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Abstract—We propose a new method for dynamically generat-
ing likely invariants from multithreaded programs. While existing
invariant generation tools work well on sequential programs, we
found they are ineffective at reasoning about multithreaded pro-
grams both in terms of the number of real invariants generated
and in terms of their usefulness in helping programmers. We
address this issue by developing a new dynamic invariant gen-
erator consisting of an LLVM based code instrumentation front
end, a systematic thread interleaving explorer, and a customized
invariant inference engine. We show that efficient interleaving
exploration strategies can be used to generate a diversified set
of executions with little runtime overhead. Furthermore, we
show that focusing on a small subset of thread-local transition
invariants is often sufficient for reasoning about the concurrency
behavior of programs. We have evaluated our new method on
a set of open-source multithreaded C/C++ benchmarks. Our
experiments show that our method can generate invariants that
are significantly higher in quality than the previous state-of-the-
art.

I. INTRODUCTION

Methods for dynamically generating likely invariants from
sequential software have been used in many applications

including program understanding, maintenance, testing/veri-

fication, and error diagnosis. However, effective tools for

generating such invariants for concurrent software are still

lacking. For example, Daikon [1], [2] is a highly successful

invariant generation tool for sequential programs written in

languages such as Java, C, C++, and Perl. However, as we

will show in Section II, for multithreaded programs, Daikon

often produces many confusing and incorrect results.

One problem of existing methods such as Daikon is that

they depend heavily on the set of execution traces fed to the

invariant inference engine. In general, increasing the amount

of program behavior exercised in the set of execution traces

increases the likelihood that the generated invariants are true.

However, generating a sufficiently diversified set of execu-

tion traces is difficult for a multithreaded program since the

program’s behavior depends not only on the program’s input

but also on the thread’s schedules. Thread scheduling, in a

typical execution environment, is determined by the underlying

operating system and the threading library; naively executing

the program many times does not necessarily increase the

diversity of the thread schedules.

Another problem of existing methods is that they tend to

report too many invariants. Even if many of these reported

invariants are real invariants, they are unlikely to be equally

useful. It is impractical to assume that the user will have time

to sift through all of them individually.
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Figure 1. Our new dynamic invariant generation tool named Udon.

Multithreaded programs, due to the subtle interactions

amongst threads and potentially large number of interleavings,

pose challenges both in their design and analysis. Typically,

when the focus of an analysis is on concurrent nondeterminism,

one assumes the sequential part of the computation is correct:

instead, the problem comes from rare and complex thread

interactions. In such cases, we argue, that the focus should

be put on a small subset of thread-local invariants, called the

transition invariants, that capture the relations among shared

variables directly related to concurrency control. For example,

a certain code block should be kept atomic, or instances of
certain operations should be made mutually exclusive.

To this end, we propose a new dynamic invariant generation

method for multithreaded programs. By leveraging systematic

thread interleaving exploration algorithms to generate diversi-

fied execution traces, our method significantly improves the

quality of generated invariants over existing methods.

The overall flow of our method is shown in Figure 1. Our

method takes a multithreaded C/C++ program as input and

returns likely invariants as output. First, we instrument the

code using a new LLVM based front end to add monitoring

capabilities for dynamic analysis. Then, we execute the pro-

gram under the control of a systematic interleaving explorer.

The generated traces are fed to a classifier which separates

the passing traces from the failing traces. Finally, we feed a

subset of the traces to a customized Daikon invariant inference
engine which returns the likely invariants as output.

Another contribution of our work is investigating the impact

of different interleaving exploration strategies on the precision

and performance of invariant generation. In theory, all possible

thread interleavings of a concurrent program should be given

to the invariant inference engine to obtain the most precise

invariants. However, due to the well-known interleaving ex-



Thread 1

1 p = &A;
2 if(p!=NULL){
3 ...
4 p->x += 10;
5 ...
6 }
7

Thread 2

6 p = NULL;
7 ...
8 ...
9 ...
10 ...
11 ...
12

Figure 2. Two threads sharing a pointer. In thread 1, the if statement and
the subsequent write to p is intended to be atomic.

plosion problem, the number of thread interleavings can be

exponential with respect to the number of concurrent opera-

tions. Therefore, we propose the use of selective exploration

strategies, as opposed to exhaustive exploration, to reduce
runtime overhead. Our experimental evaluation shows that

selective exploration often leads to invariants of similar quality

to sound reduction methods, such as dynamic partial order

reduction [3], but with an order-of-magnitude faster run time.

A third contribution of our work is a focus on generating in-

variants that are most relevant to concurrency related program

behaviors. In general, the invariants generated by an inference

engine fall into two categories: state invariants and transition

invariants. For example, consider the program in Figure 2,

where A.x is initialized to zero. The predicate A.x == 10 at
Line 4 is a state invariant—it holds at a thread-local program
location and is expressed in terms of the program variables

visible at that location. A transition invariant, in contrast, is

a predicate that may hold at the entry and exit points of an

arbitrary code block and is expressed in terms of two versions

of a program variable at the entry and exit points. For example,

in Figure 2, the predicate A.x == orig(A.x) + 10 is a

transition invariant over the code block from Line 1 to Line 4,

where orig(A.x) is the value of variable A.x at Line 1

(the original value) and A.x is the value of variable A.x at

Line 4.

For reasoning about concurrency related program behaviors,
we argue that it is often sufficient to focus on these transition

invariants. The reason is that they capture the no-thread-

interference properties, i.e., whether the associated code block

is atomic or whether it should be made atomic. By atomic, we

mean that the execution of the code block is not affected by

the execution of other instructions from concurrently running

threads.

Consider the program in Figure 2. A bug can occur if Thread

2 sets the value of p to null when Thread 1 is executing

Lines 2–6. If we generate invariants only from the non-buggy
runs, we will observe the transition invariant p == orig(p)
for the code block from Line 2 to Line 6. Examining the

buggy runs, we will see that this invariant no longer holds.

The difference in the invariants generated between the passing

and failing runs shows the root cause of the bug: p is not

constant.

Throughout this paper, we will show how discrepancies

between the invariants generated from passing and failing runs,

like this example, can be leveraged to understand the software

code and diagnose concurrency bugs.

We have implemented our new methods and conducted

experiments on a set of open-source multithreaded C/C++

programs. Our results show that the invariants generated by

our new method are often significantly higher in quality than

the previous state-of-the-art Daikon. Overall, this paper makes
the following contributions:

• We show, through experiments, that existing dynamic

invariant generation tools such as Daikon do not work

well on multithreaded programs, both in terms of the
number of true invariants generated and in terms of the

usefulness of these invariants.

• We propose a new method for improving the quality of

dynamic invariant generation for multithreaded programs

by leveraging selective interleaving exploration strategies.

• We show that transition invariants are the most relevant

invariants to help in reasoning about concurrency related

behaviors. They are useful in program comprehension and

diagnosing concurrency errors.

• We implement the proposed method and demonstrate its

efficiency and effectiveness through experiments on a set

of multithreaded C/C++ benchmarks.

The remainder of this paper is organized as follows. We

present examples to illustrate our new methods in Section II.

We establish notation in Section III and then present our new

invariant generation algorithm in Section IV. We present both

runtime optimizations and methods to clarify output to the user

in Section V. This is followed by our experimental evaluation

in Section VI. We review related work in Section VII and

finally give our conclusions in Section VIII.

II. MOTIVATING EXAMPLES

In this section, we present examples to illustrate the prob-

lems in existing methods, highlight our main contributions, and

demonstrate some potential use cases for our new method.
First, consider the program in Figure 3, which has a

global variable named balance being accessed by functions

getBalance() and setBalance(). The third function,

withdraw(), invokes the previous two functions to deduct

a certain amount from balance. Since the global variable

balance is protected by a Lock() and Unlock() pair ev-

ery time it is accessed there is no data-race. However, there can

be atomicity violations. The function withdraw() is meant

to be executed atomically—without other threads interleaved

between the calls to getBalance() and setBalance()—
but the atomicity is not enforced. For example, starting with

balance=400, if two concurrent threads run withdraw()
at the same time, the result may be either 300 or 200.
Existing invariant generation tools do not work well in this

case. For example, if we run the program with Daikon’s C

front end, most likely we will get a false invariant. The reason

is that Daikon relies on the native execution environment to
determine the program’s thread schedule at run time, and

in this example, since the code in each thread is small—

significantly smaller than what can be executed in the Linux

kernel’s time slice—all threads will have ample time to run to

completion before encountering a context switch.
If the erroneous interleaving never occurs during its

analysis, Daikon would report the following false transi-

tion invariant for the withdraw() function: balance
= orig(balance) - 100, where orig(balance) de-

notes the original value of balance at the entry point of



1 int getBalance() {
2 int bal;
3 Lock();
4 bal = balance;
5 Unlock();
6 return bal;
7 }
8 void setBalance(int bal) {
9 Lock();
10 balance = bal;
11 Unlock();
12 }
13 void withdraw() {
14 int bal = getBalance();
15 bal = bal -100;
16 setBalance(bal);
17 }

Figure 3. Concurrent bank account example.

withdraw() and balance denotes the value of balance
at the exit point. This is not a true invariant, and reporting it

to the user may do more harm than good. That is, it can make

the developer believe that withdraw() is atomic, thereby

masking the concurrency bug.
Our new method, in contrast, controls the thread schedul-

ing of the program in order to create a diverse and rep-

resentative set of execution traces. Consequently, the in-

variant inference engine would produce the following cor-

rect invariant for the withdraw() function: balance <
orig(balance). This is the correct result and is the best

one can infer from the executions of this program (two threads
running withdraw() concurrently). That is, the balance
always decreases but not necessarily by 100.
Another problem with existing tools is that they often

report too many invariants. For example, running Daikon on

the benchmark FibBench [4], which has 55 lines of code,
would generate 24 likely invariants. Among them, 15 are true

invariants (the rest are false), but only three of them are related

to the concurrency behaviors of the threads. The others are

either specific to the particular program input used in the

test runs or the sequential part of the computation. Since our

goal is to reason about concurrency related behaviors, our

new method allows the user to focus only on the concurrency

related invariants, known as transition invariants.
There can be many applications for transition invariants such

as balance = orig(balance) - 100 and balance
< orig(balance). Here, we give two examples: to help

diagnose concurrency bugs and to infer atomic code regions.
During software testing, it is reasonable to expect the user

to provide a test oracle which separates failing test runs from

passing test runs. We allow users of our new tool to specify

correctness conditions using R_assert() which, from the

user’s perspective, is identical to the standard C assert()
function. For our running example, assume the user asserts that

balance==200 must hold at the end of the execution. This

is illustrated in Figure 4. For the buggy program in Figure 3,

if the function withdraw() is executed atomically by both

threads, the assertion would pass; but, if the function is not

executed atomically, the assertion would fail.
If we run our new invariant generation method on the

passing traces only, it would report the transition invariant

balance = orig(balance) - 100. In contrast, if we

int main(void) {
thread_create(&t1,withdraw);
thread_create(&t2,withdraw);
thread_join(t1);
thread_join(t1);
R_assert(balance==200); // test oracle

}

Figure 4. The main() function for the example in Figure 3.

void withdraw() {
Lock();
int bal = getBalance();
bal = bal - 100;
setBalance(bal);
Unlock();

}

Figure 5. Enforcing atomicity in the withdraw() function in Figure 3.

run our new invariant generation method on the failing traces

only, it would report the transition invariant balance <
orig(balance). The discrepancy between these two sets

of results (from passing and failing runs) will help the user

diagnose the root cause of the concurrency failure.

Regarding atomic region inference, consider the same ex-

ample in Figure 3. The transition invariant generated from

the passing runs for the code block spanning Lines 13–17

is balance = orig(balance) - 100, which is consis-
tent with the thread-local transition relation of this code block

when it is executed without interference from other threads.

In other words, the programmer’s design intent, as revealed

by all the passing test runs, is that withdraw() should

be executed atomically. This suggests that to fix the bug in

withdraw(), we need to enforce atomicity around the calls
to getBalance() and setBalance() as illustrated in

Figure 5.

1 typedef struct { int a, b, c;} Data;
2 Data *A[128] ;
3 Data *p = A[0];
4 void thr1() {
5 Data *tmp = p;
6 if (tmp != NULL) {
7 p->a = 100;
8 p->b = 200;
9 p->c = 300;
10 R_assert(tmp->a == 100 && tmp->b == 200
11 && tmp->c == 300 );
12 }
13 }
14 void thr2() {
15 p = A[rand() % 127];
16 }

Figure 6. Concurrent program where one thread updates the fields of a
structure while the other modifies a global pointer.

Another limitation with Daikon, due to the location of

code instrumentation, is that invariants are only generated at

function entry and exit points. Although this design choice is

suitable for sequential code, it is not suitable for concurrent

programs because concurrency constructs, such as atomic code

regions, rarely coincide with the procedural boundaries. Our

method, in contrast, has the capability of generating invariants



=======================================
..main.c_3_9():::ENTER
::p != NULL
=======================================
..main.c_3_9():::EXIT
::p == orig(::p)
=======================================
..main.c_5_9():::ENTER
::p != NULL
=======================================
..main.c_5_9():::EXIT
::p == orig(::p)
=======================================

Figure 7. Portion of the output generated by our tool for the example in
Figure 6.

at the boundary of code blocks of arbitrary size—the user can

set the block size as input to our tool as shown in Figure 1.

We illustrate this feature using the following example.

Consider the program in Figure 6. Within thr1(), the
three fields are intended to be updated atomically; similar to

the previous example, the programmer asserts the correctness

condition using R_assert(). To infer the intended atomic
region that spans from Line 6 to Line 12, the capability of

generating invariants for arbitrary code blocks is crucial.

Figure 7 shows a section of our tool’s output regarding the

transition invariant generated from passing runs. It first starts
with a code block size of two and then iteratively expands

the block size. A block size of two means that our tool will

attempt to generate invariants over any code region containing

two consecutive accesses to a shared object. The partitioning

of the source code into code regions was performed by our

LLVM based instrumentation front end as shown in Figure 1.

In Figure 7, ..main.c_6_12() means that we consider

the block from Line 6 to Line 12 in Figure 6, whereas

..main.c_8_12() means that we consider the block from

Line 8 to Line 12. With a block spanning Lines 6–12 we

cover all the shared memory accesses in thr1(). In both

cases, when analyzing the passing runs, we can generate the

invariant p==orig(p), which indicates that the value of p is

never changed. Amongst all the failing runs, this invariant does

not hold. Again, the discrepancies in the invariants generated

by the passing and failing runs correctly suggests that in order

for the test runs to pass, the code block from Line 6 to Line 12

must be kept atomic.

III. PRELIMINARIES

In this section, we present a formal model for concurrent

programs, and introduce the basics of the dynamic invariant

generation process.

A. Concurrent Programs

A multithreaded program consists of a set of shared vari-
ables, and a set of threads { T1, . . . , Tn } where n is the

number of threads in the program. Each thread is a sequential

program with a set of thread-local variables. Let st be an

instruction. An execution instance of st is called an event,

denoted e = 〈tid, l, st, l′〉, where tid is the thread ID, and l and
l′ are the thread program locations before and after executing

st. An event is said to be visible if it accesses a shared

variable or a thread synchronization object (mutex lock or

condition variable). Otherwise, the event accesses only thread-

local variables and it is said to be invisible. During systematic

interleaving exploration and execution trace logging, invisible
events will be ignored.

We model each thread Ti as a state transition system Mi.

The transition system of the program, denoted M = M1 ×
M2× . . .×Mn, is constructed using interleaving composition.
Let M = 〈S,R, s0〉, where S is the set of global states, R
is the set of transitions, and s0 is the initial state. Each state

s ∈ S is a n-tuple of thread program states. Each transition

e ∈ R is an event from one of the n threads. An execution

trace of M is a sequence ρ = s0
e0−→ s1 . . .

en−1

−→ sn, where

s0
e0−→ s1 corresponds to executing event e1 in state s0 leading

to state s1.

We use the special event halt to denote normal program

termination, and the special event abort to denote faulty pro-

gram termination, which corresponds to a failed R_assert()
statement. An event from thread Ti may have the following
types:

• halt, which denotes the normal program termination;

• abort, which denotes the faulty program termination;

• fork(j) for creating child thread Tj , where j 6= i;
• join(j) for joining back thread Tj , where j 6= i.
• lock(lk) for acquiring lock lk;
• unlock(lk) for releasing lock lk;
• signal(cv) for setting signal on condition variable cv;
• wait(cv) for receiving signal on condition variable cv;
• read(v) for reading of shared variable v;
• write(v) for writing to shared variable v;
• mEntry(m) for entering a function call;

• mExit(m) for returning from a function call;

• bEntry(blk) for starting a code block;

• bExit(blk) for ending a code block.

Here, mEntry() and mExit() are also supported by existing

invariant generation tools such as Daikon, whereas bEntry()

and bExit() are the new additions in our method.

We model thread synchronization events in our method in

order to control the execution order during thread interleaving

exploration. Using this model, at each moment during a

program’s execution, we know which threads are blocked

(disabled) and which threads are executing (enabled)

An enabled thread becomes disabled if (i) it attempts to

execute lock(lk) while lk is held by another thread; (ii) it

attempts to execute wait(cv) while the signal on cv has not yet
been set; or (iii) it attempts to execute join(j) while the child
thread Tj is still running. Similarly, a disabled thread becomes

enabled if (i) another thread releases the lock lk by executing

unlock(lk), (ii) another thread sets the condition variable cv by
executing signal(cv), or (iii) the child thread Tj terminates. An

accurate model of the sets of enabled and disabled threads at

runtime is required since attempts to schedule disabled threads

while postponing the execution of enabled threads may lead

to artificial deadlocks.

At runtime, our scheduler selects a given event from the

set of enabled events. Which event to select is determined

by the exploration strategy used by the scheduler. Similarly,

the scheduler repeatedly executes the program, systematically

exploring new interleavings, until the search strategy’s inter-



leaving coverage criteria is satisfied. We defer discussions

of exploration strategies until Section IV. For an in-depth

discussion on systematic concurrent program testing refer
to [5], [6], [7].

B. Dynamic Invariant Generation

Dynamically generated invariants are predicates that hold

over the execution traces produced by test runs. As such, they

are not guaranteed to hold for all possible executions of the

program. Furthermore, the invariant inference engine often

uses a statistical analysis and, in theory, is neither sound nor

complete. However, in practice, dynamic invariant generation

tools such as Daikon have shown to be useful in a wide range

of applications. In general, the number of invariants that can

be generated, as well as the likelihood of them being true

invariants, depends on the test suite.

Daikon [1], [2] is a highly successful invariant discovery

tool that supports programming languages such as C, C++,

C#, Eiffel, F#, Java, Lisp, and Visual Basic. For each of

these languages, Daikon provides a front end tool for code

instrumentation to add logging capability to the target program.

The front end tools prepare the program to generate trace logs

in a common format, which are then fed to the same back end
invariant inference engine.

We have developed a new instrumentation tool based on

the popular LLVM compiler platform to replace Daikon’s

previous front end. The main advantage of our new instrumen-

tation tool is to leverage the large number of static program

analysis procedures implemented in LLVM as well as to

reduce the runtime overhead caused by instrumentation. We
will show through experiments (Section VI) that our LLVM

based instrumentation tool can indeed lead to faster dynamic

analysis compared to the default front end in Daikon due to

its significantly lower instrumentation overhead.

Since Daikon cannot diversify the thread schedules, it may

generate many bogus invariants for a multithreaded program.

Furthermore, Daikon is effective in generating linear invariants
of the form (ax + by < c), but weak in generating more

complex invariants such as polynomial invariants (c0+ c1x
1+

c2x
2+... < 0) and array invariants. For the latest development

along this line, please refer to the recent work by Nguyen

et al. [8], [9]. However, our focus is not on improving the

expressiveness of the generated invariants, but on improving

their quality with respect to concurrency. The vast majority of

invariants generated by existing tools such as Daikon capture

the sequential program behavior. Our new method, in contrast,

focuses on invariants that capture the concurrency behaviors.

IV. UDON: OUR NEW DYNAMIC INVARIANT GENERATION

TOOL

In this section, we present the three components of our

new method: an LLVM based code instrumentation tool, a

systematic interleaving exploration tool, and a customized

inference engine for Daikon. The overall flow of our tool,

called Udon, is illustrated in Algorithm 1, which takes the

source code of a multithreaded C/C++ program as input and

returns a set of likely invariants as output.

Algorithm 1 High-level algorithm for Udon

inst output ← inspect pass(src code)
inst output ← daikon pass(inst output)
inst output ← spacer pass(inst output , spacer size)
trace file ← gen traces(inst output)
thrd mod traces ← trace classifier(trace file)
invariants ← inv inference(thrd mod traces)

A. LLVM Based Code Instrumentation

We developed an LLVM based front end for instrumenting

multithreaded C/C++ code. As shown in Algorithm 1, it

consists of three code transformation passes.

The first pass, inspect_pass(), takes C/C++ code as

input and returns an instrumented version of the code as output.

Inside this pass, we first identify all the program points where

a thread’s schedule needs to be controlled. These program

points include the calls to thread synchronization routines, and

the read and write operations on shared memory locations

discussed in Section III. At each program point, we inject

new code before these visible operations to allow the control

of the thread at run time by the scheduler. We leverage the

conservative static analysis techniques implemented in LLVM

to identify these visible operations.

The second pass, daikon_pass(), takes the previously

instrumented code as input and returns another instrumented

version of the code as output. Inside this pass, we inject
new code to add event trace generation capabilities to the

program. The event trace generated by the program conforms

to the common file format as required by the back end

invariant inference engine in Daikon [2]. By default, this pass

instruments the code only at the function entry and exit points,

which is comparable to the original C/++ front end for Daikon.

The third pass, spacer_pass(), takes the previously

instrumented code as input and returns the final version of the

code as output. Inside this pass, we also inject new code to

add logging capabilities not just at the procedural boundaries,

but also at the boundary of arbitrary code blocks. This is

accomplished by inserting hook function calls to the entry and

exit points of these code blocks, which in turn take care of

the trace generation at run time.

Note that the events logged as a result of the second

and third passes are kept in the same format. From the

standpoint of the back end invariant inference engine, there

is no distinction between a pair of entry and exit points for a

function, and a pair of entry and exit points for an arbitrary

code block. Therefore, the back end inference engine does

not have to be drastically altered in order to infer invariants at

the boundary of arbitrary code blocks. By varying the size of

the instrumented code blocks, we can dynamically change the
locations where state and transition invariants are generated.

This will help us to detect likely atomic regions in the code.

B. Systematic Interleaving Exploration

The gen_traces() function in Algorithm 1 involves

an exploration of the concurrent state space of the program.

Due to the well-known interleaving explosion, in general,

we cannot afford to naively enumerate all possible thread

schedules while diversifying the execution traces for the back



end inference engine. In this work, we build off a set of

interleaving exploration strategies to produce a representative

subset of thread interleavings.
The baseline search strategy relies on the theory of partial or-

der reduction (POR) [5]. It groups the possible interleavings of

a concurrent program into equivalence classes, and then selects

one representative interleaving from each equivalence class to

explore. Equivalence classes are defined using Mazurkiewicz

traces [10]. Two sequences of events are said to be in the

same equivalence class if we can create one sequence from

the other by successively permuting adjacent and independent

events. Two events are dependent if they are from two different

threads, access the same memory location, and at least one of

them is a write or modify operation; otherwise, the two events

are independent. It has been shown [11] that in the context

of verifying concurrent systems, exploring one representative

interleaving from each equivalence class is sufficient to catch

all deadlocks and assertion violations.
One benefit of POR based methods is that they are a sound

reduction. The reduced set of interleavings still can capture all

possible behaviors of the concurrent program. Therefore, using

the explored interleavings as input for the subsequent invariant

inference will lead to the best possible result; the explored

interleavings form a maximally diversified set of execution

traces.
The current state-of-the-art POR based algorithm is dynamic

partial order reduction (DPOR) [3]. DPOR computes the

dependency relation among events dynamically at run, as op-

posed to statically at compile time. As a result, DPOR proved

to be a practical step forward for POR algorithms. It allowed

for realistic programs written in full fledged programming

languages such as C/C++ to be verified.
However, due to its exhaustive exploration of the search

space, even DPOR may incur a large runtime overhead. As a

result, there is a large body of work dedicated to the devel-

opment of more efficient, yet unsound, exploration strategies.

Two methods along these lines are preemptive context bound-

ing (PCB) [6], and history-aware predecessor sets (HaPSet) [7].

In practice, even though they are unsound (i.e., they do not

guarantee to find all concurrency bugs), empirical studies have

shown that they still provide decent bug coverage in programs

far too complex for DPOR to handle.
With respect to invariant generation, we will address per-

formance concerns in Section V. We will show that replacing

the ideal, yet slow, exhaustive search of DPOR with faster

selective exploration strategies such as PCB and HaPSet, we
can still maintain the quality of generated invariants while

significantly reducing the execution time.

C. Customized Invariant Generation

The final two steps in Algorithm 1, denoted by

trace_classifier() and inv_inference(), respec-
tively, solve two issues in previous invariant inference engines.
First, the inference engine may produce confusing results

when the event trace from both passing and failing executions

are simultaneously used as input. To solve this problem, we

developed a trace classification module that separates the

execution traces into two groups based on a test oracle. Specif-

ically, Udon provides a function called R_assert() through

which the programmers can assert correctness conditions for

the program. During dynamic analysis, if the assertion fails

the corresponding execution trace will be classified as failing.
Otherwise, the trace is passing. This behavior, from the user

perspective, is identical to the standard C assert() function.
While inferring likely invariants, the engine may choose to

consider only the bad traces, only the good traces, or all

traces. As a result, we can compare and contrast the invariants

generated in these three scenarios.
Second, we customized the invariant generation engine in

Daikon to focus on two types of invariants in a multithreaded

program: the state invariants and the transition invariants.

Both transition and state invariants are expressed in terms of

shared variables – variables accessed by multiple threads in the

execution traces. A state invariant is a predicate expressed in

terms of the value of variables at a single program location. A

transition invariant is a predicate expressed in terms of variable
values at two different program locations of the same thread.

In essence, a transition invariant is capable of capturing the

non-interference impact of executing an arbitrary code block.
More formally, we consider a program P as a state transition

system P = 〈S,R, I〉, where S is the set of states, I ⊆ S is

the set of possible initial states, and R ⊆ S×S is the transition

relation. In general, a transition invariant [12], denoted T , is an
over-approximationR+ of the transitive closure of R restricted

to the reachable state space, i.e., R+ ∩ (R∗(I) × R∗(I)) ⊆
T . Intuitively, a transition invariant summarizes the relation

between the pre- and post-conditions of a consecutive set of

instructions (transitions) executed by a thread.
Transition invariants are particularly useful in software

verification. To verify the concurrent behavior of a program,

one typically assumes the sequential computation is correct

but the thread interaction is potentially buggy. In this case,

transition invariants would conform to the transition relation

of a sequential code block in the absence of unexpected thread

interference, but would deviate from the transition relation in

the presence of thread interference. Therefore, observing that

a sequential transition invariant differs from the concurrent

transition invariant for the same code block is often indicative

of a bug caused by thread interference.
For example, consider a shared counter that is incremented

by multiple threads. The sequential (or correct) invariant for

the increment operation would be that the counter increases

its value by one at a time (counter = orig(counter)
+ 1). However, if the programmer fails to enforce atomicity

in the increment operation, this invariant would no longer

hold for all possible executions of the program. Clearly, the

discrepancy between the sequential (or correct) and concurrent

(or incorrect) transition invariants hints at the root cause of the

aforementioned bug.
Due to the help of both systematic interleaving exploration

techniques and customized invariant inference engines, Udon

can more robustly generate high-quality invariants for multi-

threaded applications than existing methods.

V. OPTIMIZATIONS

The method presented in the previous section addresses

the problem of dynamically generating high-quality invariants

from multithreaded programs. However, using DPOR may



cause a performance bottleneck due to the exponential growth

in the number of interleavings with respect to program size.

Another problem of the new method is that the number of
reported invariants can still be very large. Despite that many

of them are indeed invariants, reporting all of them without

filtering can overwhelm the user. In this section, we present

our solutions to these problems.

A. Exploring Interleavings Selectively

We address the performance problem by replacing the

exhaustive DPOR exploration strategy with efficient, but un-

sound, selective search strategies. In this context, our goal is

to drastically reduce the runtime overhead while maintaining

the diversity of the generated interleavings. DPOR is a sound

reduction in that it can prune away redundant interleavings

without missing any concurrency related program behavior. To

this end, it groups all possible thread interleavings into equiva-

lence classes and then tries to explore only one representative

interleaving from each equivalence class. However, due to the

limited amount of program information available at run time,

DPOR still may create many redundant equivalence classes

for the purpose of generating invariants.
Consider the busy-waiting example in Figure 8, which

has two threads T1, T2 communicating via the variable x
(x = 1 initially). Under DPOR, the systematic exploration

would generate infinitely many interleavings. Each interleaving

corresponds to a different execution of the loop by the first

thread. Each of these interleavings belongs to a separate

equivalence class (since dependent memory locations are being

updated) so each must be tested. Notice that, except for the first

two interleavings, denoted c(ab) and (ab)c(ab), respectively,
none of the other interleavings of the form (ab)kc(ab), where
k = 2, 3, ..., can offer new concurrency scenarios.
In this paper, we propose to avoid generating an excessive

number of execution traces during interleaving exploration

by using a selective search, as opposed to an exhaustive

search. The aim of a selective search is to cover a small

subset of high-risk concurrency scenarios, while avoiding the

redundant ones as shown in the example in Figure 8. The

rationale is that, in practice, programmers often make implicit

assumptions regarding the concurrency control of threads, e.g.,
certain code blocks should be mutually exclusive, certain

code blocks should be atomic, and a certain operation order

should be obeyed. Concurrency bugs are frequently the result

of these implicit assumptions being broken, leading to data

races, atomicity violations, and order violations. The goal of a

selective search is to maximize the coverage of such scenarios

while reducing the runtime overhead.
One popular selective search strategy proposed in the

context of software testing is preemptive context bounding

(PCB) [6]. PCB explores interleavings with only a bounded
number of involuntary context switches. The strategy can be

effective in concurrency testing because, in practice, many

concurrency bugs can be exposed using a small number of

context switches. We note that although PCB is effective

in practice, the number of explored interleavings remains

exponential with respect to the number of concurrent threads.

Furthermore, it is not effective on the example in Figure 8,

where all interleavings have exactly one context switch.

Thread T1

do {
a tmp = x;
b } while(tmp);

Thread T2

c x = 0;

Execution

a1: R(x)
c: W(x)

a2: R(x)

Figure 8. Using HaPSet reduction to prune interleavings (x = 1 initially).

Another popular, and more scalable, selective search strat-

egy is the history-aware predecessor set (HaPSet) [7] based

reduction. It can be viewed as an improvement over PCB since

the number of explored interleavings is no longer exponential

with respect to the number of concurrent operations or threads.

This is accomplished by focusing on covering only the order-

ing combinations of read/write instructions in the program, as

opposed to the many instances of these instructions.

Formally, a program statement st is defined as a tuple

(file, line, thr , ctx ), where file is the file name, line is the line
number, thr is the thread ID, and ctx is the bounded calling

context. Given a set T = {ρ1, . . . , ρn} of interleavings and a

statement st ∈ Stmt that accesses a shared object, the History-

aware Predecessor Set, or HaPSet[st], is defined as the set

{st1, . . . , stk} of statements such that, for all i : 1 ≤ i ≤ k,
an event e produced by st is immediately dependent upon an
event ei produced by sti in some interleaving ρ ∈ T .
Consider again the example in Figure 8. After exploring

the first two interleavings, denoted c(ab) and (ab)c(ab), re-
spectively, the HaPSets computed over these interleavings are

as follows: HaPSet[a] = {c} and HaPSet[c] = {a}. Since a
and c are the only two conflicting program statements in the

program, all possible HaPSet combinations have already been

covered. Therefore, the interleaving exploration stops since no

other interleaving can lead to new HaPSet scenarios.

We shall show through experiments in Section VI that faster

interleaving exploration algorithms such as PCB and HaPSet

are often as good as DPOR in terms of generating high-quality

invariants. At the same time, these algorithms can be orders-

of-magnitude faster, which makes Udon practically useful.

B. Focusing on Transition Invariants

By default, the number of invariants generated by our

method—as well as other similar tools such as Daikon—can

be large. However, not all of these invariants are useful for

reasoning about the concurrency related program behaviors.

For example, among the 22 likely invariants generated for

FibBench [4] by Daikon, only three are related to concurrency,

whereas the others are specific to the sequential part of the

computation. Therefore, in this work, we propose to focus
on only the transition invariants over shared variables. In the

remainder of this section, we show why transition invariants

are useful in helping the user understand the software code

and diagnose concurrency bugs.

Let us assume that a multithreaded program has some

assertions that would be satisfied in most cases, but may

fail in some rare interleavings. Furthermore, regarding the

concurrency control, there is no formal documentation other

than the source code that describes the programmer’s intent.

In this case, we classify the execution traces of the program

into two groups: the passing traces and the failing traces. To



1 void thread() {
2 sum = sum + 1;
3 }
4 int main(){
5 // create, run, and join (NUM) threads...
6 R_assert (sum==NUM);
7 }

Figure 9. Concurrent program with multiple threads updating a counter.

help the user understand the root cause of the concurrency
error manifested in the failing traces, we leverage the two sets

of invariants generated by Udon from the set of passing and

failing traces and identify the discrepancy between them.
Formally, let Ip and If be the likely invariants generated

from the passing and failing traces, respectively. As a result,

Id = Ip \ If consists of all the invariants satisfied by the

passing but not the failing traces. Our conjecture is that the

discrepancy often provides information to help understand why

the error occurs. In the following example, we show that Id
can indeed help a programmer understand the root cause.
Consider Figure 9, where a parameterized number of threads

share a global counter sum initialized to zero. NUM is the

number of threads that execute the function thread() con-

currently. These threads are created, run, and joined inside

main(), before it checks the value of sum. The test oracle
provided by the programmer is shown on Line 6, which states

that the expected result is sum==NUM. The assertion passes

in runs where each thread executes the function thread()
atomically, but fails in runs where the threads interfere with

each other. Specifically, depending on how they interfere with

each other, the value for sum ranges from 1 to NUM.
When given the passing traces, Udon will generate the tran-

sition invariant sum == orig(sum) + 1 for the inc()
function. However, when given the bad traces Udon will

generate the transition invariant sum > orig(sum), which
covers cases in which sum is increased by 2, 3, ...,NUM. By

comparing the two sets of transition invariants, we can see

the difference in behavior of the passing and failing runs. In

the passing runs, sum is always incremented, whereas in the

failing runs, it is not.
Another possible application of transition invariants is to

help the user identify atomic regions. When the transition

relation of a code region is consistent with the transition invari-

ant generated for the same code region, we say that section

has been executed atomically. Furthermore, if the transition

invariant is generated from passing traces only—and they are

not satisfied by the bad traces—we can assume that the code

region is intended to be atomic. For example, the function

thread() in Figure 9 and the function withdraw() in

Figure 3 are intended to be atomic, whereas only the fixed

version of withdraw() in Figure 5 is atomic. The atomic

code regions inferred in this way can help the user comprehend

the software code and diagnose failed execution traces.

VI. EXPERIMENTS

We have implemented the proposed method in a software

tool called Udon. Udon can handle unmodified C/C++ code

written using POSIX threads to automatically generate dy-

namic invariants. We used LLVM to create a new front end

for Daikon [2] and a modified version of Inspect [13], [14]

for systematic concurrent program exploration.
We evaluated Udon on 19 open source programs. The first

set of programs come from the 2014 Software Verification

Competition [4]. These programs, while small in terms of

lines of code, implement complex low-level synchronization

algorithms such as Peterson’s [15] and Dekker’s [16] solutions

to the mutual exclusion problem. The second set of programs

are real-world applications: pfscan is a parallel directory

scanner and nbds [17] is a C implementation of several non-

blocking concurrent data structures. All tests were run on a

machine with a 2.60 GHz Intel Core i5-3230M CPU and 8

GB of RAM running a 64-bit Linux OS.
Our experimental evaluation was designed to answer the

following research questions:

• Can the previous state-of-the-art method, Daikon [2],

generate correct invariants for concurrent programs?

• Can our new method, Udon, robustly generate high-

quality invariants for concurrent programs?
• Can Udon scale to programs of realistic size and com-

plexity?

A. Results

Table I shows the results of an experiment comparing the

performance of Udon against Daikon [2]. For each test pro-

gram, both Daikon and Udon were used to generate invariants.

By design, Udon needs to re-run the program multiple times in

order to explore the concurrent behavior of a program, whereas

Daikon runs the program only once. In order to create a fair

comparison, we also allowed Daikon to run each test program

the same number of times as Udon. We refer to the multi-

run Daikon strategy as Daikon* and the single-run strategy as

Daikon in Table I.
Columns 1–4 of Table I show the program name, lines of

code (LoC), number of program program points, and number
of monitored shared variables, for each test. Columns 5–7 and

8–10 show the total number and the number of incorrect in-

variants generated by Daikon, Daikon*, and Udon respectively.

For experiment purposes only, we manually inspected the re-

sults to verify if the invariants were true. Finally, Columns 11–

13 and 14–16 show the number of runs and run time in seconds

for each method.
First, the results show that Daikon generates incorrect invari-

ants for every test program. The cause of this is clear: since

Daikon only exercises a small portion of the concurrent behav-

ior of a program — even if it runs the program multiple times

— it fails to observe many different states of the program and,

as a result, deduces incorrect invariants. Comparing Columns 8

and 9 of Table I shows that running Daikon multiple times on

the same program has little to no effect at reducing the number

of incorrect invariants. The likely cause of this is that simply

re-running a concurrent program repeatedly explores only a
small portion of the entire interleaving space.
Second, Columns 7 and 10 show that Udon is capable

of generating a large number of correct invariants for each

test program. On average, Udon produces only one incorrect

invariant per test. Compared to Daikon and Daikon*, Udon

produces, on average, over an order of magnitude fewer incor-

rect invariants. The incorrect invariants generated by Udon are



Table I. Comparison of the invariants generated by Daikon (baseline), Daikon* (multi-run), and Udon (new). for the same set of program points.

Number of Invariants Incorrect Invariants Number of Runs Run Time (s)

Name LoC Prog. Points Shared Vars. Daikon Daikon* Udon Daikon Daikon* Udon Daikon Daikon* Udon Daikon Daikon* Udon

Sync01 Safe 64 3 1 15 15 15 1 1 0 1 4 4 1.6 2.8 4.3
FibBenchSafe 55 3 2 24 24 17 10 10 0 1 6 6 2.9 3.4 4.2
Lazy01Safe 52 4 1 20 22 22 7 4 0 1 9 9 2.6 4.3 4.8
Stateful01 Safe 55 3 2 21 21 21 6 6 3 1 4 4 1.4 2.7 3.9
DekkerSafe 68 3 4 39 44 52 29 24 8 1 53 53 1.7 19.5 4.8
LamportSafe 119 3 5 48 59 76 36 44 2 1 58 58 5.0 21.5 5.3
PetersonSafe 55 3 4 39 39 57 29 29 0 1 46 46 1.7 17.3 4.7
TimeVarMutex 55 3 3 27 27 24 9 9 0 1 3 3 1.6 2.2 3.7
Szymanski 106 3 3 30 32 35 25 24 0 1 111 111 1.6 39.4 5.2
IncTrue 55 2 2 15 19 30 3 3 0 1 19 19 2.2 7.7 3.9
IncCas 60 3 1 14 19 38 3 3 0 1 9 9 2.7 3.7 3.6
IncDec 68 5 6 95 122 205 57 53 0 1 39 39 3.4 15.7 6.3
IncDecCas 89 4 3 49 49 73 38 38 1 1 8 8 2.9 4.3 4.8
Reorder 63 3 4 44 54 95 8 6 0 1 29 29 2.5 10.6 7.4
AccountBad 61 4 6 74 78 121 22 15 2 1 9 9 3.8 5.4 6.9
Pfscan 932 24 15 670 798 840 9 9 0 1 20 20 3.0 13.8 8.9
nbds-hashtable 3278 77 14 1123 1194 2064 2 2 0 1 74 74 5.4 119.7 39.0
nbds-skiplist01 2362 54 24 1053 1055 1370 1 1 0 1 161 161 4.4 287.6 26.2
nbds-list idx01 2386 54 22 773 773 1143 1 1 0 1 132 132 4.6 235.2 17.0

Average 220 234 332 16 15 1 1 42 42 2.8 42.9 8.6

Table II. Breakdown of the invariants generated by Udon.

Name Regular Invs Transition Invs Total Invs % Trans. Invs

Sync01 Safe 12 3 15 20.0
FibBenchSafe 14 3 17 17.6
Lazy01Safe 17 5 22 22.7
Stateful01 Safe 15 6 21 28.6
DekkerSafe 30 22 52 42.3
LamportSafe 61 15 76 19.7
PetersonSafe 44 13 57 22.8
TimeVarMutex 15 9 24 37.5
Szymanski 25 10 35 28.6
IncTrue 22 8 30 26.7
IncCas 33 5 38 13.2
IncDec 167 38 205 18.5
IncDecCas 58 15 73 20.5
Reorder 83 12 95 12.6
AccountBad 97 24 121 19.8
Pfscan 619 221 840 26.3
nbds-hashtable 1419 645 2064 31.3
nbds-skiplist01 939 431 1370 31.5
nbds-list idx01 812 331 1143 29.0

due to the fact that HaPSet [7], the default concurrent coverage

metric used by Udon, can skip certain interleavings where new

values of memory could have been explored. As a result, the

invariants are generated based on an incomplete exploration

of the program.

Finally, we examine the scalability of our method.

Columns 15 and 16 of Table I show that, on average, using

our new LLVM based front end for instrumentation results in a

five times speedup over the previous, Daikon, front end. The

reason is that Daikon’s front end for C/C++ (called Kvasir)

uses Valgrind [18] to dynamically instrument the executable

every time it runs the program. Whereas Udon instruments the

program only once at the compile time. As a result, using our

new front end should provide a speed up when analyzing both
sequential and multithreaded C/C++ programs.

Table II shows a breakdown of the invariants generated

by Udon. We classified each invariant into one of two cat-
egories: transition invariants over shared variables and all

other (regular) invariants. Transition invariants were generated

with respect to the entry and exit of each function. Table II

shows that by considering only transition invariants we can

present the user with a more manageable output compared to

considering all invariants. As shown in the previous sections,

these transition invariants present a concise summary of the

concurrency behavior of a program.

Figure 10 compares the scalability of three interleaving

exploration strategies implemented in Udon. HaPSet [7] is the

default strategy, DPOR [3] is theoretically the ideal strategy

(since it will lead to the most precise results), and PCB [6],

which is a widely used strategy in the testing literature (we

used a context bound of two). In this experiment, we ran

Udon on the Indexer benchmark from SVCOMP’14 varying

the number of threads in the program. Here, the x-axis denotes
the number of threads, and the y-axis denotes the number of
interleavings explored by each strategy. The result shows that

the number of interleavings quickly explodes under DPOR.

Under PCB, the increase in the number of interleavings is

slower, since only the interleavings with a bounded number

of preemptive context switches are explored; nevertheless, the

growth is still (predictably) exponential with respect to the

number of threads. In contrast, the increase in the number of

interleavings is the smallest under HaPSet.

To quantify the effect of different interleaving exploration

strategies on the quality of the generated invariants, we ran

Udon on the benchmarks using HaPSet [7], PCB [6], and

DPOR [3], respectively. For PCB, we used a context bound

of two. The results are summarized in Table III. Here, we
compare the number of runs, time, and number of incorrect

invariants. An ✗ in a column indicates the test took longer

than two hours. Column 1 shows the name of the test program,

Columns 2–4 and 5–7 show the number of runs and time of

HaPSet, PCB, and DPOR, respectively. Finally, Columns 8–10

show the number of incorrect invariants found by each method.

First, since DPOR provides a sound guarantee to explore

all relevant thread schedules, it produces no incorrect invari-

ants. However, DPOR suffers from an exponential increase

in run time relative to the length and number of threads

in a program. As a result, DPOR failed to finish analyzing

nbds-hashtable while both HaPSet and PCB were able

to finish in a reasonable time. However, if a user desires high

invariant accuracy at the cost of longer run time, Udon is

capable of using DPOR instead of HaPSet.

Since both HaPSet and PCB skip interleavings where new

memory values could be encountered, they both suffer from

incorrect invariants being generated. However, on average,

HaPSet performs significantly better than PCB in terms of
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Figure 10. Comparing the thread interleaving exploration strategies in Udon.

Table III. Detailed comparison of interleaving exploration strategies in Udon.

Number of Runs Run Time (s) Incorrect Invariants

Name HaPSet PCB DPOR HaPSet PCB DPOR HaPSet PCB DPOR

Sync01 Safe 4 14 7 4.3 4.3 4.7 0 0 0
FibBenchSafe 6 33 17K 4.2 4.3 139.1 0 0 0
Lazy01Safe 9 49 40 4.8 5.3 5.5 0 1 0
Stateful01 Safe 4 13 12 3.9 4.2 4.2 3 1 0
DekkerSafe 53 13 3896 4.8 4.4 37.6 8 16 0
LamportSafe 58 19 392 5.3 4.6 9.4 2 9 0
PetersonSafe 46 13 730 4.7 4.4 12.4 0 0 0
TimeVarMutex 3 17 4 3.7 4.0 4.2 0 4 0
Szymanski 111 21 5980 5.2 4.2 50.3 0 11 0
IncTrue 19 17 212 3.9 3.8 6.1 0 2 0
IncCas 9 19 33 3.6 4.4 5.0 0 0 0
IncDec 39 52 484 6.3 6.7 12.0 0 0 0
IncDecCas 8 22 30 4.8 5.0 5.6 1 8 0
Reorder 29 506 19K 7.4 12.5 234.9 0 2 0
AccountBad 9 53 40 6.9 7.4 7.8 2 19 0
Pfscan 20 100 56K 8.9 11.8 2263 0 0 0
nbds-hashtable 74 879 ✗ 39.0 86.1 ✗ 0 0 ✗

nbds-skiplist01 161 249 10K 26.2 20.6 217.0 0 0 0
nbds-list idx01 132 85 1498 17.0 16.0 44.5 0 0 0

Average: 42 115 6187 8.75 11.31 161.2 1 4 0

the number of correct invariants created, the number of runs

explored, and time. For these reasons, we selected HaPSet as

the default search strategy in Udon: it provides a good balance

between precision and scalability.

VII. RELATED WORK

Static Techniques. There is a large body of work on using

static analysis [19], [20] for invariant generation, whose main

advantage is that the reported invariants are true for every

reachable state of the program. Typically, invariants gener-

ated by these techniques are predicates expressed in some

linear abstract domains, such as difference logic, octagonal,

or polyhedral. There are also methods based on constraint

solving [21], [22], [23], which can generate more complex

invariants such as polynomial and non-linear invariants. Recent
development along this line includes the work by Furia et

al. [24] on generating loop invariants from post-conditions,

and invariants related to integer arrays [25], [26], [27]. How-

ever, due to the inherent limitations of static analysis, these

methods tend to lack either in precision or in scalability. Our

method, in contrast, relies on dynamic analysis.

Dynamic Techniques. There is also a large body of work

on dynamic invariant generation, including tools such as

Daikon [1], [2], which have been highly successful in practice.

The main advantage of dynamic invariant generation is scala-

bility: they have been applied to realistic applications where

static techniques fail to scale. Other dynamic invariant gener-

ation tools include DIDUCE [28], DySy [29], Agitator [30],

and Iodine [31]. However, existing dynamic generation tools

do not work well on multithreaded programs due to the

nondeterminism in thread scheduling. Our contribution, Udon,

fills the gap by solving the issue of nondeterminism with
respect to dynamic invariant generation.

Hybrid Techniques. There are also hybrid techniques for in-

variant generation, which leverage both static analysis and dy-
namic analysis to improve performance. For example, Nguyen

et al. [8], [9] proposed a method for generating invariants

expressed as polynomials and linear relations over a limited

number array variables. Such invariants have been difficult to

generate by existing methods. There are also hybrid techniques

based on random testing [32] and guess-and-check [33], which

first generate a set of candidate invariants from concrete

execution data and then verify them using SMT solvers.

Interleaving Exploration. There is a large body of work on

using selective interleaving exploration techniques for testing

concurrent programs, including ConTest [34], CHESS [6],

[35], [36], [37], CTrigger [38], CalFuzzer [39], PENE-

LOPE [40], and Maple [41], and property guided pruning

techniques [42], [43] implemented in Inspect. Recent empirical

evaluations of such techniques can be found in [44], [45], [46].

However, the focus of this paper is not on improving software

testing, but on leveraging the related techniques for generating

high-quality invariants. In this sense, our work is orthogonal

to these existing methods.

Atomicity Inference. Various methods have been proposed

for inferring atomicity and detecting concurrency bugs. They

may rely on static analysis [47], dynamic analysis [48], [49],

[50], [51], [40], [52], or symbolic analysis [53], [54], [55],

[56], [57], [55] techniques. However, their focus is primarily

on discovering the intended order of conflicting events from
different threads. The thread-local transition invariants gener-

ated by our new method is similar to the likely deterministic

specifications generated by the Determin tool [58], which

has its own construct for specification of invariants. The

main difference is that Determin relies on a given set of

thread schedules, whereas in our work, different schedules are

generated automatically.

VIII. CONCLUSIONS

We presented a new method for dynamically generating

invariants from multithreaded programs. We used selective

interleaving exploration to simultaneously improve invariant

quality while keeping runtime overhead low. We also pro-

posed the use of thread-local transition invariants to help the

user understand the code and diagnose concurrency errors.

We implemented our method and evaluated it on a set of

multithreaded C/C++ programs. Our experiments show that,

when compared to the state-of-the-art, such as Daikon, our new

method produces better invariants while remaining scalable.
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