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Abstract 

The training time for SVMs to compute the maximal 
marginal hyper-plane is at least O(N2) with the data set 
size N, which makes it non-favorable for large data 
sets. This paper presents a study for enhancing the 
training time of SVMs, specifically when dealing with 
large data sets, using hierarchical clustering analysis. 
We use the Dynamically Growing Self-Organizing Tree 
(DGSOT) Algorithm for clustering because it has 
proved to overcome the drawbacks of traditional 
hierarchical clustering algorithms. Clustering analysis 
helps find the boundary points, which are the most 
qualified data points to train SVMs, between two 
classes. We present a new approach of combination of 
SVMs and DGSOT, which starts with an initial training 
set and expands it gradually using the clustering 
structure produced by the DGSOT algorithm. We 
compare our approach with the Rocchio Bundling 
technique in terms of accuracy loss and training time 
gain using two benchmark real data sets. 

1. Introduction

Support Vector Machines (SVMs) technique is one 
of the most powerful classification techniques that was 
successfully applied to many real world problems [3]. 
SVMs are based on the idea of mapping data points to a 
high dimensional feature space where a separating 
hyper-plane can be found. This mapping can be carried 
on by applying the kernel trick which implicitly 
transforms the input space into another high 
dimensional feature space. The hyper-plane is 
computed by maximizing the distance of the closest 
patterns, i.e., margin maximization, avoiding the 
problem of over-fitting. The separating hyper-plane is 
found using a quadric programming routine   which    is 
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computationally very expensive. Furthermore, this 
routine depends on the data set size, taking impractical 
time when dealing with huge data sets.  

Many applications, such as Data Mining and Bio-
Informatics, require the processing of huge data sets. 
The training time of SVMs is a serious obstacle for 
these kinds of data sets. According to [4], it would take 
years to train SVMs on a data set of size one million 
records. 

Many proposals have been submitted to enhance 
SVMs to increase its training performance with large 
data sets. Techniques include: Random Selection [5, 6], 
clustering analysis [4, 13], Bagging [9], and Rocchio 
Bundling [10]. Random Sampling and Rocchio 
Bundling could over-simplify the training set, hence 
losing the benefits of using SVMs; especially if the 
probability distribution of training and testing data is 
different [4]. In bagging technique, the testing process 
becomes very expensive [10]. Also, clustering analysis 
adds expensive computations in building the 
hierarchical structure. 

This paper proposes a new approach for enhancing 
the training process of SVMs when dealing with large 
data sets. It is based on the combination of SVMs and 
clustering analysis. The idea is to approximate the 
support vectors (see section 2 for details) by applying 
clustering analysis on the fly and without adding a lot 
of computations in building the hierarchical structure. 

Traditionally, clustering algorithms can be classified 
into two main types, namely, hierarchical clustering 
and partitioning clustering. Partitioning, also called flat 
clustering, directly seeks a partition of the data which 
optimizes a predefined numerical measure. In 
partitioning clustering, the number of clusters is 
predefined, and determining the optimal number of 
clusters may involve more computational cost than 
clustering itself.  Furthermore, a priori knowledge may 
be necessary for initialization and the avoidance of 
local minima. Hierarchical clustering, on the other 
hand, returns a series of nested partitions. The inner 
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partitions are smaller and closer to each others (in one 
outer partition). Hence, we favor hierarchical clustering 
over flat clustering because we can explore smaller 
partitions and relate them to an outer one.  

In the course of our approaches, we do not use the 
original data set to train SVMs; instead, we use the tree 
node references generated by the clustering algorithm. 
Since the size of the hierarchical tree is significantly 
less than the size of the original data set, the training 
process will be very fast. We also improve the accuracy 
of the classifier by applying a de-clustering process 
(adding new training examples, which are the children 
of the support vectors). By applying training and de-
clustering repeatedly, the training process becomes fast 
and the training set grows gradually to improve 
accuracy. From now on when we say de-clustering we 
mean that the expansion phase of the clustering 
algorithm is invoked. 

2. Support Vector Machines Overview

Support Vector Machines (SVMs) are learning 
systems that use a hypothesis space of linear functions 
in a high dimensional feature space, trained with a 
learning algorithm from optimization theory. This 
learning strategy, introduced by Vapnik and co-
workers, is a very powerful and popular in recent 
areas for various application domains [2, 3]. SVMs 
are based on the idea of hyper-plane classifier, or linear 
separability.  Suppose we have N training data points 
{(x1, y1), (x2, y2), (x3, y3) ... (xN, yN)}, where Rix ∈ d

and }1,1{ −+∈iy . We would like to find a linear 
separating hyper-plane classifier as in Equation 2.1. 
Furthermore, we want this hyper-plane to have the 
maximum separating margin with respect to the two 
classes. This problem can be formalized as in 
Equations 2.2 and 2.3. Instead, we can use the Wolfe 
dual formalization as in Equation 2.4 (see [7] for more 
details).  

(2.5))).((

).()(

(2.4))(2/1

),,(Maximize

(2.3)1).(Subject to
(2.2)2/1Minimize
(2.1))()(

),(

bxxysign

bxwsignxf

bxwyww

bwL

bxwy
ww

bwsignxf

N

i
iii

N

i

N

i
iiii

T

ii

T
bw

−=

+=

+−⋅−

≡

≥−⋅
⋅

−⋅=

�

� �

α

αα

α

χ

This is a convex quadratic programming problem 
(in w , b) in a convex set. We can classify a new object 
x using Equation 2.5. Note that the training 

vectors ix occur only in the form of dot product; there is 
a Lagrangian multiplier α for each training point, 
which reflects the importance of the data point. When 
the maximal margin hyper-plane is found, only points 
that lie closest to the hyper-plane will have α >0 and 
these points are called support vectors. All other points 
will have α=0. This means that the representation of 
the hypothesis/classifier is given only by those points 
that lie closest to the hyper-plane and they are the most 
important data points that serve as support vectors.

Figure 1 The flowchart of the main algorithm. 

3. Our Approach 

Our approach for enhancing the training process of 
SVMs is to find those support vectors or approximate 
them in advance. We use the hierarchical structure 
produced by the DGSOT algorithm [8] to approximate 
support vectors. Then we train SVMs on a small 
training set, which is the clusters’ references of the top 
levels of the trees, hence the training process is very 
fast. After computing the margin, we can determine 
whether a node is a support vector node or not (see 
Section 2 for details). Support vector nodes are de-
clustered by adding their children nodes to the training 
set. We repeat this process until a stopping criterion 
holds true. Therefore, clustering and SVMs are mingled 
with each other. There are several ways we can set the 
stopping criteria. For example, we can stop at a 
certain level of the tree, or upon reaching a certain 
number of nodes in the trees, or when a certain 
accuracy level is attained. In our implementation, we 
adopt the second strategy so that we can compare it 
with the Rocchio Bundling algorithm [10] which 
reduces the data set into a specific size. In the 
following subsections, we present our approaches for 
support vectors approximation. 

3.1 Two Clustering Trees Based  on SVMs 
(TCT_SVM) 
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Figure 1 outlines the steps of this approach for 
enhancing the training process of SVMs. First, we 
apply the DGSOT algorithm to build an initial 
hierarchical tree for each class. Basically, we want to 
start with a reasonable number of nodes in each tree. 
Second, we train SVMs on the tree nodes. Third, we 
de-cluster support vectors by including their children in 
the training data set. Notice that the number of nodes is 
relatively small in the top levels of the tree making the 
training process very fast. Also, based on a stopping 
criterion, we can decide whether to stop the algorithm 
or continue before completely building (or expanding) 
the hierarchical trees.  

One subtlety of using clustering analysis is that each 
epoch might take long time to converge, which 
overcomes any benefit of improving SVMs. However, 
our strategy here is that we do not wait unit DGOST 
finishes. Instead, after each epoch/iteration of the 
DGSOT algorithm which takes a small amount of time, 
we train the SVMs on the generated nodes. After each 
training process, we control the growth of the 
hierarchical tree because non-support vector nodes will 
be stopped from growing. We have updated the 
DGSOT algorithm to accommodate that. Figure 2 
shows the growth of one of the hierarchical trees during 
this approach. The bold nodes represent the support 
vector nodes. Notice that nodes 1, 2, 3, 5, 6, and 9 were 
allowed to expand because they are support vector 
nodes, while nodes 4, 8, 7, and 10 were stopped from 
growing because they are not support vector nodes. The 
de-cluster step is very important to increase the number 
of points in the data set to obtain a more accurate 
classifier. Figure 3 shows an illustrative example of 
applying de-clustering. The initial data set and the new 
data set are shown after de-clustering support vector 
nodes (bold nodes). Bold nodes represent non support 
vector references (such as +4 and +7). 

3.2 Two Clustering Trees with extra Distance 
measure SVMs  (TCTD-SVM)  

The TCTD-DVM approach is a variation of the 
TCT-SVM. We add an extra step before de-clustering. 
Specifically, we measure the distance between nodes in 
the training set. Since the distance between nodes lying 
in the boundary area is most probably the least, then we 
can exclude those nodes having distance more than the 
average distance. For example, Figure 4 shows two 
hierarchical trees representing two classes. After 
training, we determine that nodes ( +1, +2, +3, -1, -2, -
3) are support vector nodes. We measure the Euclidean 
distance between every two nodes, one is a positive 
node and the other is a negative node in the training set. 
For example, we measure the distance between [+1, -
2], [+1,-2], [+1,-3], [+2,-1], [+2, -2], [+2, -3],…. At the 

end, we will find that nodes +2, +1, +3, -1, and -2 are 
the closest to each other; furthermore nodes +2 and -3 
are distant from every other node in the other tree. 
Hence, we remove nodes +2 and -3 from the training 
set or, at least, we do not de-cluster them because they 
will not make any contribution to the margin 
computation. Since the distance varies even between 
support vectors, we can choose those nodes (one from 
the positive tree and one from the negative tree) with 
distance less than the average distance between nodes 
from both trees.  

Figure 2 controlling the DGSOT growth. 

Figure 3 illustrative de-clustering example: 
The new data set after applying de-clustering. 

Figure 4 support vectors from both trees most 
probably closest. 

3.3 One Clustering Tree based SVM (OCT-
SVM) 

In the OCT-SVM approach, we choose the most 
qualified nodes in a hierarchical tree to train SVMs 
based on a single tree for the whole data set. 
Specifically, we study the relationship between the data 
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points in each cluster to find out whether that cluster is 
a support vector cluster or not. Basically, we apply 
clustering analysis to the whole data set and generate 
one hierarchical tree. We are interested in those clusters 
having data points from different classes assigned to 
them, because those clusters most probably lie in the 
marginal area between the two classes. We call those 
clusters heterogeneous clusters. But the question is 
how to determine whether a heterogeneous node is 
positive or negative? We need this because training 
examples bear classes. Here, we simply use a majority 
voting mechanism to determine the class of the node. 
Specifically, if the number of positive data points of a 
node is greater than the number of negative data points 
of that node, the node will be declared to be a positive 
class. We break the tie arbitrarily. Furthermore, to 
approximate support vectors, when we de-cluster a 
node we only use closest children to the margin and 
discard the rest. 

This approach differs from the previous two as 
follows. First, we only construct only hierarchical tree. 
Second, we always start from the top level of the tree, 
and repeatedly train and de-cluster support vector 
nodes. Since the top levels of the tree span more area in 
the space, most probably we find that they are 
heterogeneous. After we find those heterogeneous 
nodes in an initial level, we de-cluster those nodes.  
Third, we use majority voting to determine the label of 
a cluster. Furthermore, we only include those 
heterogeneous children in the training set and discard 
the rest.  

Figure 5 shows one hierarchical clustering tree 
spanning the data set. The clusters depicted in big 
circles are the nodes of one of the top levels, say l level 
of the tree. Notice that clusters lying in the margin area 
are heterogeneous, e.g. A and B, while clusters lying 
far from the margin area are homogeneous, e.g., E and 
C. In OCT-SVM, we discard clusters C and E because 
they are not heterogeneous. Meanwhile, we train SVMs 
on clusters A, B, and D.  

4 Experimental Results 
In this section, we present our experimental results 

of applying our approaches and compare them with 
other techniques such as random selection and Rocchio 
Bundling [10]. We use the LIBSVM for SVSM [11] 
implementation and use the ν -SVM with linear kernel. 
In our experiments we set ν very low 
( 1.0or01.0 == νν ). We have evaluated the 
performance of our different approaches on several 
standard classification data sets. Because of the space 
limitations we are only reporting the results of two.  

Figure 5 heterogeneous clusters in the 
hierarchical tree. 

The first data set is the Waveform data set. The 
Waveform data set has 5000 waves; each belongs to 
one of three classes. There are 40 attributes, all of 
which include noise [12]. The second data set is the 
Adult data set. This data set has over 32000 data points 
and two classes. Each data point composed of 14 
features (8 symbolic features and 6 continuous 
features) [12]. For both data sets, we created one 
independent “zero-one” (predicate) feature for each 
value of the symbolic features such that “one” indicates 
the existence of the value.  

For each data set, we use cross-validation (n-fold = 
20) to train SVMs and obtain the training time and 
generalization accuracy. Table 1 shows the training 
time and testing accuracy of all techniques on the Wave 
dataset. For the sake of comparison, we measure the 
training time and the generalization accuracy when the 
size of the training set reaches 4% (first two columns) 
and 12% (last two columns) of the size of the original 
dataset.  The first row shows the training results by 
applying the cross-validation techniques (n-folds = 20). 

Table 2 shows the same comparison results but with 
the Adult dataset. Notice that the size of the 
hierarchical tree (training data) in our techniques (TCT-
SVM, TCTD-SVM, and OCT-SVM) does not reach the 
12%; because the algorithms prune many nodes by not 
growing them and converges with small hierarchical 
tree. As expected, the training time of all techniques is 
very good (notice that we added the pre-processing 
time to the training time of SVMs in all techniques). 
However, the accuracy varies from one approach to 
another and from one data set to another. 

The general conclusion is that the TCT-SVM is the 
best stable approach in terms of accuracy and training 
time. The distance measure in the TCTD-SVM 
approach was not very effective, and sometimes some 
accuracy was lost. In the OCT-SVM approach, the 
heterogeneity and majority vote techniques are not 
quite affective to approximate support vector machines. 
Furthermore, they might add extra overhead to 
compute them. The Random Sampling and Rocchio 
Bundling techniques suffers from the same problem of 
TCTD-SVM in reducing the dataset, and their 
performance vary from one dataset to another. 
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Table 1 Training time and accuracy results for 
the Wave dataset and using 4% and 12% of the 
total size of  the data set. 

 Training 
Time in 
seconds 

(4%) 

Testing 
Accuracy 

(4%) 

Training 
Time in 
seconds 
(12%) 

Testing  
Accuracy 

(12%) 

SVMs 19.2 100%   
Random 
Selection 

0.2 82% 1.6 85% 

Rocchio 
Bundling 

0.2 54% 1.5 55% 

TCT-
SVM 

0.2 84% 0.22 83% 

TCTD-
SVM 

0.95 73% N/A N/A 

OCT-
SVM 

0.5 82% 0.9 82% 

Table 2 Training time and accuracy results for 
the Adult dataset and using 4% and 12% of the 
total size of  the data set. 

Training 
Time in 
seconds 

(4%) 

Testing 
Accuracy 

(4%) 

Training 
Time in 
seconds 
(12%) 

Testing 
Accuracy 

(12%) 

SVMs 8000 76%   
Random 
Selection 66 71% 200 69% 

Rocchio 
Bundling 80 75% 82 75% 

TCT-
SVM 82 74% N/A N/A 

TCTD-
SVM 85 69% N/A N/A 

OCT-
SVM 81 72% N/A N/A 
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