
An Effective Support Vector Machines (SVMs) Performance Using
Hierarchical Clustering*

Mamoun Awad, Latifur Khan, Farokh Bastani, and I-Ling Yen
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75083-0688

Email: [maa013600, lkhan, bastani, ilyen]@utdallas.edu

Abstract

The training time for SVMs to compute the maximal
marginal hyper-plane is at least O(N2) with the data set
size N, which makes it non-favorable for large data
sets. This paper presents a study for enhancing the
training time of SVMs, specifically when dealing with
large data sets, using hierarchical clustering analysis.
We use the Dynamically Growing Self-Organizing Tree
(DGSOT) Algorithm for clustering because it has
proved to overcome the drawbacks of traditional
hierarchical clustering algorithms. Clustering analysis
helps find the boundary points, which are the most
qualified data points to train SVMs, between two
classes. We present a new approach of combination of
SVMs and DGSOT, which starts with an initial training
set and expands it gradually using the clustering
structure produced by the DGSOT algorithm. We
compare our approach with the Rocchio Bundling
technique in terms of accuracy loss and training time
gain using two benchmark real data sets.

1. Introduction

Support Vector Machines (SVMs) technique is one
of the most powerful classification techniques that was
successfully applied to many real world problems [3].
SVMs are based on the idea of mapping data points to a
high dimensional feature space where a separating
hyper-plane can be found. This mapping can be carried
on by applying the kernel trick which implicitly
transforms the input space into another high
dimensional feature space. The hyper-plane is
computed by maximizing the distance of the closest
patterns, i.e., margin maximization, avoiding the
problem of over-fitting. The separating hyper-plane is
found using a quadric programming routine which is

* This study was supported by the National Science Foundation grant
NGS-0103709.

computationally very expensive. Furthermore, this
routine depends on the data set size, taking impractical
time when dealing with huge data sets.

Many applications, such as Data Mining and Bio-
Informatics, require the processing of huge data sets.
The training time of SVMs is a serious obstacle for
these kinds of data sets. According to [4], it would take
years to train SVMs on a data set of size one million
records.

Many proposals have been submitted to enhance
SVMs to increase its training performance with large
data sets. Techniques include: Random Selection [5, 6],
clustering analysis [4, 13], Bagging [9], and Rocchio
Bundling [10]. Random Sampling and Rocchio
Bundling could over-simplify the training set, hence
losing the benefits of using SVMs; especially if the
probability distribution of training and testing data is
different [4]. In bagging technique, the testing process
becomes very expensive [10]. Also, clustering analysis
adds expensive computations in building the
hierarchical structure.

This paper proposes a new approach for enhancing
the training process of SVMs when dealing with large
data sets. It is based on the combination of SVMs and
clustering analysis. The idea is to approximate the
support vectors (see section 2 for details) by applying
clustering analysis on the fly and without adding a lot
of computations in building the hierarchical structure.

Traditionally, clustering algorithms can be classified
into two main types, namely, hierarchical clustering
and partitioning clustering. Partitioning, also called flat
clustering, directly seeks a partition of the data which
optimizes a predefined numerical measure. In
partitioning clustering, the number of clusters is
predefined, and determining the optimal number of
clusters may involve more computational cost than
clustering itself. Furthermore, a priori knowledge may
be necessary for initialization and the avoidance of
local minima. Hierarchical clustering, on the other
hand, returns a series of nested partitions. The inner

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

partitions are smaller and closer to each others (in one
outer partition). Hence, we favor hierarchical clustering
over flat clustering because we can explore smaller
partitions and relate them to an outer one.

In the course of our approaches, we do not use the
original data set to train SVMs; instead, we use the tree
node references generated by the clustering algorithm.
Since the size of the hierarchical tree is significantly
less than the size of the original data set, the training
process will be very fast. We also improve the accuracy
of the classifier by applying a de-clustering process
(adding new training examples, which are the children
of the support vectors). By applying training and de-
clustering repeatedly, the training process becomes fast
and the training set grows gradually to improve
accuracy. From now on when we say de-clustering we
mean that the expansion phase of the clustering
algorithm is invoked.

2. Support Vector Machines Overview

Support Vector Machines (SVMs) are learning
systems that use a hypothesis space of linear functions
in a high dimensional feature space, trained with a
learning algorithm from optimization theory. This
learning strategy, introduced by Vapnik and co-
workers, is a very powerful and popular in recent
areas for various application domains [2, 3]. SVMs
are based on the idea of hyper-plane classifier, or linear
separability. Suppose we have N training data points
{(x1, y1), (x2, y2), (x3, y3) ... (xN, yN)}, where Rix ∈ d

and }1,1{ −+∈iy . We would like to find a linear
separating hyper-plane classifier as in Equation 2.1.
Furthermore, we want this hyper-plane to have the
maximum separating margin with respect to the two
classes. This problem can be formalized as in
Equations 2.2 and 2.3. Instead, we can use the Wolfe
dual formalization as in Equation 2.4 (see [7] for more
details).

(2.5))).((

).()(

(2.4))(2/1

),,(Maximize

(2.3)1).(Subject to
(2.2)2/1Minimize
(2.1))()(

),(

bxxysign

bxwsignxf

bxwyww

bwL

bxwy
ww

bwsignxf

N

i
iii

N

i

N

i
iiii

T

ii

T
bw

−=

+=

+−⋅−

≡

≥−⋅
⋅

−⋅=

�

� �

α

αα

α

χ

This is a convex quadratic programming problem
(in w , b) in a convex set. We can classify a new object
x using Equation 2.5. Note that the training

vectors ix occur only in the form of dot product; there is
a Lagrangian multiplier α for each training point,
which reflects the importance of the data point. When
the maximal margin hyper-plane is found, only points
that lie closest to the hyper-plane will have α >0 and
these points are called support vectors. All other points
will have α=0. This means that the representation of
the hypothesis/classifier is given only by those points
that lie closest to the hyper-plane and they are the most
important data points that serve as support vectors.

Figure 1 The flowchart of the main algorithm.

3. Our Approach

Our approach for enhancing the training process of
SVMs is to find those support vectors or approximate
them in advance. We use the hierarchical structure
produced by the DGSOT algorithm [8] to approximate
support vectors. Then we train SVMs on a small
training set, which is the clusters’ references of the top
levels of the trees, hence the training process is very
fast. After computing the margin, we can determine
whether a node is a support vector node or not (see
Section 2 for details). Support vector nodes are de-
clustered by adding their children nodes to the training
set. We repeat this process until a stopping criterion
holds true. Therefore, clustering and SVMs are mingled
with each other. There are several ways we can set the
stopping criteria. For example, we can stop at a
certain level of the tree, or upon reaching a certain
number of nodes in the trees, or when a certain
accuracy level is attained. In our implementation, we
adopt the second strategy so that we can compare it
with the Rocchio Bundling algorithm [10] which
reduces the data set into a specific size. In the
following subsections, we present our approaches for
support vectors approximation.

3.1 Two Clustering Trees Based on SVMs
(TCT_SVM)

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

Figure 1 outlines the steps of this approach for
enhancing the training process of SVMs. First, we
apply the DGSOT algorithm to build an initial
hierarchical tree for each class. Basically, we want to
start with a reasonable number of nodes in each tree.
Second, we train SVMs on the tree nodes. Third, we
de-cluster support vectors by including their children in
the training data set. Notice that the number of nodes is
relatively small in the top levels of the tree making the
training process very fast. Also, based on a stopping
criterion, we can decide whether to stop the algorithm
or continue before completely building (or expanding)
the hierarchical trees.

One subtlety of using clustering analysis is that each
epoch might take long time to converge, which
overcomes any benefit of improving SVMs. However,
our strategy here is that we do not wait unit DGOST
finishes. Instead, after each epoch/iteration of the
DGSOT algorithm which takes a small amount of time,
we train the SVMs on the generated nodes. After each
training process, we control the growth of the
hierarchical tree because non-support vector nodes will
be stopped from growing. We have updated the
DGSOT algorithm to accommodate that. Figure 2
shows the growth of one of the hierarchical trees during
this approach. The bold nodes represent the support
vector nodes. Notice that nodes 1, 2, 3, 5, 6, and 9 were
allowed to expand because they are support vector
nodes, while nodes 4, 8, 7, and 10 were stopped from
growing because they are not support vector nodes. The
de-cluster step is very important to increase the number
of points in the data set to obtain a more accurate
classifier. Figure 3 shows an illustrative example of
applying de-clustering. The initial data set and the new
data set are shown after de-clustering support vector
nodes (bold nodes). Bold nodes represent non support
vector references (such as +4 and +7).

3.2 Two Clustering Trees with extra Distance
measure SVMs (TCTD-SVM)

The TCTD-DVM approach is a variation of the
TCT-SVM. We add an extra step before de-clustering.
Specifically, we measure the distance between nodes in
the training set. Since the distance between nodes lying
in the boundary area is most probably the least, then we
can exclude those nodes having distance more than the
average distance. For example, Figure 4 shows two
hierarchical trees representing two classes. After
training, we determine that nodes (+1, +2, +3, -1, -2, -
3) are support vector nodes. We measure the Euclidean
distance between every two nodes, one is a positive
node and the other is a negative node in the training set.
For example, we measure the distance between [+1, -
2], [+1,-2], [+1,-3], [+2,-1], [+2, -2], [+2, -3],…. At the

end, we will find that nodes +2, +1, +3, -1, and -2 are
the closest to each other; furthermore nodes +2 and -3
are distant from every other node in the other tree.
Hence, we remove nodes +2 and -3 from the training
set or, at least, we do not de-cluster them because they
will not make any contribution to the margin
computation. Since the distance varies even between
support vectors, we can choose those nodes (one from
the positive tree and one from the negative tree) with
distance less than the average distance between nodes
from both trees.

Figure 2 controlling the DGSOT growth.

Figure 3 illustrative de-clustering example:
The new data set after applying de-clustering.

Figure 4 support vectors from both trees most
probably closest.

3.3 One Clustering Tree based SVM (OCT-
SVM)

In the OCT-SVM approach, we choose the most
qualified nodes in a hierarchical tree to train SVMs
based on a single tree for the whole data set.
Specifically, we study the relationship between the data

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

points in each cluster to find out whether that cluster is
a support vector cluster or not. Basically, we apply
clustering analysis to the whole data set and generate
one hierarchical tree. We are interested in those clusters
having data points from different classes assigned to
them, because those clusters most probably lie in the
marginal area between the two classes. We call those
clusters heterogeneous clusters. But the question is
how to determine whether a heterogeneous node is
positive or negative? We need this because training
examples bear classes. Here, we simply use a majority
voting mechanism to determine the class of the node.
Specifically, if the number of positive data points of a
node is greater than the number of negative data points
of that node, the node will be declared to be a positive
class. We break the tie arbitrarily. Furthermore, to
approximate support vectors, when we de-cluster a
node we only use closest children to the margin and
discard the rest.

This approach differs from the previous two as
follows. First, we only construct only hierarchical tree.
Second, we always start from the top level of the tree,
and repeatedly train and de-cluster support vector
nodes. Since the top levels of the tree span more area in
the space, most probably we find that they are
heterogeneous. After we find those heterogeneous
nodes in an initial level, we de-cluster those nodes.
Third, we use majority voting to determine the label of
a cluster. Furthermore, we only include those
heterogeneous children in the training set and discard
the rest.

Figure 5 shows one hierarchical clustering tree
spanning the data set. The clusters depicted in big
circles are the nodes of one of the top levels, say l level
of the tree. Notice that clusters lying in the margin area
are heterogeneous, e.g. A and B, while clusters lying
far from the margin area are homogeneous, e.g., E and
C. In OCT-SVM, we discard clusters C and E because
they are not heterogeneous. Meanwhile, we train SVMs
on clusters A, B, and D.

4 Experimental Results
In this section, we present our experimental results

of applying our approaches and compare them with
other techniques such as random selection and Rocchio
Bundling [10]. We use the LIBSVM for SVSM [11]
implementation and use the ν -SVM with linear kernel.
In our experiments we set ν very low
(1.0or01.0 == νν). We have evaluated the
performance of our different approaches on several
standard classification data sets. Because of the space
limitations we are only reporting the results of two.

Figure 5 heterogeneous clusters in the
hierarchical tree.

The first data set is the Waveform data set. The
Waveform data set has 5000 waves; each belongs to
one of three classes. There are 40 attributes, all of
which include noise [12]. The second data set is the
Adult data set. This data set has over 32000 data points
and two classes. Each data point composed of 14
features (8 symbolic features and 6 continuous
features) [12]. For both data sets, we created one
independent “zero-one” (predicate) feature for each
value of the symbolic features such that “one” indicates
the existence of the value.

For each data set, we use cross-validation (n-fold =
20) to train SVMs and obtain the training time and
generalization accuracy. Table 1 shows the training
time and testing accuracy of all techniques on the Wave
dataset. For the sake of comparison, we measure the
training time and the generalization accuracy when the
size of the training set reaches 4% (first two columns)
and 12% (last two columns) of the size of the original
dataset. The first row shows the training results by
applying the cross-validation techniques (n-folds = 20).

Table 2 shows the same comparison results but with
the Adult dataset. Notice that the size of the
hierarchical tree (training data) in our techniques (TCT-
SVM, TCTD-SVM, and OCT-SVM) does not reach the
12%; because the algorithms prune many nodes by not
growing them and converges with small hierarchical
tree. As expected, the training time of all techniques is
very good (notice that we added the pre-processing
time to the training time of SVMs in all techniques).
However, the accuracy varies from one approach to
another and from one data set to another.

The general conclusion is that the TCT-SVM is the
best stable approach in terms of accuracy and training
time. The distance measure in the TCTD-SVM
approach was not very effective, and sometimes some
accuracy was lost. In the OCT-SVM approach, the
heterogeneity and majority vote techniques are not
quite affective to approximate support vector machines.
Furthermore, they might add extra overhead to
compute them. The Random Sampling and Rocchio
Bundling techniques suffers from the same problem of
TCTD-SVM in reducing the dataset, and their
performance vary from one dataset to another.

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

Table 1 Training time and accuracy results for
the Wave dataset and using 4% and 12% of the
total size of the data set.

 Training
Time in
seconds

(4%)

Testing
Accuracy

(4%)

Training
Time in
seconds
(12%)

Testing
Accuracy

(12%)

SVMs 19.2 100%
Random
Selection

0.2 82% 1.6 85%

Rocchio
Bundling

0.2 54% 1.5 55%

TCT-
SVM

0.2 84% 0.22 83%

TCTD-
SVM

0.95 73% N/A N/A

OCT-
SVM

0.5 82% 0.9 82%

Table 2 Training time and accuracy results for
the Adult dataset and using 4% and 12% of the
total size of the data set.

Training
Time in
seconds

(4%)

Testing
Accuracy

(4%)

Training
Time in
seconds
(12%)

Testing
Accuracy

(12%)

SVMs 8000 76%
Random
Selection 66 71% 200 69%

Rocchio
Bundling 80 75% 82 75%

TCT-
SVM 82 74% N/A N/A

TCTD-
SVM 85 69% N/A N/A

OCT-
SVM 81 72% N/A N/A

5 References

[1] V. Vapnik, The Nature of Statistical Learning
Theory, Springer-Verlag; 1999, ISBN: 0387987800.

[2] S. Terrence, N. Cristianini, N. Duffy, D.W.
Bednarski, M. Schummer, and D. Haussler, “Support
vector machine classification and validation of cancer
tissue samples using microarray expression data”,
Bioinformatics Vol. 16 no. 10 2000, pages 906-914.

[3] Y. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C.
Cortes, J.S. Deker, H. Drucker, I. Guyon, U.A. Muller,
E. Sackinger, P. Siard, and V. Vapnik, “Comparison of
Learning Algorithms for Handwritten Recognition”, in
F. Fogelman and P. Gallinari, editors, International
Conference on Artificial Neural Networks, pages 53-
60, Paris, 1995 EC2 & Cie.

[4] Hwanjo Yu, Jiong Yang, and Jiawei Han,
“Classifying Large Data sets Using SVMs with
Hierarchical Clusters”, in Proc. of the 9th ACM
SIGKDD 2003, August 24-27, 2003, Washington, DC,
USA.

[5] J. L. Balcazar, Y. Dai and O. Watanabe, “Provably
Fast Training Algorithms for Support Vector
Machines”, in Proc. of the 1st IEEE International
Conference on Data mining,, IEEE Computer Society
(2001) pp.43-50.

 [6] D. K. Agarwal, “Shrinkage estimator
generalizations of proximal support vector machines”,
in Proc. of the 8th ACM SIGKDD international
conference of knowledge Discovery and data mining,
Edmonton, Canada, 2002.

[7] N. Cristianini and J. Shawe-Taylor, Introduction to
Support Vector Machines, Cambridge University Press
2000 ISBN: 0 521 78019 5.

[8] F. Luo, L. Khan, F. Bastani, I-Ling Yen, and J.
Zhou, “A Dynamical Growing Self-Organizing Tree
(DGSOT) for Hierarchical Clustering Gene Expression
Profiles”, to appear in the Bioinformatics Journal,
Oxford University Press, UK.

[9] G. Valentini and T.G. Dietterich, “Low Bias
Bagged Support Vector Machines”, in Proc. of the 20th

International Conference on Machine Learning ICML
2003, Washington D.C. USA, pp. 752-759.

[10] L. Shih, Y D.M Rennie, Y. Chang, and D.R.
Karger, “Text Bundling : Statistics-based Data
Reduction”, in Proc. of the Twentieth International
Conference on Machine Learning (ICML-2003),
Washington DC, 2003.

[11] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a
library for support vector machines, 2001,
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[12] C.L. Blake and C.J. Merz, UCI Repository of
machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html],
Irvine, CA: University of California at Irvine,
Department of Information and Computer Science.

[13] B. Daniael and D. Cao, “Training Support Vector
Machines Using Adaptive Clustering”, in Proc. of
SIAM International Conference on Data Mining 2004,
Lake Buena Vista, FL, USA.

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

