

Graph-based Consistency Checking in Spatial Information Systems

Jun KONG Kang ZHANG
Department of Computer Science, The University of Texas at Dallas,

Richardson, TX 75080-0688, USA
{ jxk019200, kzhang}@utdallas.edu

Abstract

Consistency checking of cardinal directions is one of
the important problems in qualitative spatial reasoning.
This paper presents a graph model to visually represent
direction specifications. In the model, nodes represent
regions occupied by objects, and directed edges indicate
direction relationships between objects. This graph model
can be applied not only to consistency checking, but also
to general spatial reasoning. Based on this model, we
present an efficient algorithm that performs consistency
checking on a set of definitive direction specifications by
analyzing the connectivity of the participating nodes. The
consistency checking algorithm is performed in O(n4)
time.

1. Introduction

The real world is made up of numerous objects with
spatial relationships, and it is necessary to recognize their
locations relative to each other. Therefore, spatial
knowledge consisting of information about topology [1]
[2], orientation [3], distance [4] and shape [5] etc is an
important class of commonsense knowledge, and attracts
much attention.

Qualitative approach to the representation of spatial
knowledge, which is characterized by making only as
many distinctions in the domain of discourse as necessary,
gains popularity recently [6], since it is considered to be
analogue to how human represents and reasons about
commonsense knowledge. The issues in qualitative spatial
reasoning (QSR) include spatial inference, consistency
checking, path finding etc, which can be applied to many
applications, such as spatial databases [7].

This paper focuses on the problem of consistency
checking, i.e. whether we can find a solution to assign a
location to every object satisfying a set of direction
specifications. In the previous researches, many spatial
models approximated an object by a point or by a minimal
bounding box [8]. Such an approximation, however, is
often inaccurate. Goyal and Egenhofer [9] presented a
model that only approximated the reference object while

using the exact shape of the primary object. Skiadopoulos
and Koubarakis [10] formally defined and studied the
composition operation for cardinal direction relationships
expressed in the model of Goyal and Egenhofer.
Furthermore, the first consistency checking algorithm
based on Goyal and Egenhofer’s spatial model was
developed through constraint solving [11].

Goyal and Egenhofer [9] defined nine atomic
relationships between two objects, southwest (SW), west
(W), northwest (NW), north (N), northeast (NE), east (E),
southeast (SE), south (S) and same (0). We present a
graph model to visually represent direction specifications,
and perform a consistency checking on the graph model
rather than through a constraint solver used by
Skiadopoulos and Koubarakis [11]. In the graph model,
nodes represent the regions occupied by objects, and
directed edges indicate the direction relationships between
objects. Based on the model, consistency checking is
performed by analyzing the connectivity of participating
nodes. Our main contributions include a graph-based
model for effective spatial reasoning and a consistency
checking algorithm that runs in O(n4) time instead of O(n5)
as required by the constraint-based approach of
Skiadopoulos and Koubarakis.

The rest of the paper is organized as follows. Section 2
briefly introduces the spatial model of Goyal and
Egenhofer [9]. Section 3 presents our graph model in
representing direction relationships. Section 4 illustrates
how to refine a generated directed graph. Section 5
analyzes the connectivity constraints among nodes.
Section 6 presents a consistency checking algorithm and
analyzes its time complexity. Section 7 reviews related
work, and finally Section 8 gives the conclusion and
proposes future research.

2. The spatial model for direction definition

We define directions in the Euclidean space R2, where
the region occupied by an object is specified as a non-
empty set of points. In the following description, the term
“object” denotes the region occupied by an object.

Definition 1: An object i occupies a region
Regi={ (x,y) | f(x,y) = true} . Regi is a closed area with
boundary lines.

The projections of the greatest lower bound of an
object i on the y-axis and x-axis are denoted as Infy(i) and
Infx(i), and the projections of the least upper bound on the
y-axis and x-axis as Supy(i) and Supx(i) respectively.

Definition 2: An object i is valid in the vertical
direction iff Infy(i) < Supy(i).

Definition 3: An object i is valid in the horizontal
direction iff Infx(i) < Supx(i).

Definition 4: An object i is valid iff it is valid in both
vertical and horizontal directions.

Concerning an object i, the straight lines at Infx(i),
Supx(i), Infy(i) and Supy(i) construct a minimal bounding
box denoted as mbbi, and divide the first quadrant into
eight areas denoted as NWi, Ni, NEi, Wi, Ei, SWi, Si and SEi
as shown in Figure 1.

Definition 5: An object p, called primary object,
locates at P of another object r, called reference object, iff
Regp∩Pr ≠ NULL, where P∈ { NW, N, NE, W, E, SW, S,
SE} . The same relationship defined by Goyal and
Egenhofer [9], i.e. the relationship between the
overlapping parts of two overlapped objects, is not
considered in this paper.

A primary object can lie in more than one direction
area determined by a reference object. We, therefore, use
a set to represent a direction relationship between objects.
For example, Figure 2 demonstrates that the primary
object b occupies three direction areas relative to the
reference object a, and the direction relationship is
denoted as b{N,NW,W}a. Moreover, we impose a
counterclockwise order on the direction set, which implies
that b{W,NW,N}a is not a valid direction specification.

In order to specify the condition of several possible
direction relationships between objects, the notation “+”
is introduced to represent disjunctive directions. For
example, a{NW,W}+{W,SW}b specifies that a may locate
northwest and west, or west and southwest to b. The
consistency checking on a set of disjunctive direction
specifications is NP-Complete [11].

Definition 6: A definitive direction relationship
between two objects is represented as bRa, where b is the
primary object, and a is the reference object. In general, R
∈ 2P, where P = { N, NW, W, SW, S, SE, E, NE} .

Given bRa, the following properties hold:
• R ⊆ {NW, N, NE} iff Supy(a) ≤ Infy(b);
• R ⊆ {SW, S, SE} iff Supy(b) ≤ Infy(a);
• R ⊆ {NW, W, SW} iff Supx(b) ≤ Infx(a);
• R ⊆ {NE, E, SE} iff Supx(a) ≤ Infx(b).

We assume that every sub-region of a primary object
divided by a reference object is also closed without a hole.
In Figure 2, for example since object c contains two
separate regions in Ea, c’s relationship with a is beyond
our consideration.

3. A graph model for spatial reasoning

Based on the afore-mentioned spatial model, this
section presents a graph model to represent the direction
relationships between objects for effective consistency
checking and spatial reasoning.

3.1. Preliminaries

We use Dx to denote a set of direction specifications
among a set of objects X.

Definition 7: Dx is consistent in vertical direction iff
∀x∈X, x is valid in the vertical direction.

Definition 8: Dx is consistent in horizontal direction
iff ∀x∈X, x is valid in the horizontal direction.

Definition 9: Dx is consistent iff ∀x∈X, x is valid.
According to the above definition, the set of direction

specifications { a{N}b, b{N}c} is consistent. On the
contrary, {a{N}b, b{N}c, c{N}a} is inconsistent, which
can be easily verified. If the above set is consistent, it
should satisfy the condition Infy(r) < Supy(r), where
r∈{a,b,c} . According to direction specifications, the
following properties can be easily derived:

Infy(a)
�

 Supy(b)
Infy(b)

�
 Supy(c)

Infy(c)
�

 Supy(a)
Therefore, we derive Infy(a)

�
 Supy(a), which contradicts

with the assumed condition.
Consistency checking can be performed independently

on both vertical and horizontal directions, since they are
orthogonal. In the following sections, we only illustrate

y

x

Figure 2. An example

a

b
c

 y

x

NWi Ni NEi

Wi mbbi Ei

SWi Si SEi

Figure 1. Eight direction areas

how to detect inconsistency in the vertical direction. The
same principle applies to that in the horizontal direction.

3.2. The graph model

If nodes are used to represent the regions occupied by
objects, and directed edges to indicate the direction
relationships between objects, we can convert a set of
direction specifications into a directed graph.
Consequently, consistency checking becomes the problem
of connectivity checking on the directed graph.

A reference object r divides a primary object p into
one or more pieces while keeping itself as one entity.
Therefore, r is always represented by a single node in our
graph model. On the other hand, p is represented by
node(s), the number of which is equal to that of sub-
regions obtained from the division by r. Briefly, the
process of generating a directed graph proceeds as follows:

1. Generate a node to represent the region occupied
by r, and node(s) to represent sub-region(s) of p.

2. Connect two nodes representing adjacent sub-
regions of p directed from south to north.

3. Connect the node representing a sub-region of p
and the node representing r directed from south
to north.

Given a specification p{NW,W,SW,S}r, object p is
divided into four regions, namely p1, p2, p3 and p4, by r as
illustrated in Figure 3(a). When performing consistency
checking in the vertical direction, we only care horizontal
divisions (respectively, vertical divisions are considered
when we perform consistency checking in the horizontal
direction), which divide object p into three regions, i.e. p1,
p2 and (p3∪p4). Due to orthogonality, we only illustrate
consistency checking in the vertical direction. The same
principle applies to the horizontal direction. In the
following description, we will omit the mention of
directions when the context is clear. Regarding the
primary object, each sub-region obtained from the
division by the reference object is represented by a node,
and a directed edge connects two nodes representing
adjacent sub-regions of a single object from south to north.

As mentioned above, a directed graph is generated to
designate the division to a primary object according to the
direction specification. Figure 4 lists all possible directed
graphs, called partitions, which illustrate the direction
relationships between sub-regions of a primary object

obtained from the division by a reference object. Figure 4
only presents one example of direction specifications
corresponding to every type of partitions, while different
direction specifications can generate the same type of
partition. For example, p{ NW,W} r and p{ W,SW} r lead to
the same partition (Partition 3) concerning the primary
object p.

We define a Level function for each node and a Depth
function for every afore-mentioned directed graph D=(V,
E) , and ai, aj ∈ V:

Depth (D) = MAX{ Level(ai)} .

Level (ai) =
1, if ai has no outgoing edge;

MAX{Level(aj)} + 1, (ai,aj) ∈ E, otherwise.

A primary object can be specified in relation to

different reference objects in Dx. Consequently, it will be
divided several times by different reference objects. For
every object a in X, we introduce a set of regions denoted
as A={ axj | axj is a sub-region belonging to a} . Every
element in A is distinguished by two indices. The first
index x indicates the object in the direction specification
of aRx or xRa, and the second index j indicates the j th sub-
region obtained from a division according to the above
specification. Specifically, when object a serves as a
reference object in relation to object x, ax1 is added to A.
For example, Dx = { a{NW,W}b, c{SE,E,NE}b,

r

p1

p2

p3

p4

Figure 3. Visual illustration about divisions

(a)

a

b

ca1

c

cb1

cb2 ca2

(b)

p

y

x
y

x
y

x

Figure 4. Directed graphs representing
all possible horizontal divisions

y

x

y

x

y

x

Partition 1 Partition 2

Partition 3 Partition 4

y

x

Partition 6

Partition 7 y

x

Partition 8

Partition 5

Visual illustration of
direction

specifications

Visual illustration of
direction

specifications

Generated
graphs

Generated
graphs

c{N,NW,W}a} involves three objects. Correspondingly,
three sets of regions, namely A, B and C, are created. The
first occurrence of a is in a{NW,W}b, and a is divided into
two sub-regions by b. Therefore, ab1 and ab2 are inserted
into A. In its second occurrence, a acts as a reference
object in c{N}a. Correspondingly, ac1 is added to A. Since
there is no more occurrence of a in Dx, A= {ab1, ab2, ac1} .
The other two sets of regions are presented as follows:

B={ba1, bc1}
C={ cb1,cb2,cb3,ca1,ca2}

In the graph model, nodes are used to represent
regions satisfying the condition that regions with common
boundaries must be mapped to the same node. When an
object x remains one entity, its boundaries, i.e. Infy(x) and
Supy(x), are unchanged. Therefore, in a set A, elements
representing the entity of a should be mapped to the same
node. For example, given Dx={ a{N}b, c{N}a} , A={ab1,
ac1} . Since ab1 and ac1 represent the entity with common
boundaries of Infy(a) and Supy(a), they are mapped to a
single node. However, if an object is divided into several
sub-regions, which share no common boundaries, then
each sub-region is represented by a unique node. For
example, in Figure 3(b), c is divided into two sub-regions
by a, namely ca1 and ca2. Also, c is divided into cb1 and cb2
by b. Obviously, the four sub-regions share no common
boundaries. Each of them maps to a unique node. After
combining elements representing an identical region and
connecting every pair of nodes representing adjacent sub-
regions from south to north, a component graph, which
demonstrates all divisions to an object in a set of direction
specifications, is constructed.

After constructing component graphs for all objects,
we can build relationships between nodes in different
component graphs, i.e. between primary and reference
objects. If a sub-region of a primary object p locates south
to a reference object r, starting from the node representing
the sub-region of p and ending at the node representing r,

a directed edge connects the two nodes. On the other hand,
if a sub-region of p locates north to r, we reverse the
connecting direction.

For example, a set of direction specifications
Dx={ c{E,NE}a, c{N,NW,W,SW}b} is visualized in Figure
5(a). Object c is divided into two sub-regions by a,
namely ca1 and ca2, and into three sub-regions by b,
namely cb1, cb2 and cb3. The component graph of c is
illustrated in Figure 5(b). Since ca1 is north to a, an edge
connects from a to ca1 as illustrated in Figure 5(c). We
call such a graph Spatial Graph in Vertical Direction or
SGV (the two dashed circles containing a1 and ca2, and b1
and cb2 will be explained in Section 4).

Theorem 1: In a SGV, the following properties hold
for every node in Partitions 2 to 8:

• ai has no outgoing edge if Level(ai) = 1, and
• ai has no incoming edge if Level(ai) = Depth(D),

where D = (V, E) is a partition, and ai ∈ V.
Proof:

(1) First, we prove that ai has no outgoing edge if
Level(ai) = 1.

Assume an edge e=(ai,bj), which indicates Infy(bj) �
Supy(ai). According to the definition of Level, it follows
that ai and bj belong to different component graphs. If ai is
the reference object, ai falls in Partition 1, which
contradicts with the assumption. Therefore, bj must be the
reference object.

If the highest point of a is contained in the region
represented by ai, every point in a is lower than any point
in bj, i.e. Infy(bj) � Supy(a). Therefore, a falls in Partition 1,
which contradicts with the assumption. Otherwise,
assume the region represented by am contains the highest
point. If Supy(am) ≤ Infy(bj), a falls in Partition 1; if
Supy(am) > Infy(bj), the line of Infy(bj) divides a into two
regions. am represents the upper region, and ai the lower
one. Therefore, there is an edge from ai to am, which
contradicts with the assumption Level(ai) = 1.

(2) The second statement can be proven in a similar
way. �

4. Refining the SGV

A SGV only builds relationships between nodes in the

vertical direction. However, relationships in the horizontal
direction function as a bridge between different objects,
and play an important role in consistency checking. For
example, given { a{W}b, c{N}a, b{N}c} , we construct a
SGV as illustrated in Figure 6(a).

The above set of
direction specifications
is inconsistent, which
cannot be detected from
the SGV. Since object a
locates west to object b,
we can treat them as a

a

b c

(a) Direction Specification

(b) Three Component Graphs

a
c

b

(c) Connecting Components

a

c

b

Figure 5. Spatial graph in vertical direction

ca1

ca2

cb1

cb2

cb3

ca1

ca2 cb3

cb2

cb1

a1
b1 a1 b1

a b

c

a b

c

Figure 6. Two nodes merged
into a super node

(a) (b)

single object when analyzing consistency in the vertical
direction. Through a super-node obtained by merging a
and b as illustrated in Figure 6(b), a cycle indicating
inconsistency appears in the graph. In general, when
performing consistency checking in the vertical direction,
we need to merge each pair of nodes representing two
objects with west/east relationships into a super-node
denoted by a dashed circle (similarly, we merge the nodes
representing objects with south/north relationships when
performing consistency checking in the horizontal
direction). For example, in Figure 5(c), a1 and ca2 are
merged into a super-node, and b1 and cb2 into another one.

Such a simple merge, however, is not always correct.
Given { b{SE,E,NE}a, c{W}b, a{N}c} , the corresponding
SGV is illustrated in Figure 7, and a path from bc1 to ba1 is
formed with the help of super-nodes. The path indicates
inconsistency (the explanation will be given in Section 5),
but we can find a consistent case as shown in Figure 8.
The reason resulting in a wrong deduction is that when
a{W}b or a{E}b is defined in Dx, the two dividing lines of
Infy(b) and Supy(b) may not cross over object a. Since
Infy(a) and Supy(a) must cross over object b in the
condition of a{W}b, we replace a{W}b with a new
direction specification by swapping the reference object
and the primary object (a{E}b is processed in a similar
way as a{W}b). The new direction specification is
determined by the size of a. Specifically, there are four
possible cases regarding the position and height of a as
illustrated in Figure 9(a):

• a is smaller than b, and there is no common
upper or lower boundary;

• a is smaller than b, and there is a common upper
boundary;

• a is smaller than b, and there is a common lower
boundary;

• a and b are of the same height.
Corresponding to each case, a SGV is presented in Figure
9(b) after swapping the reference and primary objects. A
subscript “h” is used to indicate that two objects are of the
same height. For example, b{Eh}a indicates that b is
located east to a, and they are of the same height.

Investigating all possible cases is inefficient, and will
cause exponential increase in run-time when the number
of objects is increased. Fortunately, we only need to
check the first case due to the following Theorem 2.

Theorem 2 uses the notation of 1
xD to represent the Dx

obtained by replacing a{W}b with b{SE,E,NE}a. Similarly,
2
xD , 3

xD and 4
xD represent the Dx obtained by replacing

a{W}b with b{SE,E}a, b{E,NE}a and b{Eh}a respectively.

Theorem 2: Given a{W}b in Dx, if 1
xD is inconsistent,

then 2
xD , 3

xD and 4
xD are all inconsistent.

Proof: We only need to prove that if one of 2
xD , 3

xD ,

and 4
xD is consistent, 1

xD is consistent too.

(1) Assuming that 2
xD is consistent, we need to prove

that 1
xD is consistent too.

We extend the length of object b to the north while
keeping object a unchanged. The direction relationship
between a and b is changed to b{SE,E,NE}a. Then we
extend other relevant objects according to the algorithm
Extension in Figure 10. In the algorithm, Q represents a
queue storing objects. p and q denote objects.

Figure 10. The algorithm Extension

Extension
{
 If the set of direction specifications includes pRb or bRp
 Add p to Q;
 While (Q is not empty)
 {
 Extract p from Q;
 Extend the length of p to the north;
 If the set of direction specifications includes pRq or qRp
 then add q to the queue while q is not in Q;
 }
}

Since we extend the length of every relevant object in
the same proportion, the extension will not affect the
consistency. Therefore, if 2

xD is consistent, 1
xD is

consistent too.
(2) The other two sub-cases can be proved in a similar

way. �
In summary, whenever a{W}b or a{E}b is defined, we

merge a and b through the following approach:

b
c

a

Figure 8. A valid case for the
specifications in Figure 7

c

b

a

Figure 7. An incorrect
merge

bc1

ba1

Figure 9. Four cases for a{W}b, and their
corresponding directed graphs after swapping the

primary and reference objects

(a) Four possible cases to a{W}b

a b
a

b a b a b

(b) Directed graphs after swapping the primary
and reference objects

b{SE,E,NE}a b{SE,E}a b{E,NE}a b{Eh}a

a

b
a b

a
b a b

• Represent the primary object by a single node as
illustrated in Figure 11(a).

• Represent the reference object by a directed
graph as illustrated in Figure 11(b),

• Merge nodes a and ba2.

According to the above approach, the SGV illustrated
in Figure 7 is revised to that in Figure 11(c), which
denotes a consistent status on the set of direction
specifications.

5. Connectivity constraints

In the previous sections, we introduced a graph model

to visually represent definitive direction relationships.
Based on the graph model, consistency checking is
performed by analyzing the connectivity information.
This section will analyze connectivity constraints among
participating nodes. If an object is derived to locate totally
or partially north/south to the object itself, the set of
direction specifications is inconsistent. We will transform
the above statement to connectivity constraints through
the following theorems.

Theorem 3: (1) If a SGV contains a cycle, the set of
direction specifications is inconsistent. (2) If (1) is true,
only super-nodes or nodes in Partition 1 are in the cycle.
Proof:

(1) Assume that the set of direction specifications is
consistent, and there is a cycle denoted as a1a2……an,
where a1=an. We can deduce that Infy(ai+1)

�
 Supy(ai),

where 1 ≤ i < n. Therefore, Infy(an)
�

 Supy(a1) = Supy(an),
which contradicts with the assumption.

(2) Assume that a node a, which is neither in Partition
1 nor inside a super-node.

• If Level(a)=1, a has no outgoing edge according
to Theorem 1, which contradicts with the
assumption.

• If Level(a)=2, there is only one outgoing edge
connecting to node b, where Level(b) = 1. If b is
in a super-node, a has no incoming edge; if b is
not in a super-node, b has no outgoing edge.
Either case contradicts with the assumption.

• If Level(a)=3, a has no incoming edge according
to Theorem 1, which contradicts with the
assumption. �

The connectivity constraint described in Theorem 3
reflects the inconsistency that an object is derived to

locate totally north/south to the object itself. The
connectivity constraint il lustrated in Theorem 4 reveals
the inconsistency that one object is specified to locate
partially north/south to the object itself.

Theorem 4: There is a path denoted as ai,…,aj, where
ai∈Vi, aj∈Vj, partition Di = (Vi,Ei) and partition Dj = (Vj,
Ej) belong to the same component graph representing
object a,
(1) If Level(ai) = 1, Dx is inconsistent; or
(2) If Level(aj) = Depth(Dj), Dx is inconsistent.
Proof:

(1) We prove the statement with the first condition by
considering the condition in two cases.

CASE 1: Assume that there is no node am except ai in
Di that Level(am) = 1.

According to the assumption, the sub-region
represented by ai must contain the highest point of object
a, i.e. Supy(ai) = Supy(a).

If ai falls in Partition 1, it is obvious that:
Infy(aj) > Supy(ai) = Supy(a) ---(1)

If ai does not fall in Partition 1, ai must be inside a
super-node, and connect to other nodes through the super-
node obtained by merging ai with a reference object b.
We can derive relationship (1) from the following
relationships:

Infy(aj) > Supy(b) ---(2)
Supy(b) > Supy(ai)---(3)

Relationship (2) is obvious, and relationship (3) is true;
otherwise, b will divide ai further into two nodes. Since aj
represents a sub-region of object a, Supy(a)

�
 Supy(aj) >

Infy(aj), which contradicts with the assumption.
CASE 2: Assume that there is another node am in Di in

addition to ai such that Level(am) = 1. If the region
represented by aj contains the highest point, it has already
been proved based on the above proof. Otherwise, assume
that am contains the highest point, i.e. Supy(am) = Supy(a).
Since Di contains at least two nodes, am and ai, Di cannot
fall in Partition 1. It follows that ai must be inside a super-
node, which also contains node am and the reference
object b as illustrated in Figure 12. Therefore, the
following relationships are satisfied:

Infy(aj) � Supy(b)
Supy(b) � Supy(am)

Infy(aj) � Supy(am)=Supy(a) is derived, which contradicts
with the assumption.

(2) The proof for the second condition is similar to
that for the first one. �

b am ai aj

 a

c

a

b aj am ai

(a) A SGV (b) aj is part of a while
locating north to a

Figure 12. Illustration about Theorem 4

Figure 11. A correct merge

 Primary
 Object

(a) Reference
 Object

(b)
c

b
a

(c)

a

ba1

ba2

 ba3

6. A consistency checking algorithm

As described previously, we construct a directed graph

from a set of definitive direction specifications. Having
proven Theorems 3 and 4, we can detect inconsistency on
a set of direction specifications by analyzing the
connectivity of the participating nodes. In order to
retrieve the connectivity information between nodes, we
perform a breadth-first search starting from every node,
and store the connectivity information in a matrix. This
algorithm proceeds as follows:

1. Convert a set of definitive direction
specifications into a directed graph as described
in Section 3.

2. Refine the directed graph as described in Section
4.

3. Perform a breadth-first search for connectivity
information starting from every node.

4. Analyze the connectivity of the participating
nodes as described in Section 5, and deduce
whether the set of direction specifications is
“consistent”.

Given n objects, the number of the direction
specifications is O(n2). Since at most 5 nodes for a
primary object and one node for a reference object can be
generated, there are O(n2) nodes in a SGV. It will take
O(n2) time to complete a breadth-first search. Since there
are O(n2) iterations, the third step will take totally O(n4)
time. The last step will take O(n4) since there are O(n4)
pairs of nodes. Consequently, our algorithm will perform
in O(n4) time.

Theorem 5: The checking algorithm deduced from
Theorems 3 and 4 is complete.
Proof: Different partitions belonging to a component
graph reflect different divisions of a single object. If a set
of definitive direction specifications is inconsistent, at
least one object a cannot be defined in a valid minimal
bounding box, i.e. Supy(a) ≤ Infy(a). If we translate the
above case to the connectivity in a SGV, there exists a
path between two nodes, one of which represents the sub-
region covering either the highest point or the lowest
point, and the other represents a sub-region belonging to
the same object. Therefore, it is sufficient to check the
connectivity constraints described in Theorems 3 and 4. �

Theorem 6: If a set of direction specifications is
consistent in both vertical and horizontal directions, it is
consistent.
Proof: It is obvious since the vertical and horizontal
directions are orthogonal. �

7. Related work

In general, there are three models of spatial knowledge:

quantitative, qualitative and hybrid [12]. Quantitative
models are relatively well known in robotics and vision

etc. However, the abstraction capability of such a model
is usually weak. A qualitative model makes only as many
distinctions as necessary [6] so that the granularity is
dependent on applications. A hybrid model is of a mixture
of quantitative and qualitative approaches or a further
division of qualitative regions into more detailed levels.
Since the qualitative approach is considered to be
analogue to how human represents and reasons about
commonsense knowledge, it gains popularity recently.

In qualitative spatial reasoning, Frank discussed two
approaches about directions [13]. One is a cone-shaped
approach, which divides the reasoning space into eight
regions around the reference point; the other is a
projection-based approach. According to Ligozat [3],
assuming representing directions among objects through a
binary constraint network, the consistency problem can be
viewed as a spatial version of a general problem of
temporal reasoning, which has been extensively studied.

However, objects have different shapes, and it is often
inaccurate to approximate an object by a point. Goyal and
Egenhofer [9] presented a spatial model, which only
approximates the reference object while using the exact
shape of the primary object. Skiadopoulos and
Koubarakis [11] gave an algorithm for consistency
checking through constraint-solving. The algorithm is
implemented in three steps: initially, it introduces the
atomic cardinal direction constraints and additional
constraints into a set; then the algorithm detects the
consistency of the set of constraints; if the set is consistent,
it finally considers the set-union constraints. This
algorithm is performed in O(n5) time.

8. Conclusion

Spatial knowledge is an important aspect of

commonsense, and consistency checking is a significant
research field in qualitative spatial reasoning. This paper
has presented a graph model for representing direction
relationships and effective spatial reasoning. In the graph
model, nodes represent the regions of objects, and
directed edges indicate the direction relationships between
objects. Based on the model, we present an efficient
algorithm that performs consistency checking in O(n4)
time by analyzing the connectivity of participating nodes.

Consistency checking has potential applications. For
example, in spatial databases, it can be used to detect
inconsistent spatial queries and prune the search space. In
particular, we are interested in applying the approach to
visual programming and design of visual languages.
Spatial and structural (abstract) information are two
essential aspects to visual languages. A graph grammar
formalism [14] has been proposed to intuitively integrate
spatial specifications with structural specifications using
visual notations. Maintain spatial consistency inside a
grammar rule is trivial. It, however, is challenging to

detect inconsistency in a spatial configuration defined by
a set of grammar rules. Since this issue can be addressed
as detecting inconsistency in a given set of direction
relationships, it is natural to apply our approach to verify
spatial configurations defined through spatial graph
grammars.

Our future research will focus on the following two
directions:

• This paper concentrated on connected regions
without a hole. However, disconnected regions or
regions with holes are useful to model various
geographical situations [11]. We will extend our
approach to accommodate such regions by
decomposing them into connected regions.

• The ability of using graph grammars to explicitly
specify the physical layout apart from the logical
structure of a graph is extremely useful in many
applications, such as graph layout [15], spatial
databases, multimedia design, and pattern
recognition. We extended a context-sensitive graph
grammar formalism, i.e. Reserved Graph Grammar
(RGG) [16] [17], with the capability of spatial
specifications [14]. It is desirable to provide a
mechanism to automatically analyze the
consistency on a set of user-provided spatial
specifications. Integrating our consistency
checking algorithm with the extended RGG is
planned in the next stage of our research
framework.

References:

[1] E. Clementini and P.D. Felice, “ A Comparison of Methods
for Representing Topological Relations”, Information Sciences,
Vol.3, 1995, pp. 149-178.

[2] A. Isli, L. M. Cabedo, T. Barkowsky, and R. Moratz, “A
Topological Calculus for Cartographic Entities”, Spatial
Cognition II - Integrating Abstract Theories, Empirical Studies,
Formal Models, and Practical Applications, Berlin: Springer,
2000, pp. 225-238.

[3] G. Ligozat, “Reasoning about Cardinal Directions”, Journal
of Visual Languages and Computing, Vol.9, 1998, pp. 23-44.

[4] E. Clementini, P. D. Felice, and D. Hernández, “Qualitative
Representation of Positional Information”, Artificial Intelligence,
Vol.95, Sep. 1997, pp. 215-444.

[5] A. G. Cohn, “A Hierarchical Representation of Qualitative
Shape Based on Connection and Convexity” , Proc. the

International Conference on Spatial Information Theory,
COSIT'95, LNCS 988, 1995, pp. 311-326.

[6] D. Hernández and E. Jungert, “Special Section on
Qualitative Spatial Reasoning” , Guest Editors’ Introduction,
Journal of Visual Languages and Computing, Vol.9, 1998, pp.
1-3.

[7] D. Papadias, Relation-based Representation of Spatial
Knowledge, Ph.D. Thesis, National Technical University of
Athens, 1994.

[8] C. Freksa, “Using Orientation Information for Qualitative
Spatial Reasoning”, Proc. International Conference GIS - From
Space to Territory: Theories and Methods of Spatio-Temporal
Reasoning, 1992, pp. 162-178.

[9] R. Goyal and M. J. Egenhofer, “Cardinal Directions between
Extended Spatial Objects”, IEEE Transactions on Knowledge
and Data Engineering, (in press), Available at
http://www.spatial.maine.edu/~max/RJ36.html.

[10] S. Skiadopoulos and M. Koubarakis, “Composing Cardinal
Direction Relations” , Proc. 7th International Symposium on
Advances in Spatial and Temporal Databases, 2000, pp. 299-
317.

[11] S. Skiadopoulos and M. Koubarakis, “Consistency
Checking for Qualitative Spatial Reasoning with Cardinal
Directions”, Proc. 8th International Conference on Principles
and Practice of Constraint Programming, 2002, pp. 341-356.

[12] D. Hernández and A. Mukerjee, “Tutorial on
Representation of Spatial Knowledge” , Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI-95), Montreal,
Canada, 1995.

[13] A. U. Frank, “Qualitative Spatial Reasoning with Cardinal
Directions”, Journal of Visual Languages and Computing, Vol.3,
1992, pp. 343-371.

[14] M. K. Qiu, G. L Song, J. Kong, and K. Zhang, “Spatial
Graph Grammars for Web Information Transformation”, Proc.
VL2003 2003 IEEE Symposium on Visual/Multimedia
Languages, Auckland, New Zealand, 28-31 October 2003.

[15] F. J. Brandenburg, “Designing Graph Drawings by Layout
Graph Grammars” , Proc. the DIMACS International Workshop
on Graph Drawing, LNCS 894, 1995, pp. 416-428.

[16] D. Q. Zhang, Generation of Visual Programming
Languages, Ph.D. Thesis, Macquarie University, 1998.

[17] D. Q. Zhang, K. Zhang, and J. Cao, “A Context-sensitive
Graph Grammar Formalism for the Specification of Visual
Languages”, The Computer Journal, Vol.44, Issue.3, 2001, pp.
187-200.

