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Abstract 
 


Consistency checking of cardinal directions is one of 
the important problems in qualitative spatial reasoning. 
This paper presents a graph model to visually represent 
direction specifications. In the model, nodes represent 
regions occupied by objects, and directed edges indicate 
direction relationships between objects. This graph model 
can be applied not only to consistency checking, but also 
to general spatial reasoning. Based on this model, we 
present an efficient algorithm that performs consistency 
checking on a set of definitive direction specifications by 
analyzing the connectivity of the participating nodes. The 
consistency checking algorithm is performed in O(n4) 
time. 
 
 


1. Introduction 
 


The real world is made up of numerous objects with 
spatial relationships, and it is necessary to recognize their 
locations relative to each other. Therefore, spatial 
knowledge consisting of information about topology [1] 
[2], orientation [3], distance [4] and shape [5] etc is an 
important class of commonsense knowledge, and attracts 
much attention. 


Qualitative approach to the representation of spatial 
knowledge, which is characterized by making only as 
many distinctions in the domain of discourse as necessary, 
gains popularity recently [6], since it is considered to be 
analogue to how human represents and reasons about 
commonsense knowledge. The issues in qualitative spatial 
reasoning (QSR) include spatial inference, consistency 
checking, path finding etc, which can be applied to many 
applications, such as spatial databases [7].  


This paper focuses on the problem of consistency 
checking, i.e. whether we can find a solution to assign a 
location to every object satisfying a set of direction 
specifications. In the previous researches, many spatial 
models approximated an object by a point or by a minimal 
bounding box [8]. Such an approximation, however, is 
often inaccurate. Goyal and Egenhofer [9] presented a 
model that only approximated the reference object while 


using the exact shape of the primary object. Skiadopoulos 
and Koubarakis [10] formally defined and studied the 
composition operation for cardinal direction relationships 
expressed in the model of Goyal and Egenhofer. 
Furthermore, the first consistency checking algorithm 
based on Goyal and Egenhofer’s spatial model was 
developed through constraint solving [11].  


Goyal and Egenhofer [9] defined nine atomic 
relationships between two objects, southwest (SW), west 
(W), northwest (NW), north (N), northeast (NE), east (E), 
southeast (SE), south (S) and same (0). We present a 
graph model to visually represent direction specifications, 
and perform a consistency checking on the graph model 
rather than through a constraint solver used by 
Skiadopoulos and Koubarakis [11]. In the graph model, 
nodes represent the regions occupied by objects, and 
directed edges indicate the direction relationships between 
objects. Based on the model, consistency checking is 
performed by analyzing the connectivity of participating 
nodes. Our main contributions include a graph-based 
model for effective spatial reasoning and a consistency 
checking algorithm that runs in O(n4) time instead of O(n5) 
as required by the constraint-based approach of 
Skiadopoulos and Koubarakis.  


The rest of the paper is organized as follows. Section 2 
briefly introduces the spatial model of Goyal and 
Egenhofer [9]. Section 3 presents our graph model in 
representing direction relationships. Section 4 illustrates 
how to refine a generated directed graph. Section 5 
analyzes the connectivity constraints among nodes. 
Section 6 presents a consistency checking algorithm and 
analyzes its time complexity. Section 7 reviews related 
work, and finally Section 8 gives the conclusion and 
proposes future research.  


 
2. The spatial model for direction definition 
 


We define directions in the Euclidean space R2, where 
the region occupied by an object is specified as a non-
empty set of points. In the following description, the term 
“object” denotes the region occupied by an object. 







 


Definition 1: An object i occupies a region 
Regi={  (x,y) | f(x,y) = true} . Regi is a closed area with 
boundary lines.  


The projections of the greatest lower bound of an 
object i on the y-axis and x-axis are denoted as Infy(i) and 
Infx(i), and the projections of the least upper bound on the 
y-axis and x-axis as Supy(i) and Supx(i) respectively.  


Definition 2: An object i is valid in the vertical 
direction iff Infy(i) < Supy(i). 


Definition 3: An object i is valid in the horizontal 
direction iff Infx(i) < Supx(i). 


Definition 4: An object i is valid iff it is valid in both 
vertical and horizontal directions. 


Concerning an object i, the straight lines at Infx(i), 
Supx(i), Infy(i) and Supy(i) construct a minimal bounding 
box denoted as mbbi, and divide the first quadrant into 
eight areas denoted as NWi, Ni, NEi, Wi, Ei, SWi, Si and SEi 
as shown in Figure 1.  


Definition 5: An object p, called primary object, 
locates at P of another object r, called reference object, iff 
Regp∩Pr ≠ NULL, where P∈ { NW, N, NE, W, E, SW, S, 
SE} . The same relationship defined by Goyal and 
Egenhofer [9], i.e. the relationship between the 
overlapping parts of two overlapped objects, is not 
considered in this paper. 


A primary object can lie in more than one direction 
area determined by a reference object. We, therefore, use 
a set to represent a direction relationship between objects. 
For example, Figure 2 demonstrates that the primary 
object b occupies three direction areas relative to the 
reference object a, and the direction relationship is 
denoted as b{N,NW,W}a. Moreover, we impose a 
counterclockwise order on the direction set, which implies 
that b{W,NW,N}a is not a valid direction specification.  


In order to specify the condition of several possible 
direction relationships between objects, the notation “+”  
is introduced to represent disjunctive directions. For 
example, a{NW,W}+{W,SW}b specifies that a may locate 
northwest and west, or west and southwest to b. The 
consistency checking on a set of disjunctive direction 
specifications is NP-Complete [11]. 


Definition 6: A definitive direction relationship 
between two objects is represented as bRa, where b is the 
primary object, and a is the reference object. In general, R 
∈ 2P, where P = { N, NW, W, SW, S, SE, E, NE} . 


Given bRa, the following properties hold: 
• R ⊆ {NW, N, NE}  iff  Supy(a) ≤  Infy(b); 
• R ⊆ {SW, S, SE}  iff  Supy(b) ≤  Infy(a); 
• R ⊆ {NW, W, SW}  iff  Supx(b) ≤  Infx(a); 
• R ⊆ {NE, E, SE}  iff  Supx(a) ≤  Infx(b). 


We assume that every sub-region of a primary object 
divided by a reference object is also closed without a hole. 
In Figure 2, for example since object c contains two 
separate regions in Ea, c’s relationship with a is beyond 
our consideration. 
 
3. A graph model for spatial reasoning 
 


Based on the afore-mentioned spatial model, this 
section presents a graph model to represent the direction 
relationships between objects for effective consistency 
checking and spatial reasoning.  


 
3.1. Preliminaries 
 


We use Dx to denote a set of direction specifications 
among a set of objects X. 


Definition 7: Dx is consistent in vertical direction iff 
∀x∈X, x is valid in the vertical direction. 


Definition 8: Dx is consistent in horizontal direction 
iff ∀x∈X, x is valid in the horizontal direction. 


Definition 9: Dx is consistent iff ∀x∈X, x is valid. 
According to the above definition, the set of direction 


specifications { a{N}b, b{N}c}  is consistent. On the 
contrary, {a{N}b, b{N}c, c{N}a}  is inconsistent, which 
can be easily verified. If the above set is consistent, it 
should satisfy the condition Infy(r) < Supy(r), where 
r∈{a,b,c} . According to direction specifications, the 
following properties can be easily derived: 


Infy(a) 
�


 Supy(b) 
Infy(b) 


�
 Supy(c) 


Infy(c) 
�


 Supy(a) 
Therefore, we derive Infy(a) 


�
 Supy(a), which contradicts 


with the assumed condition.  
Consistency checking can be performed independently 


on both vertical and horizontal directions, since they are 
orthogonal. In the following sections, we only illustrate 
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Figure 1. Eight direction  areas 







 


how to detect inconsistency in the vertical direction. The 
same principle applies to that in the horizontal direction.  


 
3.2. The graph model 
 


If nodes are used to represent the regions occupied by 
objects, and directed edges to indicate the direction 
relationships between objects, we can convert a set of 
direction specifications into a directed graph. 
Consequently, consistency checking becomes the problem 
of connectivity checking on the directed graph.   


A reference object r divides a primary object p into 
one or more pieces while keeping itself as one entity. 
Therefore, r is always represented by a single node in our 
graph model. On the other hand, p is represented by 
node(s), the number of which is equal to that of sub-
regions obtained from the division by r. Briefly, the 
process of generating a directed graph proceeds as follows: 


1. Generate a node to represent the region occupied 
by r, and node(s) to represent sub-region(s) of p. 


2. Connect two nodes representing adjacent sub-
regions of p directed from south to north. 


3. Connect the node representing a sub-region of p 
and the node representing r directed from south 
to north. 


Given a specification p{NW,W,SW,S}r, object p is 
divided into four regions, namely p1, p2, p3 and p4, by r as 
illustrated in Figure 3(a). When performing consistency 
checking in the vertical direction, we only care horizontal 
divisions (respectively, vertical divisions are considered 
when we perform consistency checking in the horizontal 
direction), which divide object p into three regions, i.e. p1, 
p2 and (p3∪p4). Due to orthogonality, we only illustrate 
consistency checking in the vertical direction. The same 
principle applies to the horizontal direction. In the 
following description, we will omit the mention of 
directions when the context is clear. Regarding the 
primary object, each sub-region obtained from the 
division by the reference object is represented by a node, 
and a directed edge connects two nodes representing 
adjacent sub-regions of a single object from south to north. 


As mentioned above, a directed graph is generated to 
designate the division to a primary object according to the 
direction specification. Figure 4 lists all possible directed 
graphs, called partitions, which illustrate the direction 
relationships between sub-regions of a primary object 


obtained from the division by a reference object. Figure 4 
only presents one example of direction specifications 
corresponding to every type of partitions, while different 
direction specifications can generate the same type of 
partition. For example, p{ NW,W} r and p{ W,SW} r lead to 
the same partition (Partition 3) concerning the primary 
object p.  


We define a Level function for each node and a Depth 
function for every afore-mentioned directed graph D=(V, 
E) , and ai, aj ∈ V: 
 


Depth (D) = MAX{  Level(ai)} . 


Level (ai) = 
1, if ai has no outgoing edge;  


MAX{Level(aj)} + 1, (ai,aj) ∈ E, otherwise.  


 
A primary object can be specified in relation to 


different reference objects in Dx. Consequently, it will be 
divided several times by different reference objects. For 
every object a in X, we introduce a set of regions denoted 
as A={ axj | axj is a sub-region belonging to a} . Every 
element in A is distinguished by two indices. The first 
index x indicates the object in the direction specification 
of aRx or xRa, and the second index j indicates the j th sub-
region obtained from a division according to the above 
specification. Specifically, when object a serves as a 
reference object in relation to object x, ax1 is added to A. 
For example, Dx = { a{NW,W}b, c{SE,E,NE}b, 
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Figure 3. Visual illustration about divisions  
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c{N,NW,W}a}  involves three objects. Correspondingly, 
three sets of regions, namely A, B and C, are created. The 
first occurrence of a is in a{NW,W}b, and a is divided into 
two sub-regions by b. Therefore, ab1 and ab2 are inserted 
into A. In its second occurrence, a acts as a reference 
object in c{N}a. Correspondingly, ac1 is added to A. Since 
there is no more occurrence of a in Dx, A= {ab1, ab2, ac1} . 
The other two sets of regions are presented as follows:  


B={ba1, bc1}  
C={ cb1,cb2,cb3,ca1,ca2}  


In the graph model, nodes are used to represent 
regions satisfying the condition that regions with common 
boundaries must be mapped to the same node. When an 
object x remains one entity, its boundaries, i.e. Infy(x) and 
Supy(x), are unchanged. Therefore, in a set A, elements 
representing the entity of a should be mapped to the same 
node. For example, given Dx={ a{N}b, c{N}a} , A={ab1, 
ac1} . Since ab1 and ac1 represent the entity with common 
boundaries of Infy(a) and Supy(a), they are mapped to a 
single node. However, if an object is divided into several 
sub-regions, which share no common boundaries, then 
each sub-region is represented by a unique node. For 
example, in Figure 3(b), c is divided into two sub-regions 
by a, namely ca1 and ca2. Also, c is divided into cb1 and cb2 
by b. Obviously, the four sub-regions share no common 
boundaries. Each of them maps to a unique node. After 
combining elements representing an identical region and 
connecting every pair of nodes representing adjacent sub-
regions from south to north, a component graph, which 
demonstrates all divisions to an object in a set of direction 
specifications, is constructed. 


After constructing component graphs for all objects, 
we can build relationships between nodes in different 
component graphs, i.e. between primary and reference 
objects. If a sub-region of a primary object p locates south 
to a reference object r, starting from the node representing 
the sub-region of p and ending at the node representing r, 


a directed edge connects the two nodes. On the other hand, 
if a sub-region of p locates north to r, we reverse the 
connecting direction. 


For example, a set of direction specifications 
Dx={ c{E,NE}a, c{N,NW,W,SW}b}  is visualized in Figure 
5(a). Object c is divided into two sub-regions by a, 
namely ca1 and ca2, and into three sub-regions by b, 
namely cb1, cb2 and cb3. The component graph of c is 
illustrated in Figure 5(b). Since ca1 is north to a, an edge 
connects from a to ca1 as illustrated in Figure 5(c). We 
call such a graph Spatial Graph in Vertical Direction or 
SGV (the two dashed circles containing a1 and ca2, and b1 
and cb2 will be explained in Section 4). 


Theorem 1: In a SGV, the following properties hold 
for every node in Partitions 2 to 8: 


• ai has no outgoing edge if Level(ai) = 1, and 
• ai has no incoming edge if Level(ai) = Depth(D), 


where D = (V, E) is a partition, and ai ∈ V. 
Proof:  


(1) First, we prove that ai has no outgoing edge if 
Level(ai) = 1. 


Assume an edge e=(ai,bj), which indicates Infy(bj) �  
Supy(ai). According to the definition of Level, it follows 
that ai and bj belong to different component graphs. If ai is 
the reference object, ai falls in Partition 1, which 
contradicts with the assumption. Therefore, bj must be the 
reference object.  


If the highest point of a is contained in the region 
represented by ai, every point in a is lower than any point 
in bj, i.e. Infy(bj) �  Supy(a). Therefore, a falls in Partition 1, 
which contradicts with the assumption. Otherwise, 
assume the region represented by am contains the highest 
point. If Supy(am) ≤  Infy(bj), a falls in Partition 1; if 
Supy(am) >  Infy(bj), the line of Infy(bj) divides a into two 
regions. am represents the upper region, and ai the lower 
one. Therefore, there is an edge from ai to am, which 
contradicts with the assumption Level(ai) =  1. 


(2) The second statement can be proven in a similar 
way. �  


 
4. Refining the SGV 


 
A SGV only builds relationships between nodes in the 


vertical direction. However, relationships in the horizontal 
direction function as a bridge between different objects, 
and play an important role in consistency checking. For 
example, given { a{W}b, c{N}a, b{N}c} , we construct a 
SGV as illustrated in Figure 6(a). 


The above set of 
direction specifications 
is inconsistent, which 
cannot be detected from 
the SGV. Since object a 
locates west to object b, 
we can treat them as a 
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single object when analyzing consistency in the vertical 
direction. Through a super-node obtained by merging a 
and b as illustrated in Figure 6(b), a cycle indicating 
inconsistency appears in the graph. In general, when 
performing consistency checking in the vertical direction, 
we need to merge each pair of nodes representing two 
objects with west/east relationships into a super-node 
denoted by a dashed circle (similarly, we merge the nodes 
representing objects with south/north relationships when 
performing consistency checking in the horizontal 
direction). For example, in Figure 5(c), a1 and ca2 are 
merged into a super-node, and b1 and cb2 into another one. 


Such a simple merge, however, is not always correct. 
Given { b{SE,E,NE}a, c{W}b, a{N}c} , the corresponding 
SGV is illustrated in Figure 7, and a path from bc1 to ba1 is 
formed with the help of super-nodes. The path indicates 
inconsistency (the explanation will be given in Section 5), 
but we can find a consistent case as shown in Figure 8. 
The reason resulting in a wrong deduction is that when 
a{W}b or a{E}b is defined in Dx, the two dividing lines of 
Infy(b) and Supy(b) may not cross over object a. Since 
Infy(a) and Supy(a) must cross over object b in the 
condition of a{W}b, we replace a{W}b with a new 
direction specification by swapping the reference object 
and the primary object (a{E}b is processed in a similar 
way as a{W}b). The new direction specification is 
determined by the size of a. Specifically, there are four 
possible cases regarding the position and height of a as 
illustrated in Figure 9(a): 


• a is smaller than b, and there is no common 
upper or lower boundary; 


• a is smaller than b, and there is a common upper 
boundary; 


• a is smaller than b, and there is a common lower 
boundary; 


• a and b are of the same height. 
Corresponding to each case, a SGV is presented in Figure 
9(b) after swapping the reference and primary objects. A 
subscript “h”  is used to indicate that two objects are of the 
same height. For example, b{Eh}a indicates that b is 
located east to a, and they are of the same height. 


Investigating all possible cases is inefficient, and will 
cause exponential increase in run-time when the number 
of objects is increased. Fortunately, we only need to 
check the first case due to the following Theorem 2.  


Theorem 2 uses the notation of 1
xD  to represent the Dx 


obtained by replacing a{W}b with b{SE,E,NE}a. Similarly, 
2
xD , 3


xD  and 4
xD  represent the Dx obtained by replacing 


a{W}b with b{SE,E}a, b{E,NE}a and b{Eh}a respectively. 


Theorem 2: Given a{W}b in Dx, if 1
xD  is inconsistent, 


then 2
xD , 3


xD  and 4
xD  are all inconsistent. 


Proof: We only need to prove that if one of 2
xD , 3


xD , 


and 4
xD  is consistent, 1


xD  is consistent too. 


(1) Assuming that 2
xD  is consistent, we need to prove 


that 1
xD  is consistent too. 


We extend the length of object b to the north while 
keeping object a unchanged. The direction relationship 
between a and b is changed to b{SE,E,NE}a. Then we 
extend other relevant objects according to the algorithm 
Extension in Figure 10. In the algorithm, Q represents a 
queue storing objects. p and q denote objects.  


       


 


Figure 10. The algorithm Extension 
 


Extension 
{    
  If the set of direction specifications includes pRb or bRp 
  Add p to Q;    
  While (Q is not empty)  
  {  
    Extract p from Q; 
    Extend the length of p to the north; 
    If the set of direction specifications includes pRq or qRp 
         then add q to the queue while q is not in Q; 
   }  
}  


 
 


Since we extend the length of every relevant object in 
the same proportion, the extension will not affect the 
consistency. Therefore, if 2


xD  is consistent, 1
xD  is 


consistent too. 
(2) The other two sub-cases can be proved in a similar 


way. �  
In summary, whenever a{W}b or a{E}b is defined, we 


merge a and b through the following approach: 
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• Represent the primary object by a single node as 
illustrated in Figure 11(a). 


• Represent the reference object by a directed 
graph as illustrated in Figure 11(b), 


• Merge nodes a and ba2. 


According to the above approach, the SGV illustrated 
in Figure 7 is revised to that in Figure 11(c), which 
denotes a consistent status on the set of direction 
specifications. 
 
5. Connectivity constraints 


 
In the previous sections, we introduced a graph model 


to visually represent definitive direction relationships. 
Based on the graph model, consistency checking is 
performed by analyzing the connectivity information. 
This section will analyze connectivity constraints among 
participating nodes. If an object is derived to locate totally 
or partially north/south to the object itself, the set of 
direction specifications is inconsistent. We will transform 
the above statement to connectivity constraints through 
the following theorems.  


Theorem 3: (1) If a SGV contains a cycle, the set of 
direction specifications is inconsistent. (2) If (1) is true, 
only super-nodes or nodes in Partition 1 are in the cycle.  
Proof:  


(1) Assume that the set of direction specifications is 
consistent, and there is a cycle denoted as a1a2……an, 
where a1=an. We can deduce that Infy(ai+1) 


�
 Supy(ai), 


where 1 ≤ i < n. Therefore, Infy(an) 
�


 Supy(a1) = Supy(an), 
which contradicts with the assumption. 


(2) Assume that a node a, which is neither in Partition 
1 nor inside a super-node.  


• If Level(a)=1, a has no outgoing edge according 
to Theorem 1, which contradicts with the 
assumption. 


• If Level(a)=2, there is only one outgoing edge 
connecting to node b, where Level(b) = 1. If b is 
in a super-node, a has no incoming edge; if b is 
not in a super-node, b has no outgoing edge. 
Either case contradicts with the assumption. 


• If Level(a)=3, a has no incoming edge according 
to Theorem 1, which contradicts with the 
assumption. �  


The connectivity constraint described in Theorem 3 
reflects the inconsistency that an object is derived to 


locate totally north/south to the object itself. The 
connectivity constraint il lustrated in Theorem 4 reveals 
the inconsistency that one object is specified to locate 
partially north/south to the object itself. 


Theorem 4: There is a path denoted as ai,…,aj, where 
ai∈Vi, aj∈Vj, partition Di = (Vi,Ei) and partition Dj = (Vj, 
Ej) belong to the same component graph representing 
object a, 
(1) If Level(ai) = 1, Dx is inconsistent; or 
(2) If Level(aj) = Depth(Dj), Dx is inconsistent. 
Proof:  


(1) We prove the statement with the first condition by 
considering the condition in two cases.  


CASE 1: Assume that there is no node am except ai in 
Di that Level(am) = 1. 


According to the assumption, the sub-region 
represented by ai must contain the highest point of object 
a, i.e. Supy(ai) = Supy(a). 


If ai falls in Partition 1, it is obvious that: 
Infy(aj) > Supy(ai) = Supy(a) ---(1) 


If ai does not fall in Partition 1, ai must be inside a 
super-node, and connect to other nodes through the super-
node obtained by merging ai with a reference object b. 
We can derive relationship (1) from the following 
relationships: 


Infy(aj) > Supy(b) ---(2) 
Supy(b) > Supy(ai)---(3) 


Relationship (2) is obvious, and relationship (3) is true; 
otherwise, b will divide ai further into two nodes. Since aj 
represents a sub-region of object a, Supy(a) 


�
 Supy(aj) > 


Infy(aj), which contradicts with the assumption.  
CASE 2: Assume that there is another node am in Di in 


addition to ai such that Level(am) = 1. If the region 
represented by aj contains the highest point, it has already 
been proved based on the above proof. Otherwise, assume 
that am contains the highest point, i.e. Supy(am) = Supy(a). 
Since Di contains at least two nodes, am and ai, Di cannot 
fall in Partition 1. It follows that ai must be inside a super-
node, which also contains node am and the reference 
object b as illustrated in Figure 12. Therefore, the 
following relationships are satisfied: 


Infy(aj) �  Supy(b) 
Supy(b) �  Supy(am) 


Infy(aj) �  Supy(am)=Supy(a) is derived, which contradicts 
with the assumption.  


(2) The proof for the second condition is similar to 
that for the first one. �  
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6. A consistency checking algorithm 
 
As described previously, we construct a directed graph 


from a set of definitive direction specifications. Having 
proven Theorems 3 and 4, we can detect inconsistency on 
a set of direction specifications by analyzing the 
connectivity of the participating nodes. In order to 
retrieve the connectivity information between nodes, we 
perform a breadth-first search starting from every node, 
and store the connectivity information in a matrix. This 
algorithm proceeds as follows: 


1. Convert a set of definitive direction 
specifications into a directed graph as described 
in Section 3. 


2. Refine the directed graph as described in Section 
4. 


3. Perform a breadth-first search for connectivity 
information starting from every node. 


4. Analyze the connectivity of the participating 
nodes as described in Section 5, and deduce 
whether the set of direction specifications is 
“consistent”. 


Given n objects, the number of the direction 
specifications is O(n2). Since at most 5 nodes for a 
primary object and one node for a reference object can be 
generated, there are O(n2) nodes in a SGV. It will take 
O(n2) time to complete a breadth-first search. Since there 
are O(n2) iterations, the third step will take totally O(n4) 
time. The last step will take O(n4) since there are O(n4) 
pairs of nodes. Consequently, our algorithm will perform 
in O(n4) time. 


Theorem 5: The checking algorithm deduced from 
Theorems 3 and 4 is complete. 
Proof: Different partitions belonging to a component 
graph reflect different divisions of a single object. If a set 
of definitive direction specifications is inconsistent, at 
least one object a cannot be defined in a valid minimal 
bounding box, i.e. Supy(a) ≤ Infy(a). If we translate the 
above case to the connectivity in a SGV, there exists a 
path between two nodes, one of which represents the sub-
region covering either the highest point or the lowest 
point, and the other represents a sub-region belonging to 
the same object. Therefore, it is sufficient to check the 
connectivity constraints described in Theorems 3 and 4. �  


Theorem 6: If a set of direction specifications is 
consistent in both vertical and horizontal directions, it is 
consistent. 
Proof: It is obvious since the vertical and horizontal 
directions are orthogonal. �  
 
7. Related work 


 
In general, there are three models of spatial knowledge: 


quantitative, qualitative and hybrid [12]. Quantitative 
models are relatively well known in robotics and vision 


etc. However, the abstraction capability of such a model 
is usually weak. A qualitative model makes only as many 
distinctions as necessary [6] so that the granularity is 
dependent on applications. A hybrid model is of a mixture 
of quantitative and qualitative approaches or a further 
division of qualitative regions into more detailed levels. 
Since the qualitative approach is considered to be 
analogue to how human represents and reasons about 
commonsense knowledge, it gains popularity recently. 


In qualitative spatial reasoning, Frank discussed two 
approaches about directions [13]. One is a cone-shaped 
approach, which divides the reasoning space into eight 
regions around the reference point; the other is a 
projection-based approach. According to Ligozat [3], 
assuming representing directions among objects through a 
binary constraint network, the consistency problem can be 
viewed as a spatial version of a general problem of 
temporal reasoning, which has been extensively studied.  


However, objects have different shapes, and it is often 
inaccurate to approximate an object by a point. Goyal and 
Egenhofer [9] presented a spatial model, which only 
approximates the reference object while using the exact 
shape of the primary object. Skiadopoulos and 
Koubarakis [11] gave an algorithm for consistency 
checking through constraint-solving. The algorithm is 
implemented in three steps: initially, it introduces the 
atomic cardinal direction constraints and additional 
constraints into a set; then the algorithm detects the 
consistency of the set of constraints; if the set is consistent, 
it finally considers the set-union constraints. This 
algorithm is performed in O(n5) time. 


 
8. Conclusion 


 
Spatial knowledge is an important aspect of 


commonsense, and consistency checking is a significant 
research field in qualitative spatial reasoning.  This paper 
has presented a graph model for representing direction 
relationships and effective spatial reasoning. In the graph 
model, nodes represent the regions of objects, and 
directed edges indicate the direction relationships between 
objects. Based on the model, we present an efficient 
algorithm that performs consistency checking in O(n4) 
time by analyzing the connectivity of participating nodes.  


Consistency checking has potential applications. For 
example, in spatial databases, it can be used to detect 
inconsistent spatial queries and prune the search space. In 
particular, we are interested in applying the approach to 
visual programming and design of visual languages. 
Spatial and structural (abstract) information are two 
essential aspects to visual languages. A graph grammar 
formalism [14] has been proposed to intuitively integrate 
spatial specifications with structural specifications using 
visual notations. Maintain spatial consistency inside a 
grammar rule is trivial. It, however, is challenging to 







 


detect inconsistency in a spatial configuration defined by 
a set of grammar rules. Since this issue can be addressed 
as detecting inconsistency in a given set of direction 
relationships, it is natural to apply our approach to verify 
spatial configurations defined through spatial graph 
grammars. 


Our future research will focus on the following two 
directions: 


• This paper concentrated on connected regions 
without a hole. However, disconnected regions or 
regions with holes are useful to model various 
geographical situations [11]. We will extend our 
approach to accommodate such regions by 
decomposing them into connected regions. 


• The ability of using graph grammars to explicitly 
specify the physical layout apart from the logical 
structure of a graph is extremely useful in many 
applications, such as graph layout [15], spatial 
databases, multimedia design, and pattern 
recognition. We extended a context-sensitive graph 
grammar formalism, i.e. Reserved Graph Grammar 
(RGG) [16] [17], with the capability of spatial 
specifications [14]. It is desirable to provide a 
mechanism to automatically analyze the 
consistency on a set of user-provided spatial 
specifications. Integrating our consistency 
checking algorithm with the extended RGG is 
planned in the next stage of our research 
framework.   
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