1054

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

Web Navigation Prediction Using Multiple Evidence
Combination and Domain Knowledge

Mamoun A. Awad and Latifur R. Khan

Abstract—Predicting users’ future requests in the World Wide
Web can be applied effectively in many important applications,
such as web search, latency reduction, and personalization sys-
tems. Such application has traditional tradeoffs between mod-
eling complexity and prediction accuracy. In this paper, we
study several hybrid models that combine different classification
techniques, namely, Markov models, artificial neural networks
(ANNs), and the All-Kth-Markov model, to resolve prediction
using Dempster’s rule. Such fusion overcomes the inability of the
Markov model in predicting beyond the training data, as well as
boosts the accuracy of ANN, particularly, when dealing with a
large number of classes. We also employ a reduction technique,
which uses domain knowledge, to reduce the number of classifiers
to improve the predictive accuracy and the prediction time of
ANNSs. We demonstrate the effectiveness of our hybrid models by
comparing our results with widely used techniques, namely, the
Markov model, the All- K th-Markov model, and association rule
mining, based on a benchmark data set.

Index Terms—Artificial neural networks (ANNSs), association
rule mining (ARM), Dempster’s rule, Markov model, N-gram.

I. INTRODUCTION

EB PREDICTION is the problem of predicting the next
web page that a user might visit after surfing in a
website. The importance of web prediction originates from the
fact that various applications, such as latency reduction, web
search, and recommendation systems, can be made more effec-
tive through the use and the improvement of web prediction.
One of the early applications of web prediction is the latency
of viewing of web documents [6]. Traditional solutions are
based on caching and prefetching [2], [3], [9]. Other advanced
intelligent methods [10], [11] acquire knowledge from surfers’
previous path history and utilize that in prediction. Pandey et al.
[10] present an intelligent prefetching method based on a
proxy server using association rule mining (ARM) to generate
association rules that are later used to predict future requests.
World Wide Web (WWW) prediction can also improve
search engines. The entire structure of the WWW can be
pictured as a connected graph, where each node corresponds to
a website, and surfers navigate from one node to another. The
distribution of the visits over all WWW pages can be computed

Manuscript received October 17, 2007; revised February 21, 2007. This
paper was recommended by Associate Editor M. Kamel.

M. A. Awad was with the University of Texas at Dallas, Richardson, TX
75083-0688 USA. He is now with the United Arab Emirates University, Al
Ain, UAE (e-mail: mamoun.awad @uaeu.ac.ae).

L. R. Khan is with the Department of Computer Science, University of Texas
at Dallas, Richardson, TX 75083-0688 USA (e-mail: lIkhan @utdallas.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2007.904781

and used in reweighting and reranking results. In such scenario,
we consider the surfer path information to be more important
than the keywords that were entered by the user [14].

Another application of web prediction is recommendation
systems, in which we try to find the top k users having the same
interests or tastes to a target user record. ARM is a well-known
model that is used in recommendation systems. Mobasher et al.
[7] propose the frequent item set graph to match an active user
session with frequent item sets and predict the next page that the
user is likely to visit. Prediction for the active session is based
on the confidence of the corresponding association rule.

Other prediction models that are widely used in WWW pre-
dictions and its related applications include k nearest neighbors
(NN), artificial neural network (ANN), fuzzy interference, and
Markov model. Joachims et al. [18] propose the KNN-based
recommender WebWatcher. The WebWatcher is a learning tour
guide agent that extracts knowledge from user’s previous clicks
and from the hypertext structure. Nasraoui and Krishnapuram
[19] propose a web recommendation system using fuzzy in-
ference. Clustering is applied to group profiles using hierar-
chical unsupervised niche clustering. Context-sensitive uniform
resource locator (URL) association is inferred using a fuzzy-
approximate-reasoning-based engine. Levene and Loizou [1]
compute the information gain from the navigation trail to con-
struct a Markov chain model to analyze user navigation pattern
through the web. The main contribution of [1] is that they
present a mechanism to estimate the navigation trail. Pitkow
and Pirolli [5] explore pattern extraction and pattern matching
based on the Markov model that predicts future surfing paths.
Longest repeating subsequences (LRS) is proposed to reduce
the model complexity (not predictive accuracy) by focusing on
significant surfing patterns.

Our work is related to the path-based prediction model using
the N-gram model [14] and the LRS model [5]. However, our
approach differs from them in the following ways: First, only
one path-based prediction technique is used when combining
different N-gram models. Second, the main focus of LRS is to
reduce the modeling complexity by reducing the data set. Third,
all these models are probabilistic, i.e., it depends on the fre-
quencies of patterns/occurrences in the training set. Therefore,
our model can predict some values that Markov models cannot
(i.e., our model can predict for some unobserved values). In
the work of Nasraoui and Krishnapuram [19], the focus is to
use a set of URL predictors by creating a neural network for
each profile independently with a separate training set. Their
goal is to overcome the high complexity of the architecture
and training in case that one neural network is used. In our
work, we not only use a set of predictors but also fuse them

1083-4427/$25.00 © 2007 IEEE

AWAD AND KHAN: WEB NAVIGATION PREDICTION USING MULTIPLE EVIDENCE COMBINATION

in a hybrid model for prediction. Our goal is to improve the
accuracy using different prediction techniques, namely, ANN,
the Markov model, the All-Kth model, and using different
N-gram models.

One important subtlety of web prediction is that web pre-
diction is a multiclass problem of a large number of classes
(11700 classes in our experiments). Here, we define a class (or
a label) as a unique identifier that represents a web page in a
web site. Most multiclass techniques, such as one-versus-one
and one-versus-all, are based on generalizing binary classifiers,
and prediction is resolved by checking against all these binary
classifiers. As a result of that, prediction accuracy is very
low [4], because the prediction model has many conflicting
outcomes from the classifiers.

There are several problems with the current state-of-the-art
solutions. First, models such as Markov and ARM models are
unable to generalize beyond training data [5]. This is because
prediction using ARM and LRS pattern extraction is done based
on choosing the path of the highest probability in the training
set; hence, any new surfing path is misclassified, because it has
zero probability. Second, prediction using ARM suffers from
well-known limitations including scalability and efficiency [7],
[13]. Finally, many of the previous methods have ignored
domain knowledge as a means to improving prediction.

In this paper, we present a new approach to improving the ac-
curacy in web prediction. Our approach is based on generating
a hybrid prediction model by fusing two different classification
models. We use four classification models, namely: 1) ANNs;
2) ARM; 3) Markov model; and 4) All-Kth-model. ARM and
Markov model are powerful techniques for predicting seen data,
i.e., already observed data; however, they cannot predict beyond
training data (see Section III-A). On the other hand, the All-
Kth model and ANN are powerful techniques that can predict
beyond training data. In other words, the ANN and All-Kth
models can predict some values that the Markov model and
ARM cannot. We combine the All-Kth model with ANN by
fusing their outcomes using Dempster’s rule.

Nonetheless, when dealing with a large number of classes or
when there is a possibility that one instance may belong to many
classes, their predictive power may decrease. To overcome
these shortcomings, we extract domain knowledge from the
training data and incorporate such knowledge during prediction
to improve prediction time and accuracy. Specifically, domain
knowledge is used to eliminate irrelevant classes and reduce
the conflict during prediction. Notice that we combine different
prediction models in which each model has different strengths
and drawbacks over other models. We strive to overcome
major drawbacks in each technique and improve the predictive
accuracy for the final hybrid model.

The contribution of this paper is given as follows: First, we
use ANN in web navigation. Second, we incorporate domain
knowledge in ANN prediction to eliminate irrelevant classes
and to improve prediction time and accuracy. Third, we fuse
ANN, the Markov model, and All-Kth-Markov classifiers in
a hybrid prediction model using Dempster’s rule [17] to im-
prove prediction accuracy and to overcome the drawbacks of
using each model separately. Finally, we compare our hybrid
model with different models, namely, Markov model, ARM,

1055

All-Kth-ARM, All-Kth-Markov, and ANN using a standard
benchmark data set and demonstrate the superiority of our
method.

The organization of this paper is given as follows: In
Section II, we present the background of the N-gram concept
and sliding window. In Section III, we present different pre-
diction models that are used in web prediction. In Section IV,
we present the utilization of domain knowledge to improve
prediction. In Section V, we present a new hybrid approach
combining ANN, the Markov model, and the All-Kth-Markov
model in web prediction using Dempster’s rule for evidence
combination. In Section VI, we compare our results with
other methods using a standard benchmark training set. In
Section VII, we summarize this paper and outline some future
research.

II. N-GRAM REPRESENTATION OF PATHS

In web prediction, the available source of training data is
the users’ sessions, which are the user’s history of navigation
within a period of time. User sessions are extracted from
the logs of the web servers, and it contains sequences of
pages/clicks that the users have visited, time, data, and the pe-
riod of time that the user stays in each page. In web prediction,
the best known representation of the training session is the
N-gram. N-gram is tuples of the form (X;, Xo,...,X,,) that
depict sequences of page clicks by a population of users surfing
a website. Each component of the N-gram takes a specific page
id value that identifies a web page. For example, the N-gram
(X10, X21, X4, X12) depicts the fact that the user has visited
pages in the following order: page 10, page 21, page 4, and
finally, page 12.

Many models further process these N-gram sessions by
applying a sliding window to make training instances have
the same length [5], [7]. For example, if we apply a sliding
window of size 3 on the N-gram <X10,X21,X4,X12,X11>,
we will have the following 3-gram sessions: (X9, Xo21, X4),
(Xo1, X4, X12), and (X4, X712, X11). In general, the number of
additional sessions using sliding window w applied on session
Ais |A| — w + 1, where | A] is the length of session A.

In this paper, we also use the term number of hops, which
is related to the sliding window. The number of hops for a
session of length N is NV — 1, i.e., the number of clicks (or
hops) that the user makes to reach the last page in the session.
When applying sliding window of size w, the number of hops
in the resulted subsessions is w — 1. In the previous example,
the number of hops in the resulted 3-gram sessions is 2.

III. PREDICTION MODELS

In this section, we briefly present various prediction models
that have been used in web prediction. First, we present the
Markov model; next, we present the ANN model along with
improvement modifications.

A. Markov Model

The basic concept of the Markov model is to predict the
next action, depending on the result of previous actions. In

1056

PH-I

Output layer

Hidden layer

Input layer

Fig. 1. Design of ANN.

web prediction, the next action corresponds to predicting the
next page to be visited. The previous actions correspond to
the previous pages that have already been visited. In web
prediction, the K'th-order Markov model is the probability that
a user will visit the kth page, provided that he/she has visited
k — 1 pages, i.e.,

Pr(Pk\Pk,l, ey Pkrfn)

=Pr(Sk = Pp|Sk-1=Pr-1,..-,Sk-n=Prn) (1)

where P; is a web page, and .S; is the corresponding state in the
Markov model state diagram. Notice that the Markov model
cannot predict for a session that does occur in the training set,
because such session will have zero probability. Alternatively,
one can generate all orders of the Markov models and utilize
them in the prediction. This model is called all- K'th orders [5],
[7]. The idea here is that, for a given session z of length &, the
kth-order Markov model is used in the prediction. If the kth-
order Markov model cannot predict for z, the (k — 1)th-order
Markov model is considered for prediction using a new session
2’ of length k — 1. 2’ is computed by ignoring the first page id in
x. This process repeats until prediction is obtained. Thus, unlike
the basic Markov model, the all-K'th orders Markov model can
predict beyond training data, and it fails only when all orders of
basic Markov models fail to predict.

B. ANNs

ANN is a very powerful and robust classification technique
that has been used in many applications and domains [15]. In
this paper, we employ a network of two layers that uses the
backpropagation algorithm for learning. The backpropagation
algorithm attempts to minimize the squared-error function.

A typical training example in web prediction is ([k:—r11,
ooy ki1, k)T, d), where [ky_ri1,..., ki1, k7 is the input
to the ANN and d is the target web page. Notice that the
input units of the ANN in Fig. 1 are 7 previous pages that the
user has recently visited, i.e., [k; r11,-..,k¢ 1, k|’ , where
k is a web page id. The output of the network is a Boolean
value and not probability. We approximate the probability of the
output by fitting a sigmoid function after the ANN output (see
Section V-A for details). The approximated probabilistic output

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

Sigmoid unit

I

|1t

output

Input vector Hidden layers

Fig. 2. ANN design in our implementation.

becomes o' = f(o(I)) = pi41, where I is an input session and
pi+1 = p(d|ki—r41, .- ., k). We choose the sigmoid function

B 1
T 1l4ev

o=oc(wl) o(y))
as a transfer function, so that the ANN can handle nonlinearly
separable data sets [15].

In (2), I is the input to the network, O is the output of the
network, W is the matrix of weights, and o is the sigmoid
function. We implement the backpropagation algorithm for
training the weights. The backpropagation algorithm employs
gradient descent to attempt to minimize the squared error
between network output values and the target values of these
outputs. In our implementation, we set the step size, to update
the ANN weights, dynamically based on the distribution of
the classes in the data set. First, we set the step size to large
values when updating the training examples that belong to low-
distribution class and vice versa. This is because, when the
distribution of the classes in the data set varies widely (for
example, positive examples are equal to 10% and negative
examples are equal to 90%), the network weights converge
toward the examples from the class of larger distribution, which
causes a slow convergence. Second, we adjust the learning
rates slightly by applying a momentum constant to speed up
the convergence of the network. Fig. 2 presents our multilayer
ANN design that we use in our experiments. As we can see, the
ANN is composed of two fully connected hidden layers. Each
layer is composed of three neurons.

IV. DOMAIN KNOWLEDGE AND
CLASSIFICATION REDUCTION

In web prediction, the number of classes/labels is large. Each
page id is considered as a different label/class. For example,
in our data set, we have 11700 different page ids. Recall
that, when using one-versus-one or one-versus-all, we have to
consult many classifiers to resolve prediction. As a result, pre-
diction time may increase, conflict can arise among classifiers,

AWAD AND KHAN: WEB NAVIGATION PREDICTION USING MULTIPLE EVIDENCE COMBINATION

I 2 N
I 0 frea(1,2) freg(LN)
2 frea(2,1) 0 freg(2,N)

frea(. 1) | freg(...2) Frea(. M)
N |0 freq(N.2) 0

Fig. 3. Frequency matrix.

and prediction accuracy becomes low. One way to reduce/filter
this large number of outcomes is to use domain knowledge in
what we call frequency matrix. Frequency matrix is defined as
an N x N matrix, where NV is the number of web pages (see
Fig. 3). The first row and column represent the enumeration of
web page ids. Each entry in the matrix represents the frequency
that the users have visited two pages in a sequence. For exam-
ple, entry (1, 2) in Fig. 3 contains the frequency of users who
have visited page 2 after 1. Notice that freq(x,x) is always
zero. We can use the frequency matrix to eliminate/filter the
number of classifiers during prediction as follows: For a given
session X = (x1,22,...,2,) and a classifier C;, we exclude
C; in the prediction process if freg(x,,c;) = 0, where z,, is
the last page id that the user has visited in testing session X.

The frequency matrix represents the first order of Markov
model. One can extend that to a higher order frequency matrix.
In this case, an nth-order frequency matrix corresponds to the
nth-order Markov model. Notice that the increase of frequency
matrix order leads to fewer number of classes in prediction.
For example, given a testing session Ss = (p1,p2,ps), the
following relation holds:

|B1| > |B2| > | Bs|
where
By ={z| < p3,x > T}
By ={x| < p2,ps3,x > T}
Bz ={x| < p1,p2,p3,v > T}

where 7' is the training sessions, x is a page id, B; is the set of
outcomes by applying a frequency matrix of order i, and | B;]|
is the length of set B;. Hence, there is a tradeoff between the
number of classifiers during prediction (i.e., accuracy) and the
order of frequency matrix. Based on our observations and ex-
periments, we find that first-order frequency matrix is adequate
to balance such tradeoff and to reduce the number of classifiers
in prediction without affecting the accuracy. (See Section VI-D
for details.)

V. HYBRID MODEL FOR WEB PREDICTION
USING DEMPSTER’S RULE

In this section, we present our hybrid model for web predic-
tion, which is based on Dempster’s rule for evidence combina-
tion, using the ANN and Markov models as bodies of evidence.
In our model, prediction is resolved by fusing two separate
classifiers models, namely: 1) ANN and 2) Markov model (see
Fig. 4).

1057

Probabilistic
ANN autput af ANN
Final prediction
User
session X Dempster's Rule +————
Output of

Markov Markov madel

Fig. 4. Hybrid model using the Dempster’s rule for evidence combination.

Dempster’s rule is one part of the Dempster—Shafer Evidence
Combination frame for fusing independent bodies of evidence.
In Dempster’s rule, the sources of evidence should be in the
form of basic probability. Since the ANN output value is not
probability [15], we need to convert/map this output into a
posterior probability P(class|input).

In this section, we will present, first, a method to convert the
ANN output into a posterior probability by fitting a sigmoid
function after the ANN output [16]. Next, we present the
background of the Dempster—Shafer theory.

A. Fitting Sigmoid After ANN Output

We have implemented the backpropagation learning algo-
rithm based on minimizing the squared-error function. Hence,
the output of ANN cannot be considered probability. Since
we are using ANN as an independent body of evidence in the
Dempster’s rule frame, we should consequently map the output
of ANN into probability.

One interpretation of the output of ANN, in the context of
the classification problem, is an estimate of the probability
distribution. There are several ways to interpret the ANN output
in terms of probability. One traditional way is to estimate
the probability density function (pdf) from the training data.
The assumption here is that we know that the training data
follow some distribution (typically the normal distribution).
The normal distribution is widely used as a model parameter
in which analytical techniques can be applied to estimate such
parameters [19], [22] as mean and standard deviation.

Another approach is to consider learning to minimize a
probabilistic function, instead of squared error, such as the cross
entropy shown in (3). Once learning is done, the output of the
network is an estimate of the pdf. In (3), D is the training set,
ty is the target class of example d, and o4 is the output of
ANN, i.e.,

min — Y~ talog(oa) + (1 — ta)log(1 — 04). (3)
deD

Since the backpropagation algorithm minimizes the squared-
error function, we choose to implement a parametric method to
fit the posterior p(y = 1|f) directly, instead of estimating the
class-conditional densities p(f|y) [16], where y is the target
class and f is the output function of ANN. The output of ANN
is computed as follows:

1, ifo(I)>05

) = { —1, otherwise “)

1058

where [is the input to the network, and o is the output of
the sigmoid transfer function defined as in (2). It follows that
class-conditional densities between the margins are apparently
exponential [16]. Bayes’ rule on two exponential suggests using
a parametric form of sigmoid as follows:

1

P@:1U%:L+QMAf+By

®)

This sigmoid model is equivalent to assuming that the output
of ANN is proportional to the log odds of a positive example.
Parameters A and B of (5) are fitted using maximum-likelihood
estimation and can be found by minimizing the negative log
likelihood of training data, which is a cross-entropy error
function (3). o4 in (3) is defined as follows:

1
~ 1+exp(Afg+B)

(6)

Od

The minimization in (3) is a two-parameter minimization.
Hence, it can be performed in many optimization algorithms.
For robustness, we implement the model-trust minimization
algorithm based on the Levenberg—Marquardt algorithm [17].

B. Dempster—Shafer Evidence Combination

The Dempster—Shafer theory is a mathematical theory
of evidence [17], which is considered to be a generaliza-
tion of the Bayesian theory of subjective probability. The
Dempster—Shafer theory is based on two ideas. The first idea
is the notion of obtaining degrees of belief for one question
based on subjective probabilities for a related question, and
Dempster’s rule for combining such degree of belief when
they are based on independent items of evidence. Since we
use two independent sources of evidence, namely, ANN and
Markov model, we are interested in the latter part of the
Dempster—Shafer theory, namely, Dempster’s rule. See [17] for
more details regarding this theory.

Some may question why we do not use boosting and bagging
rather than Dempster’s rule to improve the classifier accuracy.
We prefer Dempster’s rule over boosting and bagging because
boosting and bagging require partitioning the data set into a
large number of independent bootstrap samples (> 1000) and
then generating a classifier for each partition separately [12].
Hence, there is a computation overhead not only in training
but also in preprocessing and prediction. Furthermore, boosting
and bagging cannot perform effectively if the data set does
not have enough points for each class/label. In web prediction
applications, many pages are sparse in the data set, because they
receive very few clicks.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

C. Using Dempster—Shafer Theory in Web Prediction

We have two sources of evidence: 1) the output of ANN
and 2) the output of Markov model. These two models operate
independently. Furthermore, we assume that, for any session x
for which it does not appear in the Markov model, the Markov
prediction probability is zero. If we use Dempster’s rule for
combination of evidence, we get the following:

TMANN (A)mMarkov (B)
A,BCO,ANB=C
MANN, Markov (C) =

TMANN (A)mMarkov (B)
A,BCO,ANB#¢
@)

where m AN is the probabilistic output of ANN, mfarkoyv 18 the
output of Markov model, C' € 2€ is a hypothesis (for example,
what is the prediction of a testing session?), and © is the frame
of discernment. A frame of discernment is an exhaustive set of
mutually exclusive elements (hypothesis, propositions).

In web prediction, we can simplify this formulation because
we have only beliefs for singleton classes (i.e., the final pre-
diction is only one web page and it should not have more
than one page) and the body of evidence itself (m(©)). This
means that, for any proper subset A of © for which we have no
specific belief, m(A) = 0. After eliminating zero terms, we get
the simplified Dempster’s combination rule, for a web page P«
in (8) which is shown at the bottom of the page. Since we are
interested in ranking the hypothesis, we can further simplify
(8), where the denominator is independent of any particular
hypothesis, as follows:

rank(Pc) < mann (Po)MMarkov (Po)

+ mann (Po)Muarkov (©) + mann (©)maarkov (P). (9)

o is the “is proportional to” relationship. mann(©) and
MMarkov(©) represent the uncertainty in the bodies of evi-
dence for mann and Mparkov, respectively. For mann(©)
and Myfarkoy (©) in (9), we use the following. For ANN, we
use the output of ANN to compute the uncertainty. We call the
output of ANN for specific session x as the margin because
the ANN weights correspond to the separating surface between
classes and the output ANN is the distance from this surface.
Uncertainty is computed based on the maximum margin of all
training examples as follows:

1
In(e + ANNppargin)

mann(©) = (10

ANNpargin 1 the maximum distance of training examples
from the margin. For Markov model uncertainty, we use the

mANN<PC)mMark0V (PC> + maNN (PC)mMarkov (9) + mANN(e)mMarkov(PC)

TN ANN,Markov (PC) =

®)

TMANN (A)mMarkov (B)

A,BCO,ANB#¢

AWAD AND KHAN: WEB NAVIGATION PREDICTION USING MULTIPLE EVIDENCE COMBINATION

maximum probability of training examples as follows:

1
In(e + Markovprobability)

mMarkov(@) = (11)
Markovprobability 18 the maximum probability of training ex-
amples. Note that, in both models, the uncertainty is inversely
proportional to the corresponding maximum value.

Here, we would like to show the basic steps that are involved
in web prediction using Dempster’s rule.

Step 1) Train ANN (see Section III-B).

Step 2) Map ANN output a probability (see Section V-A).

Step 3) Compute Uncertainty (ANN) (see Section V-C,
(10)).

Step 4) Construct Markov Model (see Section III-A).

Step 5) Compute Uncertainty of Markov model (see
Section V-C, (11)).

Step 6) For each testing session z, do

Step 6.1) Compute mann(z) and output ANN
probabilities for different pages.

Step 6.2) Compute mygarkoy () and output Markov
probability for different pages.

Step 6.3) Compute M ANN, Markov (%) using (9) and
output the final prediction.

Step 7) Compute prediction accuracy. // see Section VI-C.

VI. EVALUATION

In this section, we first define the prediction measurements
that we use in our results. Second, we present the data set that
we use in this paper. Third, we present the experimental setup.
Finally, we present out results. In all models, we use the N-gram
representation of paths [5], [7].

The following definitions will be used in the succeed-
ing sections to measure the performance of the prediction.
Pitkow and Pirolli [5] have used these parameters to mea-
sure the performance of the Markov model. These defin-
itions are given as follows: Pr(match) is the probability
that a penultimate path that was observed in a validation
set was matched by the same penultimate path in the train-
ing set. Pr(hit|match) is the conditional probability that
page x, is correctly predicted for the testing instance s =
(Xp-1,%Tn-2,...,Tn_r) and s matches a penultimate path in
the training set. Pr(hit) is defined as pr(hit) = pr(match) x
pr(hit|match). Pr(miss|match) is the conditional proba-
bility that page x, is incorrectly classified, given that its
penultimate path matches a penultimate path in the training
set. Pr(miss) is defined as pr(match) x pr(miss|match).
Since we are considering the generalization accuracy and
the training accuracy, we add two additional measurements
that take into account the generalization accuracy, namely,
Pr(hitlmismatch) and overall accuracy. Pr(hit|mismatch)
is the conditional probability that page x,, is correctly predicted
for the testing instance s = (5,1, Tn-2, .- ., Tn—k) and s does
not match any penultimate path in the training set. The overall
accuracy is defined as pr(hit|mismatch) x pr(mismatch) +
pr(hit|match) x pr(match). The overall accuracy considers
both matching and mismatching testing examples in computing

1059

the accuracy. The following relations hold for the preceding
measurements:

Pr(hitlmatch) =1 — pr(miss|match) (12)
Pr(hit)/Pr(miss) = Pr(hit|match)/Pr(miss|match).
13)

Pr(hit|match) corresponds to the training accuracy, be-
cause it shows the proportion of training examples that are
correctly classified. Pr(hit|mismatch) corresponds to the
generalization accuracy, because it shows the proportion of
unobserved examples that are correctly classified. The overall
accuracy combines both.

A. Data Set

For equal comparison purposes and in order to avoid dupli-
cating already existing work, we have used the data that were
collected by Pitkow and Pirolli [5] from Xerox.com for the
dates May 10, 1998 and May 13, 1998. Several numbers of at-
tributes are collected using the aforementioned method, which
includes the Internet Protocol address of the user, time stamp
with date and starting time, visiting URL address, referred URL
address, and the browser information or agent [20].

B. Experimental Setup

We have implemented the backpropagation algorithm for
multilayer neural network learning. In our experiments, we
use a dynamic learning rate setup based on the distribution of
the examples from different classes. Specifically, we setup the
learning rate inversely to the distribution of the class, i.e., we
set the learning rate to a high value for low-distribution class
and vice versa.

In ARM, we generate the rules using the Apriori algorithm
proposed in [9]. We set the minsupp to a very low value
(minsupp = 0.0001) to capture the pages that were rarely
visited. We implement the recommendation engine that was
proposed by Mobasher et al. [7]. We divide the data set into
three partitions. Two partitions are used in training, and one
partition is used in testing.

C. Results

In this section, we present and compare the results of pre-
diction using four different models, namely: 1) ARM; 2) ANN;
3) the Markov model; and 4) the hybrid model. In addition, we
consider the All-Kth-Markov model and All-Kth-ARM model.
In the following, we will refer to the results of combining
the Markov model with ANN as the Dempster’s rule and
combining ANN with the All-Kth-Markov model as the All-
Kth-Dempster’s rule.

We consider up to seven hops in our experiments for all
models. Results vary based on the number of hops, because
different patterns are revealed for different numbers of hops.
Furthermore, we introduce the concept of ranking in our results.
Rank n means that prediction is considered to be correct if the
predicted page happens to be among the top n pages that has
the highest confidence.

1060

TABLE 1
PROBABILITY MEASUREMENTS USING ONE HOP AND RANK 1
ARM | Makov | M | Dempster
Fule
Friiatch) 0500 | 0590 | 0300 | 0500
PriEaMacl) | 0063 (0099 | 0152 | 0.192
FrED 0057|0112 [000 [0114
PriMisatchy | 0037 | 08 0247 | 0307
Triis) 0555 | 0474 [0302 [047%
PriHtlEate) | 0 g 0108 | 0.108
FrELi/Prles) | 0067 | 0249 | 0179 | 0.058
Grver all Hithliss | 0038 [0.134 | 0155 [0.158
Overall sccuracy | 0.037 [0.118 | 0.134 | 0.158
TABLE II
RESULTS OF USING THREE HOPS AND RANK 1
i AT
ARM | Kihe | Doy | BERI | gy | DEBSIEEs | pppi
AR Ruk
Pl | 0776 | 03% | 0% | 03% [076 036 | 3%
Frlhimatcl) | 0043 | 0003 | 031 | 020 | 04% | 025 | 028
Pl | 0016 | 00% | 0057 | 008 | 009 | 0887 | 0081
Frluisowaldl) | 09% | 080 | 0768 | 0769 [038 0367 | 0%
Pwiss) | 060 | 0937 | 0289 | 0280 | 0.289] 0288 | 0%
Frlitscl) | 0 | 004 | 0 | 0105 | 0400 009 | 0147
P Prs) | 0065 | 11 | 07 | 099 (0085] 032 | 070
Over allkithss | 0016 | 0071 | 0095 | 009 | 0045 | 034 | 0218
Overallaccwary | 0016 | 0066 | 0087 | 052 | 0027 | 045 | 041

In Table I, there are several points to note. First, the value
of pr(hit|mismatch) is zero for both ARM and the Markov
model, because neither model can predict for the unobserved
data. Second, the Dempster’s rule achieves the best scores
using all measurements. For example, the training accuracy
pr(hitlmatch) for ARM, Markov, ANN, and Dempster’s rule
is 6%, 19%, 15%, and 19%, respectively. The overall accu-
racy for ARM, Markov, ANN, and Dempsters’ rule is 3%,
11%, 13%, and 15%, respectively. Third, even though the
pr(hit|match) for ANN is less than that for the Markov
model, the overall accuracy for ANN is better. This is because
pr(hitlmismatch) is zero in case of the Markov model, while
itis 10% in case of ANN. Finally, notice that ARM has the low-
est prediction results. The ARM uses the concept of frequent
item sets, instead of item lists (ordered item set); hence, the
support of one path is computed based on the frequencies of that
path and its combinations. In addition, ARM is very sensitive to
the minsupp values. This might cause important patterns to be
lost or mixed. Table II shows the results using three hops and
rank 1. Notice that All-Kth-Markov outperforms the Markov
model, and the All-Kth-ARM outperforms the ARM model.
That is because lower orders of the models are consulted in
case prediction is not possible for higher orders. As a result
of this, pr(hit|mismatch) is not zero in such models. For
example, the pr(hit|mismatch) for All-Kth-Markov and All-
Kth-ARM are 10.5% and 4.4%, respectively. In addition, com-
bining the All- K'th-Markov model with ANN using Dempster’s
rule has boosted the final prediction; for example, the overall
accuracy for ARM, All-Kth-ARM, Markov, All-Kth-Markov,
ANN, Dempster’s rule, and All-Kth-Dempster’s rule is 1.6%,
6.6%, 8.7%, 15.2%, 12.7%, 15.5%, and 17.9%, respectively.

In Figs. 5 and 6, the accuracy approximately increases lin-
early with the rank. For example, in Fig. 5, the pr(hit|match)
for All- K'th-Markov is 23%, 29%, 34%, 38%, 42%, 46%, 50%,
and 54% for ranks 1-8, respectively. In Fig. 6, the overall

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

06 - All-Kth-Dempster’s Rule
- Dempster’s Rule \
05
9 —¢— Markoy
- 04 —a— ANN
§ —0— Derpster's Rue
I3
£ 03 T ARM
= v
% @; - All-Kth-Markov vee ke AFKIEARM
& 02 Markov -
./ —e— AlKih-Markov
a1 ek S CRRED CRA < oKX -+ +--- AlKih-Dempster's Rule
X__—
0 -
1

Fig. 5. pr(hitlmatch) results using three-hop sessions and ranks from
1to8.

0454

- All-Kth-Markov
04 - Dempster’s Rule —
035 _‘,+\;"+ —0— Markav
- A —m— AN
5025 + /./.7 —#— Derrpster's Rule
L T —— AR
g 02 j?"f/’f%* —— Akt ARM
015 K, —a— Al-kthMarkoy
a W oo~ Ak Dermster's Rule

=
o
o

o

rank

Fig. 6. Overall accuracy results using two-hop sessions and ranks from 1 to 8.

Dt

06 -All-Kth-Dempster’s Rule
-Dempster’s Rule

05

|
~ 04 .- - ANN
E .\-/._A:;{_/J \ —— Dermpster's Rule
£ 03 -All-Kth-Markov | | _ . ARM
] S arkow s ALK RM
& 02 ” S - & - = AlLKth-Markov

- - -+ - - Alkkth-Derrpster's Rule

0.1

number of hops

Fig. 7. Comparable results of all techniques based on pr(hit|match) using
rank 6.

accuracy of All-Kth-Markov models is 12, 17, 21, 24, 27, 30,
and 35 for ranks 1-8, respectively.

Fig. 7 presents pr(hit|match) results of using rank 6. Notice
that the Dempster’s rule and All- Kth-Dempster’s rule methods
outperform all other techniques.

In Fig. 8, we notice that All-Kth-Dempster’s rule has
achieved the best overall accuracy, because it combines ANN
and the All- Kth-Markov model. Both models have a high train-
ing and generalization accuracy. For example, the overall accu-
racy using four hops for Markov, ANN, Dempster’s rule, ARM,
All-Kth-ARM, All-Kth-Markov, and All-Kth-Dempster’s
rule is 7%, 11%, 13%, 1%, 6%, 15%, and 16%, respectively.
In addition, notice that ANN has outperformed the Markov
model based on overall accuracy. This is because ANN gen-
eralizes better than the Markov model beyond training data.

AWAD AND KHAN: WEB NAVIGATION PREDICTION USING MULTIPLE EVIDENCE COMBINATION

0.25 -
- 0.2 —— Markov
g —=— ANN
E 0.15 A —— Dempster's Rule
E —— ARM
g 0.1 — - = - = AllKth-ARM
g 0.05 —— All-Kth-Markov
’ <-4 - - All-Kth-Dempster's Rule
0
number of hops
Fig. 8. Comparable results based on the overall accuracy using rank 1.
TABLE 1II
AVERAGE PREDICTION TIME WITH/WITHOUT DOMAIN KNOWLEDGE
Average Prediction | Average Prediction
Model Time With Domain Time Without
bae Knowledge Darmain Knowledge
{milliseconds) {milliseconds)
Markow 0.567 0544
All-Kth-
Markay 117 0.601
ANN 6.41 656.6
Dempster's
Rule 1.1 788.12

All- Kth-Dempster’s rule proves to combine the best of both
the ANN and All-Kth-Markov models, because it has kept
its superiority over all techniques using all measurements and
using different numbers of hops.

D. Effect of Domain Knowledge on Prediction

As we mentioned previously in Section IV, we have extended
this model to include higher orders of domain knowledge.
Recall that a frequency matrix of order n corresponds to a
Markov model of order n.

Table III shows that the average prediction time using do-
main knowledge is 0.567, 1.17, 6.41, and 1.11 ms for the
Markov, All-Kth-Markov, ANN, and Dempster’s rule models,
respectively. The average prediction time without using do-
main knowledge is 0.544, 0.801, 556.0, and 788.0 ms for the
Markov, All-Kth-Markov, ANN, and Dempster’s rule models,
respectively. It is very evident that prediction time is reduced
dramatically for ANN and Dempster’s rule. The overhead in
prediction without domain knowledge is a consequence of
loading a very large number of classifiers, i.e., 4563 classifiers,
and consulting them to resolve prediction. The prediction time
in case of the Markov model and All-Kth-Markov has not been
affected, because such models, contrary to ANN, can handle a
multiclass problem without the used of an on-VS-all model.

In part A of Fig. 9, the overall accuracy without using
any domain knowledge is 18.4%, 18.4%, 0.5%, and 15.7%
for Markov, All-Kth-Markov, ANN, and Dempster’s rule, re-
spectively. The overall accuracy in case of using first-order
frequency matrix (DK) is 18.4%, 18.5%, 21.6%, and 24.5%
for Markov, All-Kth-Markov, ANN, and Dempster’s rule, re-
spectively. Recall that the domain knowledge is based on the
frequency matrix of order n, which is another representation of
the nth order of the Markov model; hence, the overall accuracy
for the basic knowledge is already included in such models. On
the other hand, the performance of ANN and Dempster’s rule is

1061

0.3
0.25
0.2
0.15 4
0.1 1
0.05 1
0 4

mno DK
m DK

overall accuracy

Markov All-Kth-
Markov

(a)

ANN DS-
ANN-

Markov

0.3
0.25
0.2
0.15
0.1+
0.05 1
D = T T
Markov All-Kth-
Markov

(b)

Fig. 9. Comparable results using the overall accuracy with/without domain
knowledge. (a) One hop using rank 3. (b) Three hops using rank 3.

mno DK
oDK

overall accuracy

ANN DS-
ANN-
Markov

5 hops -rank 4

P 04
g 0.3 === |—— Al-Kth-Markov
2 02 —- ANN
E 041 —ai— DS-ANN-Markov
>
e 0 T T T T
1 2 3 4 5
domain knowledge order
(a)
8 hops -rank 4
& 04
£ 03 -Sﬁhﬁ-ﬁ—ﬁ —o— All-Kth-Markov
§ 02 1w —8— ANN
E 01 \k-\&—l— —a— DS-ANN-Markov
>
° 0 — —

1 2 3 4 5 6 7 8
domain knowledge order

(b)

Fig. 10. Effect of domain knowledge order on the overall accuracy.
(a) Five hops using rank 4. (b) Eight hops using rank 4.

affected by not using any domain knowledge, and the overall
accuracy has dropped largely. Similar results can be seen in
Fig. 9(b) when using three hops and rank 4. Fig. 10 presents
the effect of using different orders of domain knowledge on
the overall accuracy. Since we obtained similar results when
using different rankings and different number of hops, we
only show the results for five and eight hops using rank 4.
Recall that, in the previous experiments, we considered only
the first-order frequency matrix. Here, we consider a frequency
matrix of different orders as domain knowledge applied to the
All-Kth-Markov model, ANN, and Dempster’s rule. The three
curves (from top to bottom) in each subfigure represent the
overall accuracy of All-Kth-Markov, ANN, and Dempster’s
rule. For example, the overall accuracy for Dempster’s rule

1062

is 31%, 28%, 28%, 28%, and 28% using domain knowledge
of orders 1, 2, 3, 4, and 5, respectively. Notice that the use
of higher order for domain knowledge did not improve the
accuracy. On the contrary, it slightly affects the overall accu-
racy negatively. This can be related to the tradeoff between
the number of classifiers to consult and the order of domain
knowledge. Using higher order domain knowledge leads to
less number of classes to consult. This may positively affect
the accuracy and speed up the retrieval process. However,
this might exclude correct classes, decrease the accuracy, and
finally offsets the improvement of accuracy. Conversely, not
using domain knowledge leads to consulting a huge number of
classifiers that cause conflict. From Fig. 10, we find that using
domain knowledge of order 1 or 2 can balance such tradeoffs,
because accuracy is not affected dramatically.

VII. CONCLUSION AND FUTURE WORK

In this paper, we use a hybrid method in web prediction based
on Dempster’s rule for evidence combination to improve pre-
diction accuracy. We used two sources of evidence/prediction in
our hybrid method. The first body of evidence is ANNs. To im-
prove the prediction of ANN further, we incorporated different
orders of domain knowledge in prediction to improve prediction
accuracy. The second body of evidence is the widely used
Markov model, which is a probabilistic model. Furthermore,
we applied the All-Kth-Markov model. The All-Kth-Dempster’s
rule proves its effectiveness by combining the best of ANN and
the All-Kth-Markov model, as demonstrated by the fact that its
predictive accuracy has outperformed all other techniques.

We would like to extend our research in the following direc-
tions. First, we would like to study the impact/effect of other
features in the session’s logs by extracting statistical features
from the data set to improve accuracy. Next, we would like
to perform more experiments and analyses on the effect of the
frequency matrix order on prediction. Finally, we would like to
use boosting and bagging in the same context, and compare it
with our hybrid approach.

REFERENCES

[1] M. Levene and G. Loizou, “Computing the entropy of user navigation in
the web,” Int. J. Inf. Technol. Decis. Making, vol. 2, no. 3, pp. 459476,
Sep. 2003.

[2] Q. Yang, H. Zhang, and T. Li, “Mining web logs for prediction models in
WWW caching and prefetching,” in Proc. 7th ACM SIGKDD Int. Conf.
KDD, Aug. 26-29, 2001, pp. 473-478.

[3] K. Chinen and S. Yamaguchi, “An interactive prefetching proxy server for
improvement of WWW latency,” in Proc. 7th Annu. Conf. INEt, Kuala
Lumpur, Malaysia, Jun. 1997.

[4] V. Chung, C. H. Li, and J. Kwok, “Dissimilarity learning for nominal

data,” Pattern Recognit., vol. 37, no. 7, pp. 1471-1477, Jul. 2004.

J. Pitkow and P. Pirolli, “Mining longest repeating subsequences to predict

World Wide Web surfing,” in Proc. 2nd USITS, Boulder, CO, Oct. 1999,

pp- 139-150.

[6] J. Griffioen and R. Appleton, “Reducing file system latency using a
predictive approach,” in Proc. Summer USENIX Tech. Conf., Cambridge,
MA, 1994, pp. 197-207.

[7]1 B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Effective personaliza-
tion based on association rule discovery from web usage data,” in Proc.
ACM Workshop WIDM, Atlanta, GA, Nov. 2001, pp. 9-15. Held at CIKM.

[8] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules be-
tween sets of items in large databases,” in Proc. ACM SIGMOD Conf.
Manage. Data, Washington, DC, May 1993, pp. 207-216.

[5

=

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

[9] D.Duchamp, “Prefetching hyperlinks,” in Proc. 2nd USITS, Boulder, CO,
Oct. 1999, pp. 127-138.

[10] A.Pandey, J. Srivastava, and S. Shekhar, “A web intelligent prefetcher for
dynamic pages using association rules—A summary of results,” in Proc.
SIAM Workshop Web Mining, Report No. 01-004, 2001.

[11] Z. Su, Q. Yang, Y. Lu, and H. Zhang, “Whatnext: A prediction system for
web requests using N-gram sequence models,” in Proc. Ist Int. Conf. Web
Inf. Syst. Eng. Conf., Hong Kong, Jun. 2000, pp. 200-207.

[12] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123—
140, Aug. 1996.

[13] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of recom-
mender algorithms for e-commerce,” in Proc. 2nd ACM EC, Minneapolis,
MN, Oct. 2000, pp. 158-167.

[14] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in Proc. 7th Int. WWW Conf., Brisbane, Australia, 1998,
pp.- 107-117.

[15] E.Parzen, “On the estimation of a probability density function and mode,”
Ann. Math. Stat., vol. 33, no. 3, pp. 1065-1076, Sep. 1962.

[16] J. Platt, “Probabilistic outputs for SVMs and comparisons to regular-
ized likelihood methods,” in Advances in Large Margin Classifiers.
Cambridge, MA: MIT Press, 1999.

[17] G. Shafer, A Mathematical Theory of Evidence.
Univ. Press, 1976.

[18] T. Joachims, D. Freitag, and T. Mitchell, “WebWatcher: A tour guide for
the World Wide Web,” in Proc. IJCAI, 1997, pp. 770-777.

[19] O. Nasraoui and R. Krishnapuram, “An evolutionary approach to min-
ing robust multi-resolution web profiles and context sensitive URL as-
sociations,” Int. J. Comput. Intell. Appl., vol. 2, no. 3, pp. 339-348,
2002.

[20] R. Cooley, B. Mobasher, and J. Srivastava, “Data preparation for mining
World Wide Web browsing patterns,” J. Knowl. Inf. Syst., vol. 1, no. 1,
pp. 5-32, 1999.

[21] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-
ical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 1992.

Princeton, NJ: Princeton

Mamoun A. Awad received the B.Sc. degree in
computer science from Baghdad University, Bagh-
dad, Iraq, in June 1994, the M.S. degree in com-
puter science from Wichita State University, Wichita,
Kansas, in May 1999, and the Ph.D. degree in soft-
ware engineering from the University of Texas at
Dallas, Richardson, in December 2005.

He is currently an Assistant Professor in the Infor-
mation Technology College, United Arab Emirates
University, Al Ain, where he has taught and con-
ducted research since August 2006. He has already
published 15 conference proceeding papers, book chapters, and journal articles.
His current areas of research are data mining, intrusion detection, and Web
prediction.

Latifur R. Khan received the B.Sc. degree in com-
puter science and engineering from the Bangladesh
University of Engineering and Technology, Dhaka,
Bangladesh, in November 1993 and the M.S.
and Ph.D. degrees in computer science from the
University of Southern California, Los Angeles, in
December 1996 and August 2000, respectively.

He is currently an Associate Professor in the De-
partment of Computer Science, University of Texas
at Dallas (UTD), Richardson, where he has taught
and conducted research since September 2000, and
the Director of the UTD Database and Data Mining Laboratory. He is currently
on the editorial board of North Holland’s Computer Standards and Interface
Journal, published by Elsevier. He has published over 80 papers in presti-
gious journals and conference proceedings. His research interests include data
mining, multimedia information management, and semantic Web and database
systems.

Dr. Khan was a Committee Member in numerous prestigious conferences,
symposiums, and workshops, including the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining.

R

