CS/CE/SE 6367
Software Testing,
Validation and Veritication

Lecture 3
Code Coverage (l)

| ast class

o Software Testing
 Concepts
e Granularity
 Unit Testing
e JUnit

This class

 Code coverage

 |Control-flow coverage

e Statement coverage

 Branch coverage

e Path coverage
 Coverage Collection Tools

e EclEmma

Who will test the tests?

 Code coverage can be a way!

* Usually, a test covering/executing more code may
indicate better test quality

Verify Quality Verify Quality

R

A

—

Program Tests

How toO measure code coverage

00 D rAO O ™ O OO OO
'gmnmwnawdmﬂ
011110100000110

DL v~/ & 100 O O
I e

O O OllOOllllll

el 1O ~O 000000~

o) St tad e

1100011001

lllOOllllO

Overview

e A common way Is to abstract program into graphs

* Graph : Usually the control flow graph (CFG)

 Node coverage : Execute every statement

 Edge coverage : Execute every branch

0011110100000110
b IOOMOOIM
10100000011.

ESL R

1100011001

1110011110

Control Flow Graphs

A CFG models all executions of a program by describing
control structures

 Node : Sequences of statements (basic block)

* Basic Block : A sequence of statements with only
one entry point and only one exit point (no branches)

 Edge : Transtfers of control

http://en.wikipedia.org/wiki/Entry_point

if (x <)

{

y=0;
Xx=x%+ I;

CFG : The if Statement

X<y
— branch between them

N

the two statements can be in the
same nodes because there is no

9/45

CFG : The if Statement

10/45

CFG : The Dummy Nodes

if (x <Yy)
1

return;

} return
» rint (X); return
return,

Some
program may have
multiple exit nodes!

CFG : while and for Loops

while: x<y

for (x = 0; x <y; x++)

{
)

y =f(xy)

CFG : while and for Loops

while: x<y

for (x = 0; x <y; x++)

{
)

y =f(xy)

X>=y

x=0;
do {
y =f(xy)

Xx=x%+|;

J
while (x <)

12/45

CFG: break and continue

while (x <)
{
y =f(xy);
if (y ==0) {
break;
} else if (y<0) {
y =y*2;
continue;

J

Xx=x%+|;

}
print (y);

while: x<y

13/45

read (¢) ;
switch (¢)
{
case ‘N’
y = 25;
break;
case ‘Y’:
y = 50;
break;
default:
y =0;
break;

}
print (y);

CFG: switch

y=25
break

read(c);

switch(c)

y=50
break

default

14/45

CFG-Based Coverage: Example

public class CFGCoverageExample {
public int testMe(int x, boolean a,
boolean b){ e

if(a)
X++;
if(b)
X==
return X;

a==false

b==false

J

} return X

CFG-based Coverage: A JUnit Test

public class JUnitStatementCov {
CFGCoverageExample tester;
@Before
public void initialize() {
tester = new CFGCoverageExample();
J
@Test
public void testCase() {
assertEquals(0, tester.testMe(0, true, false));
J

)
/)

CFG-based Coverage: Statement
Coverage

* T[he percentage of statements covered by the test

tester.testMe(0, true, false)

\/ a==false

x=0 a=true b=false

b==false

return x

CFG-based Coverage: Statement
Coverage

* T[he percentage of statements covered by the test

tester.testMe(0, true, false)

a==false

N < G

x=0 a=true b=false “(b)

b==true
SCov=4/5=80% ‘

return x

b==false

CFG-based Coverage: Branch
Coverage

 The percentage of branches covered by the test

e (Consider both false and true branch for each
conditional statement

a==false

b==false

return x

CFG-based Coverage: Branch
Coverage

 The percentage of branches covered by the test

e (Consider both false and true branch for each
conditional statement

a==false

BCov=2/4=507%

b==false

return x

CFG-based Coverage: Path Coverage

 The percentage of paths covered by the test
* Consider all possible program execution paths

return x

2245

CFG-based Coverage: Path Coverage

 The percentage of paths covered by the test
* Consider all possible program execution paths

return X return x

23/45

CFG-based Coverage: Path Coverage

 The percentage of paths covered by the test
* Consider all possible program execution paths

return X return x return X

2445

CFG-based Coverage: Path Coverage

 The percentage of paths covered by the test
* Consider all possible program execution paths

return X return x return X return X

25/45

CFG-based Coverage: Path Coverage

 The percentage of paths covered by the test
* Consider all possible program execution paths

' ==

PCov=1/4=25%

‘,
X__
A

return X return x return X return X

CFG-based Coverage: Comparison

public class JUnitStatementCov {
CFGCoverageExample tester;
@Before
public void initialize() {
tester = new CFGCoverageExample();
}

@Test

public void testCase() {
assertEquals(0, tester.testMe(0, true, false));

}

f we achieve 100% branch coverage, do we get

 Statement coverage: 80% |
IBranch coverage: 50% |
|Path coverage: 25% |

[Trwe achiove 100% path coverage, do we o |

Statement Coverage VS. Branch Coverage

e |f atest suite achieve 100% b-
coverage, it must achieve 100% s-

coverage

e [he statements not in branches
will be covered by any test

e All other statements are In certain
branch

e |f atest suite achieve 100% s-
coverage, will it achieve 100% b-

coverage”

Statement Coverage VS. Branch Coverage

e |f atest suite achieve 100% b-
coverage, it must achieve 100% s-

coverage

e [he statements not in branches
will be covered by any test

x=0 a=true b=true

e All other statements are in certain a==false

branch
e |f atest suite achieve 100% s-

coverage, will it achieve 100% b-

b==false

coverage”

return x

Statement Coverage VS. Branch Coverage

e |f atest suite achieve 100% b-
coverage, it must achieve 100% s-

coverage

e [he statements not in branches
will be covered by any test

e All other statements are In certain
branch

e |f atest suite achieve 100% s-
coverage, will it achieve 100% b-

Coverage’?

3ranch coverage strictly |
' subsumes statement coverage

x=0 a=true b=true

a==false

b==false

return x

Branch Coverage VS. Path Coverage

* |f atest suite achieve 100% p-
coverage, it must achieve 100% b-

coverage
e All the branch combinations have

been covered indicate all branches
are covered

e |f atest suite achieve 100% b-
coverage, will it achieve 100% p-

coverage”

Branch Coverage VS. Path Coverage

e |f atest suite achieve 100% p- x=0 a=true b=true
coverage, it must achieve 100% b-

coverage

e All the branch combinations have
been covered indicate all branches

are covered ol

x=0 a=false b=false

e |f atest suite achieve 100% b-
coverage, will it achieve 100% p-

coverage”

b==false

return x

Branch Coverage VS. Path Coverage

e |f atest suite achieve 100% p- x=0 a=true b=true
coverage, it must achieve 100% b-

coverage

e All the branch combinations have
been covered indicate all branches

are covered ol

x=0 a=false b=false

e |f atest suite achieve 100% b-
coverage, will it achieve 100% p-

coverage”

b==false

i Path coverage strictly |
. subsumes branch coverage |

return x

CFG-based Coverage:
Comparison Summary

Path coverage "
. strictly subsumes branch coverage |
| strictly subsumes statement coverage §

Path Coverage

l

Branch Coverage

Statement Coverage

Should we just use path coverage?

while (x <)
{
y =f(%Y);
Xx=x%+ |;

while: x<y

i Possible Paths

CFG-based Coverage: Effectiveness

* About 65% of all bugs can be caught in unit testing
* Unit testing is dominated by control-flow testing methods

e Statement and branch testing dominates control-flow
testing

CFG-based Coverage: Limitation

 100% coverage of some aspect is never a guarantee of

bug-free software

Test: assertEquals(1, sum(1,0))

~

public int sum(int x, int y){
return x-y;_//should be x+y
ks

Statement coverage: |00%
Branch coverage: 100%

Path coverage: 100%

& #

This class

 Code coverage
* Control-flow coverage
e Statement coverage

 Branch coverage

e Path coverage

e Coverage Collection Tools
e EclEmma

Coverage Collection: Mechanism

* The source code is instrumented (source/binary)

 Log code that writes to a trace file is inserted in every
branch, statement etc.

 When the instrumented code Is executed, the coverage
info will be written to trace file

4)
Coverage file

linel
line2
line4

Coverage Collection: Tool Supports

Emma: http://emma.sourceforge.net/

EclEmma: http://www.eclemma.org/installation.html/

Cobertura:_http://cobertura.github.io/cobertura/

Clover: https://www.atlassian.com/software/clover/
overview

JCov: https://wiki.openjdk.java.net/display/CodeTools/jcov

JaCoCo: http://www.eclemma.org/jacoco/

http://emma.sourceforge.net
http://emma.sourceforge.net
http://emma.sourceforge.net/intro.html
http://sourceforge.net/projects/emma/files/
http://emma.sourceforge.net/samples.html
http://emma.sourceforge.net/faq.html

EclEmma: Installation

From your Eclipse menu select Help — Install New
Software...

In the Install dialog enter http://update.eclemma.org/ at
the Work with field

Check the latest EclEmma version and press Next

Follow the steps in the installation wizard.

http://update.eclemma.org

EclEmma: Installation

SO Install

Available Software

FrOm yO U r ECl | ps Check the items that you wish to install.

Software...

In the Install dial

—
P

Work with: http://update.eclemma.org/ 3 (

Add...)

Find more software by working with the "Available Software Sites" preferences.

the Work with fie e s

Name Version

C h eC k } q e |ate St ™ gEclEmma Java Code Coverage 2.0.0.201112160426

I:Ol |OW h ’] e Ste pS (Select All) (Deselect All) 1 item selected

Details

EclEmma plug-ins for Eclipse with online help.

(] Group items by category What is already installed?
(] Show only software applicable to target environment

(] Contact all update sites during install to find required software

o(?) < Back f—Nexrﬁ—) (Cancel J

More...

[| Show only the latest versions of available software @] Hide items that are already installed

Finish

http://update.eclemma.org

EclEmma: Execution

The installation was successful if you can see the
coverage launcher in the toolbar of the Java perspective:

Coverage co@ " Q-

e Right click the test suite class file to run
* (Click “Coverage As” => “JUnit Tests”

Guv %5v Qv Qv 8 Gl (9

Ju 1 JUnitStatementCov

: ., S : v v

[

SwitchDemoFallT \J] CFGCover
Coverage As > JulJUnitTest O\XET
Coverage Configurations...

Organize Favorites...
r— " A f sdi ude

43/45

EclEmma: Results

| MyMainJUnitSuit J| SwitchDemoFallT [DCFGCoverageExam 22 |J] JUnitStatementC I| JUnitBranchCov.

2@ * Copyright € 2014 Linaming Zhangd
9 package cfg;

10

11 /%%

12 * @author zhanglingming
13 *

14 %/

15 public class CFGCoverageExample {
16= public int testMe(int x, boolean a, boolean b){

@17 if(a)
18 X4+
@19 if(b)
20 X==3
21 return x;
22 }
23 }
24
'mn Coverage 33 -
Element Coverage Covered Instructions Missed Instructions ¥ Total Instructions
MO elauit pactkage) — uun v 239 239
» {3 junit.datastructures - 0.0% 0 172 172
v {§ cfg -— 15.8% 30 160 190
» |J) SwitchDemoFallThrough.java B 0.0% 0 82 82
» [J] JunitPathCov.java - 0.0% 0 49 49
» [J) JunitBranchCov.java - 0.0 % 0 29 29
» |J) CFGCoverageExample.java : 100.0 % 11 0 11
(D) HinirCraramant™aw inus - 100 N & 10 n 10

Next class

 More on code coverage

Thanks!

