
CS/CE/SE 6367  
Software Testing, 

Validation and Verification 

Lecture 01 
Introduction



/42

Who am I?

• Instructor Name: Lingming Zhang 
• Office: ECSS 4.205 
• Email:  lingming.zhang@utdallas.edu 
• Homepage: http://www.utdallas.edu/~lxz144130/

2

mailto:lingming.zhang@utdallas.edu
http://www.utdallas.edu/~lxz144130/


/42

Education Background

3



/42

Industry Collaboration

4



/42

What am I doing?

5



/42

Hours and Resources      

• Course Meetings:  
• Tues/Thur 4:00pm – 5:15pm 
• GR 2.530 

• Office Hours:  
• Tues/Thur 2:30pm - 3:30pm 
• ECSS 4.205 

• Course Web Page:  
• http://www.utdallas.edu/~lxz144130/cs6367.html 

       

6



/42

Required Textbook

7



/42

• Introduction to Software Testing (1st Edition) 
• ISBN: 978-0521880381 

• Foundations of Software Testing (2nd Edition) 
• ISBN: 978-8131794760

Recommended Textbooks

8



/42

Grading Scheme       

30

10
20

20

20

Exam1
Exam2
Homework
Quiz&Class Participation
Course Project

5

10

15

Implementation
Report
Presentation

Overall Course Project

9



/42

Grading Scale

Score Grade
93-100 A
90-92 A-
87-89 B+
83-86 B
80-82 B-
77-79 C+
70-76 C
<70 F

10

I may choose to curve 
the grades at the end 
of the term



/42

More on the Course Project

• A research project: chosen from a set of topics (posted later), or 
proposed by the students  
• Analyzing/testing real-world Java code 

• Work individually or in pair (1-2 people) 
• Go through the whole research project process 

• Proposal 
• Implementation&Experimentation 
• Report writing 
• Project presentation

The way to learn software engineering is to 
go out there and do software engineering. 

-- Fred Brooks

11



/42

Project Outcomes

• 1-2 page project proposal [Due by Feb 29th midnight] 
• Source code [Due by April 30th midnight] 
• Project report in ACM SIGPLAN conference format (5-10 

pages, double column) [Due by April 30th midnight] 
• Final project presentation&Demo

12



/42

Now, let’s start!

13



/42

Software is Everywhere

14



/42

Software Characteristics

Complexity Evolution

15



/42

The Debian OS Example

Year OS LoC(Million)

2000 Debian2.2 55-59

2002 Debian3.0 104

2005 Debian3.1 215

2007 Debian4.0 283

2009 Debian5.0 324

2012 Debian7.0 419

Complexity

Evolution

16



/42

The Facts
• Only 32% of software projects are considered successful 

(full featured, on time, on budget) 
• Software failures cost the US economy $59.5 billion 

dollars every year [NIST 2002 Report]  
• On average, 1-5 bugs per KLOC (thousand lines of code) 

• In mature software (more than 10 bugs in prototypes)

✴ 35MLOC 
✴ 63K known bugs at the time of release 
✴ 2 bugs per KLOC

17



/42

Software Fault Examples

• Pac-Man (1980)  
• Should always have no ending 
• Has “Split Screen” at level 256 

• Cause: Integer overflow 
• 8 bits: maximum representable value 28 − 1 = 255

+ =1 1 1 1 1 1 1 1

255
0 0 0 0 0 0 0 1

1
1 0 0 0 0 0 0 0 0

0

18



/42

Software Fault Examples

• Mars Climate Orbiter (1998) 
• Sent to Mars to relay signal from Mars 

Lander 
• Smashed to the planet 

• Cause: Failing to convert between different 
metric standards 
• Software that calculated the total impulse 

presented results in pound-seconds 
• The system using these results expected 

its inputs to be in newton-seconds

19



/42

Software Fault Examples

• USS Yorktown (1997) 
• Left dead in the water for 3 hours  

• Cause: Divide by zero error

Number
0 =

20

http://en.wikipedia.org/wiki/USS_Yorktown_(CG-48)#Smart_ship_testbed
http://en.wikipedia.org/wiki/Division_by_zero


/42

Software Fault Examples

• THERAC-25 Radiation Therapy (1985) 
• 2 cancer patients received fatal 

overdoses 
• Cause:  

• Miss-handling of race condition of 
the software in the equipment

21



/42

Software Fault Examples

• ATT (1990) 
• One switching system in New 

York City experienced an 
intermittent failure that caused 
a major service outage 

• The first major network problem 
in AT&T’s 114-year history 

• Cause: Wrong BREAK statement 
in C Code   
• Complete code coverage could 

have revealed this bug during 
testing 

1. network	  code()	  	  
2. {	  	  
3. switch	  (line)	  {	  	  
4. 	  	  	  	  case	  THING1:	  	  
5. 	  	  	  	  	  	  	  	  doit1();	  	  
6. 	  	  	  	  	  	  	  	  break;	  	  
7. 	  case	  THING2:	  	  
8. 	  	  	  	  	  	  	  	  	  if	  (x	  ==	  STUFF)	  {	  	  
9. 	  	  	  	  	  	  	  	  	  	  	  	  do_first_stuff();	  	  
10.	  	  	  	  	  	  	  	  	  	  	  	  if	  (y	  ==	  OTHER_STUFF)	  	  
11.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break;	  	  
12.	  	  	  	  	  	  	  	  	  	  	  	  do_later_stuff();}	  	  
13.	  /*	  coder	  meant	  to	  break	  to	  here...	  */	  	  
14.	  	  	  	  	  	  	  	  	  	  initialize_modes_pointer();	  	  
15.	  	  	  	  	  	  	  	  	  	  break;	  	  
16.	  	  	  	  default:	  	  
17.	  	  	  	  	  	  	  	  	  processing();	  }	  
18.	  /*	  ...but	  actually	  broke	  to	  here!	  */	  	  
19.	   	   	   u s e _ m o d e s _ p o i n t e r ( ) ; /

*	  leaving	  the	  modes_pointer	  
20.	  	  	  	  uninitialized	  */	  	  
21.}	  	  

22



/42

Software Fault Examples

• Ariane 5 flight 501 (1996) 
• Destroyed 37 seconds after 

launch (cost: $370M)  
• Cause: Arithmetic overflow 

• Data conversion from a 64-bit 
floating point to 16-bit signed 
integer value caused an 
exception 

• The software from Ariane 4 was 
re-used for Ariane 5 without re-
testing 

23



/42

Software Failure, Fault & Error

• Fault 
• Incorrect portions of code (may involve missing code as well 

as incorrect code) 
• Necessary (not sufficient) condition for the occurrence of a 

failure 
• Failure 

• Observable incorrect behavior of a program. 
• Error 

• Cause of a fault. something bad a programmer did 
(conceptual, typo, etc) 

• Bug: informal term for fault/failure

24



/42

Approaches to reduce faults

• Manual code review 
• Manually review the code to detect faults 
• Limitations: 

• Hard to evaluate your progress 
• Can miss many faults/bugs

25



/42

Approaches to reduce faults

• Manual code review

26



/42

Automated approaches to reduce 
faults

Static Analysis Testing Verification

27



/42

Automated approaches to reduce 
faults

Static Analysis Testing Verification

• Static analysis: Identify specific problems (e.g., memory 
leak) in the software by scanning suspicious patterns from 
the code 
• Limitations: (1) Limited problem types, (2) False positives

28



/42

Automated approaches to reduce 
faults

Static Analysis Testing Verification

• Testing: Feed input to software and run it to see whether its 
behavior is as expected 

• Limitations: (1) Impossible to cover all possible execution, 
(2) Need test oracles 

29



/42

Automated approaches to reduce 
faults

Static Analysis Testing Verification

• Formal Verification: Consider all the possible program 
executions, and formally prove that the program is correct or 
not 

• Limitations: (1) Difficult to have a formal specification, (2) 
Most real-world programs are too expensive to prove

30



/42

The Most Widely Used Approach

31

“50% of my employees are testers, 
and the rest spends 50% of their 
time testing”

Testing!



/42

Why Testing?

• Testing vs. code review: 
• More reliable than code review 

• Testing vs. static checking: 
• Less false positive and applicable to more problems 

• Testing vs. formal verification: 
• More scalable and applicable to more programs 

• You get what you pay (linear rewards) 
• While the others are not!

32



/42

What will this course cover?

program test inputs outputs
+

expected
outputs

=?

output?=expected output

Testing Small Code

int sum(int x, int y){
return x-y;//bug:x+y

}

x=1, y=0

x=1, y=2

x=2, y=2

x=1, y=0

x=1, y=2

x=2, y=2

33



/42

What will this course cover?

program test inputs outputs
+

expected
outputs

=?

layout?=expected layout
Testing Browsers

34



/42

What will this course cover?

compiled code?=expected code
Testing Compilers

program test inputs outputs
+

expected
outputs

=?

35



/42

What will this course cover?

program test inputs outputs
+

expected
outputs

=?

• How to analyze program source code to find potential 
software faults? [Software Analysis] 

• How to formally verify program to find all the possible 
software faults? [Software Verification/Formal Methods]

36



/42

What will this course cover?

• How to evaluate the quality of generated tests?   
[Structural Code Coverage, Mutation Testing] 

• How to generate high-quality tests automatically? 
[Automated Test Generation] 

• How to run tests faster when program evolves? 
[Regression Testing]

program test inputs outputs
+

expected
outputs

=?

37



/42

program test inputs outputs
+

expected
outputs

=?

• How to automatically generate test oracle/assertions? 
[Oracle Generation] 

• How to automatically localize program faults? 
[Automated Debugging] 

• How to automatically fix program faults? [Automated 
Program Repair]

test oracle/assertion

What will this course cover?

38



/42

What else will this course cover?

• How to analyze Java source code? 
• E.g., using Eclipse JDT 

• How to analyze and modify Java bytecode? 
• E.g., using ASM Java bytecode analysis framework 

• How to analyze and modify Java intermediate code 
representation? 
• E.g., using WALA/Soot

39



/42

Course Topics
• Basic concepts  
• Test adequacy 
• Automated test generation 
• Mutation Testing  
• Regression testing 
• Automated oracle generation 
• Automated debugging 
• Automated program repair 
• Software analysis 
• Formal methods in software testing

40



/42

Why This Course?

• In academia 
• Advance your current research 
• Find your future research interests 

• In industry 
• QAs/Software Testers/Test Engineers are in high 

demand 
• Software engineers are also strongly related to software 

testing/verification 

41



/42

Thanks!  
Hope you will enjoy the course!

42


