CS/CE/SE 6367
Software Testing,
Validation and Verification

| ecture O1
Introduction

Who am |7

Instructor Name: Lingming Zhang
Office: ECSS 4.205
Email: lingming.zhang@utdallas.edu

omepage: http://www.utdallas.edu/~Ixz144130/

mailto:lingming.zhang@utdallas.edu
http://www.utdallas.edu/~lxz144130/

Education Background

CE

|5

AR AR R EREEREEEE NS
R L

TR I I T

= 1§ T i

Industry Collaboration

(intel) Mectabpratres

Relentless passion for innovation

Microsoft-

Research (Google

5/42

What am | doing?

Hours and Resources

* Course Meetings:
e Tues/Thur 4:00pm - 5:15pm
« GR 2.530

» (Office Hours:
e Tues/Thur 2:30pm - 3:30pm
e ECSS 4.205

 Course Web Page:

Required Textbook

Recommended lexthbooks

* [ntroduction to Software Testing (1st Edition)
o |SBN: 978-0521880381

* Foundations of Software Testing (2nd Edition)
o |SBN: 978-8131794760

i AMMANN- & QFFUTT < 0
_. T

NTRODUCT[ON TO
SOFTWARTE TESTINC

9/42

Grading Scheme

Overall Course Project

® Examf @ Implementation
® Exam?2 ® Report
« Homework © Presentation

® Quiz&Class Participation
® Course Project

Grading Scale

Score Grade
93-100 A
90-92 A-
]7-89 B+
83-86 B
80-82 B-
77-79 C+
70-76 C
<70 F

| may choose to curve
the grades at the end
of the term

More on the Course Project

-- Fred Brooks

* Aresearch project: chosen from a set of topics (posted later), or
proposed by the students

* Analyzing/testing real-world Java code
 Work individually or in pair (1-2 people)
e (Go through the whole research project process
* Proposal
* Implementation&Experimentation
* Report writing

* Project presentation

Project Outcomes

1-2 page project proposal [Due by Feb 29th midnight]
Source code [Due by April 30th midnight]

Project report in ACM SIGPLAN conference format (5-10
pages, double column) [Due by April 30th midnight]

—inal project presentation&Demo

Now, let's start!

Software is Everywhere

Software Characteristics

«£5h

Complexity Evolution

The Debian OS

2000 Debian2.2 55-59
2002 Debian3.0 104
2005 Debian3.1 215
2007 Debian4.0 283
2009 Debian5.0 324
2012 Debian7.0 419

Complexity

\

The Facts

* Only 32% of software projects are considered successful
(full featured, on time, on budget)

o Software failures cost the US economy $59.5 billion
dollars every year [NIST 2002 Report]

 On average, 1-5 bugs per KLOC (thousand lines of code)

* |n mature software (more than 10 bugs in prototypes)

X 35MLOC
X 63K known bugs at the time of release
X 2 bugs per KLOC

Software Fault Examples

 Pac-Man (1980)
* Should always have no ending
 Has “Split Screen” at level 256

F

G

P

B

.‘.‘H

.‘.‘I

.‘.‘p
700

 (Cause: Integer overtlow
e 8 bits: maximum representable value

255 1 0

Software Fault Examples

* Mars Climate Orbiter (1998)

* Sent to Mars to relay signal from Mars
Lander

* Smashed to the planet

* (Cause: Failing to convert between different
metric standards

* Software that calculated the total impulse
presented results in pound-seconds

* The system using these results expected
Its inputs to be in newton-seconds

Software Fault Examples

e USS Yorktown (1997)
e [eft dead in the water for 3 hours

e (Cause: Divide by zero error

Number

http://en.wikipedia.org/wiki/USS_Yorktown_(CG-48)#Smart_ship_testbed
http://en.wikipedia.org/wiki/Division_by_zero

21/42

Software Fault Examples

« THERAC-25 Radiation Therapy (1985)

e 2 cancer patients received fatal
overdoses

e Cause:

 Miss-handling of race condition of
the software in the equipment

Software Fault Examples

e ATT (‘]990) 1. ?etwor‘k code()
2.
* One switching system in New y switeh (line)
York City experienced an : doit();
intermittent failure that caused | case THING2:

if (x == STUFF) {
do first stuff();
if (y == OTHER_STUFF)

a major service outage

e The first major network problem

in AT&T's 114-year history - do_later_stuff();}
. e tialize modes. paimtent):
» Cause: Wrong BREAK statement | Lz odes_pointer()

iﬂ C COde . default:

processing(); }

 Complete code coverage could j Use modes pointer();
have revealed this bug during
testing

23/42

Software Fault Examples

* Ariane 5 flight 501 (1996)

 Destroyed 37 seconds after
launch (cost: $370M)

e Cause: Arithmetic overflow

 Data conversion from a 64-bit
floating point to 16-bit signed
iInteger value caused an
exception

e The software from Ariane 4 was
re-used for Ariane 5 without re-
testing

Software Failure, Fault & Error

Fault

* |ncorrect portions of code (may involve missing code as well
as incorrect code)

 Necessary (not sufficient) condition for the occurrence of a
failure

Failure
* Observable incorrect behavior of a program.
Error

e Cause of a fault. something bad a programmer did
(conceptual, typo, etc)

Bug: informal term for fault/failure

Approaches to reduce faults

 Manual code review
 Manually review the code to detect faults

e |Limitations:

 Hard to evaluate your progress

 (Can miss many faults/bugs

Approaches to reduce faults

e Manual code review

(

NO NEED To DOUBLE CHECK

THiIS CHANGE LiST, iF SoME Pro -
BLEMS REMAIN THE REVIEWER
Will CATCH THEM.

NO NEED To Look AT

THiS CHANGE LiST TOO CLOSELY,

1'M SuRE THE AUTHoR
UNOWS WHAT HE'S DOING.

Automated approaches to reduce
faults

Static Analysis Testing Verification

Automated approaches to reduce
faults

\Static Analysis) Testing Verification

o Static analysis: ldentify specific problems (e.g., memory
leak) in the software by scanning suspicious patterns from
the code

* Limitations: (1) Limited problem types, (2) False positives

Automated approaches to reduce
faults

Static Analysis Testing Verification

- J

* TJesting: Feed input to software and run it to see whether its
pehavior IS as expected

 Limitations: (1) Impossible to cover all possible execution,
(2) Need test oracles

Automated approaches to reduce
faults

Static Analysis Testing . Verification)

 Formal Veritication: Consider all the possible program
executions, and formally prove that the program is correct or
NOot

 Limitations: (1) Difficult to have a formal specification, (2)
Most real-world programs are too expensive to prove

The Most Widely Used Approach

KSO% of my employees are testers,\
and the rest spends 50% of their

Qime testing”

Why Testing”

Testing vs. code review:

e More reliable than code review

Testing vs. static checking:

* | ess false positive and applicable to more problems
Testing vs. formal veritication:

 More scalable and applicable to more programs
You get what you pay (linear rewards)

 While the others are not!

What will this course cover?

‘] 4 4
| . % N % N
7
B e} E—
_ &/ — \ o \
¢ S4 i AN J AN J

program test inputs outputs expected
outputs

x=1, y=0 2 Y2
:::> int sum(int x, int y){

x=1, y=2 return x-y;//bug: x+y

X=2, y=2

}
Testing Small Code =1, y-0

output?=expected output

What will this course cover?

l f N\ f N\

' % N % N
7
]
i \ o \
_ \ y \.

program test inputs outputs expected
outputs

<html>

Testing Browsers
layout?=expected layout

What will this course cover?

il T > | |=?|
8 - AN y * L y
program test inputs outputs expected

outputs

Testing Compilers ;

compiled code?=expected code

What will this course cover?

PR ~s

l s N\ s N\

\“: | ((\\ ((\\
g + > =/
a4 - A Y * y
. program ; test inputs outputs ~ €xpected
e outputs

 How to analyze program source code to find potential
software faults? [Software Analysis

 How to formally verity program to find all the possible
software faults? [Software Verification/Formal Methods]

What will this course cover?

—;
\ e \
\ y \

outputs expected
outputs

How to evaluate the quality of generated tests?
Structural Code Coverage, Mutation Testing]

How to generate high-quality tests automatically”
Automated Test Generation]

How to run tests faster when program evolves”?

‘Regression Testing]

What will this course cover?

s+

~

. 7 A\ 4 A\

. S p\ r N

: — :

= JEAN e \ ;
L AN y N J o

program test inputs outputs expected.

e How to automa

Oracle Gene

e How to automa
Automated Debugging]

outputs :
.. test oracle/assertion ./

&
§

ically generate test oracle/assertions?

ration]

ically localize program faults?

* How to automatically fix program faults? [Automated

Program Repair]

What else will this course cover?

 How to analyze Java source code”
 E.g., using Eclipse JDT
« How to analyze and modifty Java bytecode”
 E.g., using ASM Java bytecode analysis framework

 How to analyze and modify Java intermediate code
representation?

* E.g., using WALA/Soot

Course Topics

Basic concepts

Test adequacy

Automated test generation

Mutation Testing

Regression testing

AU
AU
AU

romal
romal

toma
Sof

'ed oracle generation
‘ed debugging

ed program repailr

tware analysis

Formal methods in software testing

Why This Course?

 |n academia
 Advance your current research
* Find your future research interests

e [nindustry

 QAs/Software Testers/Test Engineers are in high
demand

o Software engineers are also strongly related to software
testing/veritication

Hope you wi

Nal

KS|

en|

oy the course!

