] G. Rozenberg (Ed.), Handbook on Graph
Grammars and Computing by Graph
Transformation: Foundations, Vol.1, World
Scientific, 1997.

[14] J. M. Six, K. G. Kakoulis and I. G. Tollis,
“Techniques for the Refinement of Orthogonal
Graph Drawings”, Journal of Graph Algorithms
and Applications, Vol.4, No.3, 2000, pp.75-103.

[15] L. Weitzman and K. Wittenburg, “Automatic
Presentation of Multimedia Documents using
Relational Grammars”, Proc. ACM Multimedia’94,
San Francisco, USA, Oct. 15-20, 1994.

[16] Wireless Application Protocol Forum, Ltd, Wireless
Markup Language, Version 2.0, Sep. 2001.

[17] D. Q. Zhang, “Generation of Visual Programming
Languages”, Ph.D. Thesis, Macquarie University,
1998.

[18] D. Q. Zhang, K. Zhang, and J. Cao, “A Context-
Sensitive Graph Grammar Formalism for the
Specification of Visual Languages”, The Computer
Journal, Vol. 44, No. 3, 2001, pp.187-200.

[19] K. Zhang, D-Q. Zhang, and J. Cao, “Design,
Construction, and Application of a Generic Visual
Language Generation Environment”, IEEE
Transactions on Software Engineering, Vol.27,
No.4, April 2001, 289-307.

[20] K. Zhang, D-Q. Zhang, and Y. Deng, “A Visual
Approach to XML Document Design and
Transformation”, Proc. 2001 IEEE Symposium on
Human-Centric Computing Languages and
Environments, Stresa, Italy, 5-7 Sep. 2001, pp.312-
319.

[21] K. Zhang, J. Kong, and M. K. Qiu, “Multimedia
Layout Adaptation Through Grammatical
Specifications”, Technical Report, UTDCS-08-03,
University Of Texas at Dallas, 2003.

