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Preface

Every author aspiring to write a book should address two fundamental
questions: (i) Who is the targeted audience, and (ii) what does he wish to
say to them? In the world of literature, it is often said that every novel
is autobiographical to some extent or another. Adapting this maxim to
the current situation, I would say that every book I have ever written has
been addressed to a reader who is in the situation in which I found myself
before I embarked on the book-writing project. To put it another way, every
book I have written has been an attempt to make it possible for my readers
to circumvent some of the difficulties that I myself faced when learning a
subject that was new to me.

In the present instance, for the past few years I have been interested in the
broad area of computational biology. With the explosion in the sheer quan-
tity of biological data, and an enhanced understanding of the fundamental
mechanisms of genomics and proteomics, there is now greater interest than
ever in this topic (computational biology). I got very interested in hidden
Markov processes (HMPs) when I realized that several researchers in com-
putational biology were applying HMPs to address various prediction and
classification problems in genomics and proteomics. Thus, after virtually an
entire research career spent in blissful ignorance of all matters stochastic, I
got down to try and learn something about Markov processes and HMPs.
At the same time, I was trying to learn enough about basic biology, and
also to read the existing literature in the area of Markov and hidden Markov
methods in computational biology.

I was faced with two sets of difficulties in this endeavour, one with the
Markov process literature and another with the computational biology lit-
erature. In the paragraphs to follow, I will describe first the scope of the
book; then I will describe the difficulties I faced, and how I hope to alleviate
them in this book. My fond hope is that by reading this book others will
have an easier time learning these topics than I did myself.

Hidden Markov processes (HMPs) were introduced into the statistics lit-
erature as far back as 1966 [13]. Starting in the mid 1970’s [9, 10], HMPs
have been used in speech recognition, which is perhaps the earliest appli-
cation of HMPs in a non-mathematical context. The paper [43] contains a
wonderful survey of most of the relevant theory of HMPs. In recent years,
HMPs have also been used in problems of computational biology, such as
finding genes from the genome (DNA sequence) of an organism [74, 30], or
classifying proteins into one of several families [73]. Markov models underlie
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some of the significant advances in sequence alignment such as the BLAST
algorithm and its variants [65, 4, 66, 5], and popular algorithms for finding
genes from a genome, as exemplified by GENSCAN [23] and GLIMMER
and its extensions [30]. Accordingly, the current book contains two distinct
themes: (i) the theory of Markov processes and hidden Markov processes,
and (ii) the application of this theory to some problems in computational
biology.

Now let me describe the difficulties I found with the existing books on
Markov processes. These books invariably focus on processes with infinite
state spaces. Books such as [69, 103] restrict themselves to Markov processes
with countable state spaces, since in this case many of the technicalities as-
sociated with uncountable state spaces disappear. From a mathematician’s
standpoint, the case of a finite state space is not worth expounding sepa-
rately, since the extension from a finite state space to a countably infinite
state space usually “comes for free.” However, even the “simplified” theory
as in [103] is inaccessible to many if not most engineers, and certainly to
most biologists. Such readers can handle Markov processes with finite state
spaces but nothing more, because they can understand matrices, eigenvalues,
eigenvectors and the like, but in general cannot follow more advanced topics.
At the same time, books on Markov processes with finite state spaces seldom
go beyond computing stationary distributions, and almost completely ignore
advanced topics such as ergodicity, mixing, parameter estimation, and the
like, that are vital in any application of the theory. A notable exception
is [99], which at least talks about ergodicity, but does not discuss mixing
properties of Markov chains, nor parameter estimation. For purposes such
as analyzing the statistical significance of an inferencing or a modelling al-
gorithm, mere ergodicity is too weak a property, and some form of mixing
is required.

Thus the current situation with respect to books on Markov processes can
be summarized as follows: There is no treatment of “advanced” notions using
only “elementary” techniques, and in an “elementary” setting. In contrast,
in the present book the focus is almost exclusively on stochastic processes
assuming values in a finite set, so that technicalities are kept to an absolute
minimum. By restricting attention to Markov chains with finite state spaces,
I am able to capture most of the interesting phenomena such as ergodicity
and mixing, while giving elementary proofs that are accessible to anyone
who knows undergraduate level linear algebra.

In the area of HMPs, much of the existing material is dedicated to the
computation of various likelihoods (such as the most likely state trajectory
corresponding to a given observation sequence), or to the determination
of the most likely parameter set for a hidden Markov model of a given,
prespecified order. In contrast, very little attention seems to have been paid
to realization theory, that is, determining the order of a hidden Markov
model on the basis of a set of observations. To me it appears practically a
tautology to declare that the complexity of the model should be based on the
observations, and not fixed a priori just to make a few problems tractable.
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And yet realization theory is not given the same importance in the HMP
literature as likelihood computation. In the present book, I have attempted
to remedy the situation by including a thorough discussion of realization
theory. Both “partial” realization and “complete” realization problems are
studied. I not only give solutions to each, but also address issues such as the
accuracy and confidence one has in the estimated parameters of the hidden
Markov model.

The difficulty I faced with the existing literature in computational biology
can now be described. At present there are several engineers and mathe-
maticians who would like to study problems in computational biology and
suggest suitable algorithms. There are of course some obvious difficulties,
such as the need to learn (I am tempted to say “memorize”) a great deal
of unfamiliar terminology. Mathematicians are accustomed to a “reduction-
ist” approach to their subject whereby everything follows from a few simply
stated axioms. Such persons are handicapped by the huge differences in the
styles of exposition between the engineering/mathematics community on the
one hand and the biology community on the other hand. Even in the most
“theoretical” biology journals, usually an algorithm is not described to the
same level of depth or detail as it would be in the engineering or mathematics
literature. Thus a person who wishes to understand statistical algorithms
for gene prediction for example discovers very quickly that there is no place
where these algorithms are discussed with sufficient detail for him/her to
suggest improvements. The main purpose of the book is to address such a
requirement.

Computational biology is a vast subject, and is constantly evolving. In
choosing topics from computational biology for inclusion in the book, I re-
stricted myself to genomics and proteomics, as these are perhaps the two
aspects of biology that are the most “reductionist” in the sense described
above. Even within genomics and proteomics, I have restricted myself to
those algorithms that have a close connection with the Markov and HMP
theory described here. Thus I have omitted any discussion of, to cite just
one example, neural network-based methods. Readers wishing to find an en-
cyclopaedic treatment of many aspects of computational biology are referred
to [12, 46].

The chapter on biological applications begins with a basic introduction
to biology, that is of necessity overly simplified. A “true” biologist will,
in all probability, find much to quarrel with in this section. But it serves
the immediate purpose, namely, to formulate some problems in genomics
and proteomics in statistical terms. A reader who is eager to understand
the relationship between the theory presented in the early chapters and its
application to biological situations can jump ahead straightaway to Sections
11.1 and 11.2.

There is a fundamental difference between HMPs as they are used in
speech recognition and HMPs as they are used in biology, namely: the
length of the sample paths. In speech recognition, the sample paths are
perhaps a dozen symbols long. As a result, methods such as Viterbi de-
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coding can be effectively applied. In biological problems, the sample paths
are several hundred symbols long. As a consequence, some of the methods
used in speech recognition will not work at all in biological problems. In-
stead, one uses multi-step Markov processes (which are not truly “hidden”
Markov processes). Hence issues such as parameter estimation become sim-
pler in biological applications than in speech recognition, but issues such as
estimating the likelihood of misclassification become more difficult. Never-
theless, in the book I will discuss all of the techniques used by either type
of HMPs, so as to broaden the appeal of the book.

I hope that the book would not only assist biologists and other users of the
theory to gain a better understanding of the methods they use, but would
also spur the engineering and statistics research community to study some
new and interesting research problems.
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Chapter One

Introduction to Computational Biology

It would be more accurate to name this chapter ‘A view of biology from
the perspective of a computationalist.’ The chapter represents my attempt
to put forward a simplified view of the basic issues in genomics and pro-
teomics, which are perhaps the two aspects of biology that lend themselves
most readily to a ‘reductionist’ approach that is very familiar to mathe-
maticians. Mathematically trained individuals prefer their problems to be
stated simply and precisely. It does not matter how difficult the problem
is, but it should be abundantly clear what the problem is, so that the com-
munity can be sure that they are all talking about the same problem. To
persons with a mathematical training, biology appears to be a bewildering
array of terminology (often unpronouncable by outsiders), and conventions.
This chapter therefore represents an attempt to simplify the subject for the
benefit of those who wish to understand what the basic issues are, at least
from a computational standpoint, and then move on to tackle some of the
outstanding problems.

Because of the simplification involved, some of what is written here may
possibly raise the hackles of biologists. For instance, later on I will say that
the only difference between DNA and RNA is that the letter T gets replaced
by the letter U . Biologically speaking of course, this statement is potentially
misleading. T (Thymine) has a different chemical structure and biological
function from U (Uracil). But for the intended readers of this book, the
key point is that if the DNA is viewed as a long string over the four symbol
alphabet {A,C,G, T} (as explained below), then the corresponding RNA is
obtained simply by substituting the symbol U for the symbol T wherever
the latter occurs. Thus, from this standpoint, there is no difference between
T and U . Thus readers are advised to keep this point in mind, and not
treat everything said here as being ‘biologically true.’ In two of my earlier
books, I studied a specific form of machine learning known as ‘probably ap-
proximately correct’ (or PAC) learning. I could perhaps borrow that phrase
and say that all the biological statements in this chapter are ‘probably ap-
proximately correct.’ However, all of the specific problem statements given
here are ‘computationally true’ – there is no lack of precision either in the
problem formulations or in the solutions put forward.
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Figure 1.1 The Four Nucleotides

1.1 THE GENOME

The genetic material in all living things is DNA, or Deoxyribonucleic acid.
DNA is an enormously complex molecule built up out of just four building
blocks, known as nucleotides. The nucleotides were discovered by Phoebus
Levene in 1929. The four nucleotides share a common backbone, but con-
tain different nucleic acids, or bases. For this reason, the four nucleotides
are distinguished by the bases they contain, namely: Adenine, Cytosine,
Guanine and Thymine. It is customary to denote the four nucleotides by
the initial letters of the bases they contain, as A,C,G, T . There is no partic-
ular preferred order for listing the nucleotides, so they are listed here in the
English alphabetical order. The diagram below1 shows the four nucleotides
including both the backbone and the base.

Because all four nucleotides share a common backbone, any nucleotide can
‘plug into’ any other nucleotide, like a lego toy. The so-called 3’ end of one
nucleotide forms a very strong covalent chemical bond with the 5’ end of the
next nucleotide. Thus it is possible to assemble the nucleotides in any order
we wish. Such strings of nucleotides, assembled as per our specifications,
are referred to as a strand of ‘oligonucleotides.’ While it has been known for

1Original sources for all diagrams are given in the References.
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Figure 1.2 A DNA Fragment Showing Reverse Complimentarity

decades that it is possible to produce ‘arbitrary’ sequences of nucleotides, it
is only within the past few years that it has become commercially feasible
to produce oligonucleotide sequences on demand, thus leading to an entirely
new field known as ‘synthetic biology.’

The 5’ end is deemed to be the start of the strand, and the 3’ end is deemed
to be the end of the strand. The DNA molecule consists of two strands of
oligonucleotides that run in opposite directions. In addition to the very
strong covalent bond between successive nucleotides on the same strand, the
DNA molecule also has much weaker hydrogen bonds between nucleotides
on opposite strands, which is a property known as ‘reverse complementarity.’
Thus if one strand contains A, then its counterpart on the opposite side must
be T . Similarly, if one strand contains C, then its counterpart on the opposite
must be G. Figure 1.1 below depicts the reverse complemetarity property.
In it one can see both the covalent bond between adjacent nucleotides on
the same strand, as well as the hydrogen bonds across strands. Figure 1.1
depicts the hydrogen bonds between A and T , and between C and G. It
can be seen from these figures that the A ↔ T bond is somewhat weaker
than the C ↔ G bond, because the former consists of two hydrogen atoms
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Figure 1.3 Hydrogen Bonds Between A and T , and between C and G

bonding, while the latter consists of three hydrogen atoms bonding.
The DNA molecule is shaped like a double helix as shown in Figure 1.1.

The discovery of the shape of the DNA molecule and the chemical bonds
that hold it together (the horizontal beads in Figure 1.3) was made by James
Watson and Francis Crick in 1953. Determining the structure of DNA was
considered to be a very important problem at that time, and several persons
were working on it, including the famous chemist Linus Pauling. Experi-
mental evidence for the helical structure of DNA was obtained by Rosalind
Franklin based on x-ray diffraction technique, though she (according to some
reports) did not readily believe in the helical structure of DNA. Maurice
Wilkins was a colleague of hers at King’s College in London who was at the
time trying to construct models based on available experimental evidence.
Watson, Crick and Wilkes shared the Nobel Prize in Medicine in 1962 for
their discoveries. Unfortunately Rosalind Franklin had passed away by that
time, so one can only speculate as to whether she too would have received
recognition in some form for the discovery. For Watson’s own account of the
discovery of the double helix, see [115]. The other two winners have also
written their own version of events [27, 118], in the case of Wilkins 50 years
after the event. For a counter-viewpoint that claims that Rosalind Franklin
deserves far more credit than she has received, see [98]. In some ‘lesser’ or-
ganisms such as viruses and bacterial phages, the DNA molecules folds back
on itself, but still retains the double helix structure.

Each cell within a living organism contains a copy of the DNA. So for
example there are about 1011 cells in the human body, which implies that
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Figure 1.4 Double Helix Structure of DNA

there are 1011 copies of the DNA in the body. The DNA is an enormously
complex molecule. As discussed in greater detail below, the human DNA
consists of roughly 3.3 billion nucleotides in each strand of the double helix.
If the two strands of the double helix were to be separated and one strand
were to be stretched out, the total length would be about three meters! And
yet the chemical interactions are so strong that the DNA is very tightly
wound up within itself, and each of the 1011 or so cells within the human
body contains a copy of this three meter-long molecule. It is clear that,
while one dimension of the DNA is very high, the other two dimensions are
very tiny, which is why this compactification is possible.2

It is important to understand that each strand of the double-helix DNA
has a definite spatial direction. The starting point for each strand is called
the 5’ end, while the ending point is called the 3’ end. If we think of a
strand of DNA as a ‘tape,’ then there is only one way to read the tape –
it cannot be ‘read backwards.’ Because of the definite spatial direction, ex-
pressions such as ‘the previous nucleotide,’ ‘the next nucleotide,’ ‘upstream’
and ‘downstream’ are completely unambiguous. This feature permits us to
model the spatial orientation by a temporal orientation and use modelling
methods based on time series. If the spatial orientation were to be arbitrary,
we could not do this.

2The following purely hyperbolic statement brings out this point more powerfully: If
all the DNA molecules within the human body were to be stretched out and placed end-
to-end, they would reach from the earth to the sun!
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As stated above, the two strands of the helix run in opposite directions.
Thus the 5’ end of one strand is opposite the 3’ end of the other strand.
Moreover, again as stated above, in order for the two strands to have a series
of hydrogen bonds, the two sides must satisfy the ‘reverse complementarity’
property. Thus, if one strand contains A (Adenine) in one location, the other
side must contain T (Thyamine). Similarly, C (Cytosine) and G (Guanine)
occur opposite each other.

The ‘genome’ of an organism is just a listing out, symbol by symbol, of
the sequence of nucleotides that makes up one strand of the DNA. Because
of reverse complementarity, if we know the listing of one strand, we know
unambiguously the listing of the other strand. Since DNA occurs in two
strands and the bases in each strand must ‘pair up’ according to reverse
complementarity, the length of a genome is specified in ‘base pairs.’ The
typical length of the genome varies depending upon the nature and com-
plexity of the organism. Viruses, which cannot survive on their own but
need a host in order to replicate, typically have genomes that several thou-
sand base pairs long. Bacteria, which are the simplest self-sustaining life
forms (meaning that they can reproduce on their own without a host, in
contrast to viruses) have genomes that are a few million base pairs long.
The mosquito has a genome that is about 300 million base pairs, the mouse
genome is about 2.4 billion base pairs, the human genome is about 3.3 bil-
lion base pairs, and finally, the rice genome has about 10 billion base pairs!
That last statistic, namely that the rice genome is three times as long as the
human genome, ought to dispel the idea that the length of the genome is
somehow monotonically related to the ‘intelligence’ of the organism.

The determination of the genome of organisms is one of the great triumphs
of experimental biology, because the genome is one of the most ‘unambigu-
ous’ representations of a life-form. See the first chapter of [88] for an excel-
lent summary of the experimental methods and computational algorithms
involved in ‘sequencing’ and ‘assembling’ a genome, that is, determing the
string of symbols that comprise the genome. Moreover, it is noteworthy that
the genome is not an ‘analog’ representation of life, but is a ‘digital’ repre-
sentation, in the sense that the symbols at each location in the genome can
have only a finite number of possible values (four). In general, the genomes
of two exemplars of a species will have the same length. However, in the
case of organisms such as the HIV virus which reproduces itself very sloppily,
this statement is not always true. And of course, this statement is not valid
at all when organisms have been experimentally modified in a laboratory.
However, the genomes of two exemplars of an organism need not be iden-
tical. If the genome of an organism is 100% reproduced to create another
organism, the second one is called a ‘clone’ of the first.

A draft of the human genome was determined and published simultane-
ously in February 2001 by two groups: The International Human Genome
Research Consortium (IHGSC) [60] and Celera Genomics [106], a private
company that subsequently went out of business. The human genome is
about 3.3 billion base pairs long. The exact length is not known precisely,
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and experiments are still under way to refine the draft genome further.
In spite of its enormous length, it appears that there is a great deal of

redundancy in the human genome. The overlap between the human genome
and the mouse genome is about 80%, whereas between a human and a chim-
panzee (our nearest neighbour in the animal kingdom) is about 98%. Be-
tween two humans the overlap is still more striking. It is estimated that
the genome sequences of two humans will agree in about 99.9% of the loca-
tions, and differ only in about 0.1%, or about 3 million base pairs. All that
distinguishes one human from another, be it height, weight, colour of eyes,
colour of hair, etc. can presumably be attributed to this tiny variation in
the genome (aside from environmental factors of course). These variations
from the ‘consensus’ human genome (see below) are called Single Nucleotide
Polymorphisms (SNPs), often pronounced as ‘snips’. Even ‘identical’ twins
will not have identifical genomes; rather, the overlap in such a case will be
about 99.99%, as opposed to 99.9% in the case of two unrelated humans. A
100% replication of a genome is known as a ‘clone’ as stated earlier. The
cloning of life forms is both a fascinating as well as a controversial subject.

It is widely accepted that there is indeed a ‘consensus’ human genome.
In other words, it is believed that at any given location, an overwhelming
majority of humans will have just one of the four nucleotides. Moreover,
in case there is a deviation from the consensus genome, even though there
are three variations possible in theory, in reality only one variation seems to
occur in an overwhelming majority of cases. It is not the case, for example,
that at a particular location about half of the population will have a T ,
another half will have a G, while A or C occur in a tiny fraction of the
population. It is also not the case that virtually all humans have, say, a T at a
particular location, whereas the symbols A,C,G occur among the remaining
small minority with roughly equal frequency. If at all there is a variation,
only one of the remaining three symbols will occur in almost all the rest of
humanity. To contrast the situation, there is no ‘consensus blood group’ for
example. While the O type blood is the most common, the percentage of the
population that has other blood types is still significant. The draft human
genome published in February 2001 by Celera is actually the (approximate)
sequence of the DNA of no fewer than six different individuals, not that of
just one person. Since the estimated error in the published draft (2% or so)
is considerably more than the variations amongst individuals (0.1% or so,
as mentioned above), this mixing up of DNA from different individuals did
not matter. The above remarks about the existence of a consensus genome
apply also to other organisms.

As technology improves, we can aspire to a situation whereby it will be
both quick and inexpensive to determine the genome of every human on the
planet, or at least a large number of them. As stated above, it would be
wasteful to capture the DNA of a specific individual and sequence that. It
would be more efficient to (i) determine the consensus genome very accu-
rately, and (ii) determine the SNP’s of an individual, that is, variations from
the consensus genome. It appears reasonable that Step (ii) above should be,
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at least in principle, less expensive than an ab initio sequencing of the entire
genome of an individual, since the variations from the consensus genome are
expected in only 0.1% of the locations. The SNP profile of an individual is
also known as the ‘genotype.’

One of the most exciting challenges in computational biology is correlating
an individual’s genotype with his/her ‘phenotype,’ for example, the person’s
propensity to disease, responsiveness to a drug or treatment regime, or even
potential adverse reactions to a drug. The current status is that in some very
specific situations, we know that a particular SNP causes a specific disorder.
Among the very first disorders to be tied unambiguously to a specific SNP is
Sickle cell anemia, which causes red blood cells to be shaped like a crescent
(or a sickle), as opposed to the round shape of a normal red blood cell. It
was discovered that sickle cell anemia is caused by just one substitution:
The codon GAG that codes for glutamine gets replaced by GTG, which
codes for valine.3 Thus exactly one SNP at just the right place in the
genome can cause sickle cell anemia. Other examples of genetic disorders are
Huntington Chorea and cystic fibrosis. Cystic fibrosis is in many ways well-
suited for study using computational techniques, because while the location
of the mutations that causes the disorder is well known, there are literally
hundreds of mutations that have been discovered thus far among patients
afflicted by this disorder. It would therefore be very interesting to correlate,
using computational techniques, the particular mutation with the particular
manifestation of the disorder. Unfortunately, most disorders are far more
complex, and cannot be related to the malfunction of one specific gene. The
paradigm ‘one gene, one protein, one function’ is not valid in many cases,
especially where disorders are involved.

1.2 GENES AND PROTEINS

1.2.1 The Genetic Code

As we have already seen, the genome of an organism is just an enormously
long string over the four-symbol nucleotide alphabet {A,C,G, T}. The
genome of an organism is the most ‘low level’ description of an organism.
Here the expression ‘low level’ is used to mean that it is the most basic de-
scription, and when we know that, we don’t actually know very much. One
can think of the genome as a kind of ‘raw data’ that needs to be turned into
‘information.’ This is one of the classic challenges of computational biology.

The next level of complexity in the genome arises from genes and proteins.
Proteins are the sustenance of life, and DNA must continually replicate itself
so that the production of proteins can go on uninterrupted. The DNA of
an organism consists in effect of two parts: (i) the genes whose function is
to produce proteins, and (ii) the intergenic regions, often referred to ‘junk’
DNA. I myself dislike the expression ‘junk’ DNA. It seems to me that there

3Codons are introduced later in this section.
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is a vast difference between saying ‘This stretch of DNA has no function’
and ‘This stretch of DNA has no known function.’ The first is a statement
of fact, while the second is a statement about our ignorance. Actually the
second sentence accurately describes what we call ‘junk DNA.’ The situation
could change, and we may one day discover why there is ‘junk’ DNA. It is
also interesting why it is called ‘junk’ and not ‘trash,’ ‘garbage,’ or even
‘spam.’

Proteins were discovered as early as the beginning of the nineteenth cen-
tury, in fact much earlier than genes. Practically all the proteins discovered
at that time were essential dietary ingredients; for example, vitamins are
proteins or combinations of proteins. By the 1840’s it was already known
that every protein consists of a sequence of amino acids, which are twenty in
number. These twenty amino acids are denoted either by a single letter, or
by two or three letters. Just as the four nucleotides are the building blocks
of DNA, the twenty amino acids are the building blocks of proteins. Thus,
just we can think of the genome as a string over the four-symbol alphabet
of nucleotides, we can think of a protein as a string over the twenty-symbol
alphabet of amino acids. The listing out of a protein in terms of its sequence
of amino acids is called the primary structure. Thus we can think of
describing a protein in terms of its primary structure as being analogous to
describing an organism in terms of its genome. Both are the ‘lowest level’
descriptions, and additional work is needed to extract useful information in
either case. Typically a protein consists of several hundred, or perhaps a
few thousand, amino acids. At the other end, proteins consisting of as few
as fifty amino acids are also known.

Once the double helix structure of DNA was discovered in 1953, the sci-
entific community attempted to understand how DNA gets converted to
proteins. The working hypothesis, which is by now quite universally ac-
cepted, states that first the double-stranded DNA molecule is separated into
its two individual strands. Then particular stretches of DNA get cut out and
this forms the template for conversion to RNA. In the process, Thymine (T )
gets replaced by Uracil (U). RNA is a single-stranded molecule and is thus
somewhat unstable chemically. (However, double-stranded RNA has been
discovered recently). This process is known as ‘transcription.’ Then triplets
of RNA nucleotides A,C,G,U get converted into amino acids through a pro-
cess known as ‘translation.’ The entire hypothesis is labelled as ‘The Central
Dogma’ of biology. This much was understood by 1960, but what happened
next was still not clear. Figure 1.2.1 below depicts the central dogma.

Recall that the four nucleotides that make up DNA were discovered in
1929. The basis of the conversion of DNA to proteins, called the ‘genetic
code,’ was discovered in full only in the 1960’s. In 1961, Marshall Nirenberg
succeeded in showing that the triplet UUU produced the amino acid pheny-
laline. In quick succession he and his colleagues succeeded in showing that
several amino acids were produced by various triplets of nucleotides. It was
left to Hargobind Khorana to complete the picture by showing which triplet
of nucleotides produced which amino acid. Since there are 43 = 64 triplets



text September 25, 2011

10 CHAPTER 1

Figure 1.5 Central Dogma of Biology

(called ‘codons’) and only 20 amino acids, there had to be some redundancy.
Khorana further showed that each protein-coding RNA ended with one of
three sequences, called the stop codons, namely UAA,UAG,UGA. Fi-
nally, he also showed that every protein-coding RNA began with the ‘start’
codons AUG or GUG. However, while a stop codon cannot occur in the
middle of a protein sequence, a ‘start’ codon can also occur in the middle
of a protein, where it codes for the amino acid methionine. A key aspect of
Khorana’s work was that he was the first one to synthesize oligonucleotides,
that is, to create artificially ‘arbitrary’ strings of nucleotides. This synthesis
technique allowed him to study the amino acids produced by all possible
triplets of nucleotides. In recognition of this seminal work, Nirenberg and
Khorana shared the Nobel Prize in Medicine in 1968, along with Robert
Holley, who discovered tRNA (translation RNA).

Figure 1.2.1 below depicts the genetic code in compact form. Strictly
speaking, RNA codons consist of triplets from the RNA alphabet {A,C,G,U}.
However, since the RNA sequence is obtained simply by replacing the symbol
T by the symbol U (ignoring the chemical significance of such a substitution),
we can think of ‘codons’ as either triplets over the alphabet {A,C,G, T} or
over the alphabet {A,C,G,U}. We use both conventions interchangeably,
depending on convenience. Thus we can think of TAA, TAG, TGA as stop
codons, and of ATG,GTG as the start codons.

From the above table, it is clear that there is a great deal of subtlety in the
genetic code. If we think of the genetic code as a map from the 64-symbol set
{A,C,G,U}3 into the twenty-one symbol set consisting of the twenty amino
acids plus the stop codon, then the structure of the map is not at all clear.
The size of the preimage of the various ‘output symbols’ (amino acids or stop
codon) ranges from a high of 6 for Leucine to a low of one for many amino
acids. Several persons have proposed various speculative explanations for
the structure of the genetic code, but until there is no universally accepted
explanation.

An interesting aspect of the above chain of discoveries is that physicists
played a central role in motivating much of this work. After the discovery
of individual nucleotides in 1929, the famous physicist Erwin Schrödinger
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Figure 1.6 The Genetic Code in Tabular Form

suggested very strongly that there must be a genetic code, that is, a way
of associating strings of nucleotides with amino acids. Schrödinger’s best
known contribution is of course the ‘wave function’ formulation of quan-
tum mechanics, which eventually supplanted the earlier ‘matrix mechanics’
formulation put forth by Werner Heisenberg. Another physicist, George
Gamow, suggested on the basis of numerical arguments (43 > 20) that the
genetic code consisted of a map from triplets of nucleotides, that is codons,
into amino acids. A very readable description of the entire discovery process
can be found in the web site of the Nobel Prize under either Khorana or
Nirenberg.

1.2.2 Genes and the Gene-Finding Problem

Roughly speaking, a ‘gene’ is a stretch of DNA that gets converted into a
protein. Within the continuous stretch of a single gene, some regions are
called the coding regions while others are called noncoding regions.
The conversion of a gene to a protein can happen in one of two ways. In
so-called ‘prokaryotes’ or ‘lower-level’ organisms, each gene consists of one
continuous stretch of DNA. In so-called ‘eukaryotes’ or higher organisms,
the gene can actually consist of several ‘exons’ separated by ‘introns’. When
the gene produces the corresponding protein, the noncoding regions all get
cut out, and all the coding regions come together. When this happens, the
concatenation of all the coding regions gets converted to a protein according
to the genetic code above. Figure 1.2.2 below depicts this process.

It goes without saying that the total length of all the coding regions put
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Figure 1.7 Coding by Genes for Proteins

together is an exact multiple of three (so that there is an integer num-
ber of codons). Moreover, the last codon is one of the three stop codons
TAG, TGA, TAA, while the first codon is one of the start codonsATG,GTG.
However, as mentioned above, a start codon can also occur as an intermediate
codon. Finally, it has been observed that about 10 to 15 places ‘upstream’
from the start codon, the tetramer4 TATA must occur. This tetramer is
called the TATA-box. Taking all of these features into account, a stretch of
DNA that possesses the following features is a possible gene, and is referred
to as an ORF (Open Reading Frame):

1. The sequence begins with a start codon ATG or GTG.

2. There is a TATA-box 10 to 15 positions upstream of the sequence.

3. The sequence ends with one of the three stop codons TAA, TAG, TGA.

4. The total length of the sequence is ‘reasonable,’ not less than 300
nucleotides, and not more than 6,000 nucleotides.

The last convention merely indicates that the shortest known protein is
57 amino acids long, corresponding to 161 nucleotides, while the longest
known proteins contain about 3,500 amino acids, corresponding to 10,500
nucleotides.

In the case of eukaryotes (higher organisms) an additional complication
arises: A gene need not consist of one continuous stretch of DNA; instead,
in general it can consist of several ‘exons’ interspersed by ‘introns.’ When
a gene produces the corresponding protein, first the introns get ‘cut out’

4A tetramer is a quadruplet of nucleotides. Other commonly used expressions such as
trimer, hexamer, etc. are self-explanatory.
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and all the exons come together. Then the concatenation of the exons gets
converted into a sequence of amino acids via the genetic code discussed
earlier. The boundary between an exon and intron is called a ‘donor site’
and is the dimer AG, while the boundary between and intron and an exon
is called an ‘acceptor site’ and consists of the dimer GT . Of course, the
main difficulty is that while every donor site is the dimer AG, the converse
is not at all true: Just because we see the dimer AG at some point in the
genome, we cannot automatically conclude that it is a donor site. In fact it
is fairly easy to see that only a very small fraction of the occurences of AG
correspond to donor sites. Similar remarks apply to acceptor sites. Together
the donor sites and acceptor sites are referred to as ‘splice sites.’ In general,
introns tend to be considerably longer than exons. In eukaryotes, the genes
are separated by intergenic regions, the so-called ‘junk DNA.’ Thus, in order
to determine where a gene begins and ends, we need first to weed out the
intergenic regions, and then, within each gene, weed out the introns, leaving
only the exons.

It is easy to see from the above that determining the ORF’s from the
genome is completely straight-forward. However, the difficulty is that not all
ORF’s are genes. (If they were, life would be very simple indeed.) Thus one
of the fundamental challenges in genomics is to determine which ORF’s are
actually genes. One can think of ORFs as a ‘candidate genes’, or ‘putative
genes’ as some persons prefer to call them.

There are two distinct kinds of algorithms used in the literature to solve
the gene-finding problem. These can be described as ab initio methods and
‘bootstrapping’ methods.5 In ab initio methods, one begins with the ‘raw’
genome and does not assume anything at all about which sections of the
genome actually correspond to genes. In prokaryotes, algorithms such as
the various versions of GLIMMER [96, 30, 97] begin with the assumption
that all ORFs that are longer than 500 base pairs are genes. In reality, the
vast majority (more than 80%) of ORFs are not genes; and yet algorithms
based on this assumption seem to work remarkably well. Moreover, such an
assumption allows one to analyze a given genome without any prior knowl-
edge, which is the meaning of the expression ab initio. In bootstrapping
algorithms, one needs at least a few ORFs that are ‘known’ to be genes.
By ‘known’ genes, we mean either that the ORF has been experimentally
verified to be a gene, or else that the ORF sequence is sufficiently close to
an experimentally verified gene in some other organism, that we can be very
confident that the ORF really is a gene without bothering with experimental
verification of this particular ORF. In either case, this kind of ‘known’ gene
is commonly referred to as an ‘annotated’ gene in the literature. When there
are a few ‘known’ (or annotated) genes, these are used as the starting point
to analyze other ORFs and to make predictions as to whether those ORFs
are genes or not. If the algorithm predicts some ORFs (whose status is pre-
viously unknown) to be genes, then the experimenters would go to work to

5This terminology is my own and is not at all standard.
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validate these predictions. If the predictions are accurate and the predicted
gene is indeed a gene, then the predicted (and now validated) gene is added
to the database of annotated genes. If the prediction is not borne out by
experiment, presumably the originators of the prediction algorithm would
introspect on how to improve the accuracy of their algorithms.

For this purpose, two distinct kinds of algorithms are used, namely: (i)
deterministic methods based on sequence alignment, and (ii) stochastic al-
gorithms based on statistical analysis.6 In ‘deterministic’ algorithms, the
premise is that an ORF is actually a gene provided it is sufficiently similar
at a symbol for symbol level with a known gene. For example, it can be
reasonably assumed that the gene that regulates the supply of insulin in
humans is similar at a symbol for symbol level with the gene of the same
function in mice. Thus, if one predicts that an ORF is actually a gene based
on symbol for symbol matching, then one would also have a pretty good idea
of the function of the gene, which is very useful to have. In contrast, in the
case of stochastic algorithms, the premise is that different genes within the
same organism (or the same family of organisms) will have roughly similar
statistical properties, even if they don’t match at a symbol for symbol level.

To illustrate the difference between deterministic and stochastic algo-
rithms, let us consider the following hypothetical problem. Suppose one
is given two different sequences of heads (H) and tails (T) and is asked
whether the same coin could have produced both sequences. Clearly, even
if both sequences were produced by the same coin, it is extremely unlikely
that heads and tails will appear in exactly the same sequence. Thus a de-
terministic algorithm based on aligning the two sequences would not yield
good results. On the other hand, if we compute the fraction of heads (or
tails) in the two sequences, and the fractions are quite close, then we can
state with some confidence that the same coin produced the two sequences.

One of the most popular amongst deterministic algorithms is ‘optimal
gapped alignment,’ which is discussed in Section 9.1. As it turns out, this
algorithm is impractical when one wishes simultaneously to align a very large
number of sequences. To address this difficulty, a statistical (as opposed to
stochastic) algorithm known as BLAST has been developed. This algorithm
is discussed in detail in Chapter 9; however it must be mentioned that only
the original version of BLAST is discussed in this chapter, and not its sub-
sequent variants. BLAST theory is based on estimating the probability (or
likelihood) of rare events; this kind of problem is known as ‘tail probability
estimation.’ BLAST theory uses something called ‘the method of types,’
which is an essential tool in so-called large deviation theory. Large devia-
tion theory gives us very precise formulas for the ‘rate’ at which empirically
estimated quantities (such as frequencies of occurence of various events) con-
verge to their true values. Large deviation theory is discussed in Chapter 8.
Stochastic algorithms for various problems in computational biology are of-
ten based on interpreting a sequence of symbols (for example nucleotides or

6Here too the terminology is my own and not standard.



text September 25, 2011

INTRODUCTION TO COMPUTATIONAL BIOLOGY 15

amino acids) as the realization of a stochastic process. While it is possible to
construct quite complex models for these stochastic processes, Markov mod-
els and hidden Markov models are very popular in biology. Such models are
introduced in Chapters 5 through 8, while stochastic algorithms for various
problems in gene finding and protein classification are discussed in Chapter
9.

1.2.3 Proteins and the Protein Classification Problem

Proteins are at the next level of complexity after genes. As stated above,
the central dogma of biology describes how genes get converted into pro-
teins. The original and rather simplistic recipe of ‘one gene, one protein,
one function’ has long since been revised in favor of far more subtle models.
For instance, it is now known that the same gene can, in different kinds of
cells, code for different protein. These subtleties of biochemistry are beyond
the scope of this book. For present purposes, we will stick with the simple
model whereby the relevant parts of a gene come together during translation,
codons get converted into amino acids as per the genetic code, and the re-
sulting sequence of amino acids forms the protein. Thus, once we know that
a particular stretch of DNA represents a gene, and we know the functional
parts of the gene (coding regions and/or exons), we can unambiguously de-
termine the sequence of amino acids produced by that gene.

The sequence of amino acids is known as the ‘primary structure’ of a
protein. It is the lowest level description of a protein, just as the genome is
the lowest level description of the DNA of an organism. As befits a ‘low level’
description, knowing the primary structure of a protein does not get us very
far in terms of knowing how a protein ‘works.’ In order to understand how
a protein performs its assigned function, it is highly desirable to know how
the protein ‘folds,’ that is, the three-dimensional structure of the protein,
which is known as the tertiary structure of the protein, and also its so-
called ‘active sites’. The tertiary structure of a protein corresponds to the
3-D conformation that minimizes the potential energy of the conformation.
While this simple-sounding statement is consistent with the laws of physics,
in reality the potential energy function of a protein is a highly complex
function of its conformation. The ‘conformation’ itself consists of 2(n − 1)
angles where n is the number of amino acids, representing the two degrees of
freedom at each joint between two amino acid molecules. Each amino acid
molecule can be thought as being essentially ‘rigid’; however, the orientation
at each joint represents two degrees of freedom. The potential energy term
must also include the interaction of each amino acid with the surrounding
medium, usually water.

Figure 1.2.3 below shows the tertiary structure of a few molecules. A
somewhat simplified description of the tertiary structure is called the ‘sec-
ondary structure,’ and consists of just three elements: α-helices, β-sheets,
and strands. The same figure also shows the secondary structures corre-
sponding to each tertiary structure.
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Figure 1.8 Secondary and Tertiary Structures of Various Proteins

Finally, when two or more proteins bond, the result is a molecule that
is still more complex. The 3-D structure of the protein-protein complex
is referred to as the quaternary structure. Figure 1.2.3 below shows the
quaternary structure of hemoglobin, one of the molecules that is vital to life.
It is a combination of four different proteins.

If a protein can be crystallized, then its tertiary structure can be deter-
mined on the basis of experimental methods such as NMR or x-ray diffrac-
tion. However, many proteins of interest cannot be crystallized. In such a
case one is forced to resort to other methods to ‘predict’ the 3-D structure
of the protein. Even if a protein can be crystallized, the procedure for deter-
mining the structure is both time-consuming and expensive. Thus there is a
definite need for computational methods for predicting the tertiary structure
of a protein.

As mentioned earlier, in principle it is possible to determine the structure
of a protein by minimizing its potential energy. In practice however, the min-
imization problem is intractable for all but extremely short proteins. This
has led to a number of methods for predicting protein structure, which are
discussed at length in [12]. These methods include some ab initio methods,
as well as methods based on neural networks. Amongst the most popular
are ‘homology-based’ methods, whereby several proteins whose structures
are known are grouped into a small number of families, typically three or
four families. Then the protein of interest is ‘classified’ as being most similar
to one of the protein families. If the similarity is sufficiently high, then one
makes a guess that the 3-D structure of the new protein is similar to those of
the ‘known’ proteins. This approach has the advantage (from the standpoint
of the present book) of being based on hidden Markov models.
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Figure 1.9 Quaternary Structure of the Hemoglobin Molecule
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Chapter Two

Introduction to Probability and Random Variables

2.1 INTRODUCTION TO RANDOM VARIABLES

2.1.1 Motivation

Probability theory is an attempt to formalize the notion of uncertainty in the
outcome of an experiment. For instance, suppose an urn contains four balls,
colored red, blue, white and green respectively. Suppose we dip our hand in
the urn and pull out one of the balls ‘at random.’ What is the likelihood that
the ball we pull out will be red? What is the likelihood that we have to draw
a ball at least ten times (replacing the drawn ball each time and shaking the
urn thoroughly) before we draw a red ball for the first time? Probability
theory provides a mathematical abstraction and a framework where we can
address such issues.

When there are only finitely many possible outcomes, probability theory
becomes relatively simple. For instance, in the above example, when we
draw a ball there are only four possible outcomes, namely: {R,B,W,G}
with the obvious notation. If we draw two balls, after replacing the first ball
drawn, then there 42 = 16 possible outcomes, represented as {RR, . . . , GG}.
In such situations, one can get by with simple ‘counting’ arguments. The
counting approach can also be made to work when the set of possible out-
comes is countably infinite.1 However, in probability theory infinity is never
very far away, and counting arguments can lead to serious logical incon-
sistencies if applied to situations where the set of possible outcomes is un-
countably infinite. The great Russian mathematician A. N. Kolmogorov
invented axiomatic probability theory in the 1930’s precisely to address the
issues thrown up by having uncountably many possible outcomes. Subse-
quent development of probability theory has been based on this axiomatic
foundation.

Example 2.1 Let us return to the example above. Suppose that all the
four balls are identical in size and shape, and differ only in their color. Then
it is reasonable to suppose that drawing any one color is as likely, neither
more nor less, than any other color. This leads to the observation that the
likelihood of drawing a red ball (or any other ball) is 1/4 = 0.25.

Example 2.2 Now suppose that the four balls are all spherical, and that

1Recall that a set S is said to be countable if it can be place in one-to-one correspon-
dence with the set of natural numbers N = {1, 2, . . .}.
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their diameters are in the ratio 4 : 3 : 2 : 1 in the order red, blue, white
and green. We can suppose that the likelihood of our fingers touching and
drawing a particular ball is proportional to its surface area. In this case, it
follows that the likelihoods of drawing the four balls are in the proportion
42 : 32 : 22 : 12 or 16 : 9 : 4 : 1 in the order red, blue, white and green. This
leads to the conclusion that

P (R) = 16/30, P (B) = 9/30, P (W ) = 4/30, P (G) = 1/30.

Example 2.3 There can be instances where such analytical reasoning can
fail. Suppose the red ball is coated with an adhesive resin that makes it more
likely to stick to our fingers when we touch it. The complicated interaction
between the surface adhesion of our fingers and the surface of the ball may
be too difficult to analyze, so we have no recourse other than to draw balls
repeatedly and see how many times the red ball comes out. Suppose we
make 1,000 draws, and the outcomes are: 451 red, 187 blue, 174 white and
188 green. Then we can write

P̂ (R) = 0.451, P̂ (B) = 0.187, P̂ (W ) = 0.174, P̂ (G) = 0.188.

The symbol P̂ is used instead of P to highlight the fact that these are
simply observed frequencies, and not the true but unknown probabilities. It
is tempting to treat the observed frequencies as true probabilities, but that
would not be correct. The reason is that if the experiment is repeated, the
outcomes may be quite different. The reader can convince himself/herself
of the difference between frequencies and probabilities by tossing a coin ten
times, and another ten times. It is extremely unlikely that the same set of
results will turn up both times. One of the major questions addressed in
this book is: Just how close are the observed frequencies to the true but
unknown probabilities, and just how quickly do these observed frequencies
converge to their true values (namely, the true probabilities)? Such questions
are addressed in Chapter 6.

2.1.2 Definition of a Random Variable and Probability

Suppose we wish to study the behaviour of a ‘random’ variable X that can
assume one of only a finite set of values belonging to a set A = {a1, . . . , an}.
The set A of possible values is often referred to as the ‘alphabet’ of the
random variable. For example, in the ball-drawing experiment discussed in
the preceding subsection, X can be thought of as the color of the ball drawn,
and assumes values in the set {R,B,W,G}. This example, incidentally,
serves to highlight the fact that the set of outcomes can consist of abstract
symbols, and need not consist of numbers. This usage, adopted in this book,
is at variance from the usual convention in mathematics texts, where it is
assumed that A is a subset of the real numbers R. However, since biological
applications are a prime motivator for this book, it makes no sense to restrict
A in this way. In genomics, for example, A consists of the four symbol set
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of nucleic acids, or nucleotides, usually denoted by {A,C,G, T}. Moreover,
by allowing A to consist of arbitrary symbols, we also allow explicitly the
possibility that there is no natural ordering of these symbols. For instance,
in this book the nucleotides are written in the order A,C,G, T purely to
follow the English alphabetical ordering. But there is no consensus on the
ordering in biology texts. Thus any method of analysis that is developed
here must be permutation independent. In other words, if we choose to order
the symbols in the set A in some other fashion, the methods of analysis must
give the same answers as before.

Now we give a general definition of the notion of probability, and introduce
the notation that is used throughout the book.

Definition 2.1 Given an integer n, the n-dimensional simplex Sn is de-
fined as

Sn = {x ∈ Rn : xi ≥ 0 ∀i,
n∑
i=1

xi = 1}. (2.1)

Thus Sn consists of all nonnegative vectors whose components add up to
one.

Definition 2.2 Suppose A = {a1, . . . , an} is a finite set. Then a proba-
bility distribution on the set A is any vector µ ∈ Sn.

The interpretation of a probability distribution µ on the set A is that we
say

Pr{X = ai} = µi

to be read as ‘the probability that the random variable X equals xi is µi.’
Thus, if A = {R,B,W,G} and µ = [0.25 0.25 0.25 0.25], then all the
four outcomes of drawing the various colored balls are equally likely. This
is the case in Example 2.1. If the situation is as in Example 2.2, where the
balls have different diameters in the proportion 4 : 3 : 2 : 1, the probability
distribution is

µ = [16/30 9/30 4/30 1/30].

If we now choose to reorder the elements of the set A in the form {R,W,G,B},
then the probability distribution gets reordered correspondingly, as

µ = [16/30 4/30 1/30 9/30].

Thus, when we speak of the probability distribution µ on the set A, we need
to specify the ordering of the elements of the set.

The way we have defined it above, a probability distribution associates a
weight with each element of the set A of possible outcomes. Thus µ can be
thought of as a map from A into the interval [0, 1]. This notion of a weight
of individual elements can be readily extended to define the weight of each



text September 25, 2011

22 CHAPTER 2

subset of A. This is called the probability measure Pµ associated with the
distribution µ. Suppose A ⊆ A. Then we define

Pµ(A) := Pr{X ∈ A} =

n∑
i=1

µiIA(xi), (2.2)

where IA(·) is the so-called indicator function of the set A, defined by

IA(x) =

{
1 if x ∈ A,
0 if x 6∈ A. (2.3)

So (2.2) states that the probability measure of the set A, denoted by
Pµ(A), is the sum of the probability weights of the individual elements of
the set A. Thus, whereas µ maps the set A into [0, 1], the corresponding
probability measure Pµ maps the ‘power set’ 2A (that is, the collection of all
subsets of A) into the interval [0, 1].

In this text, we need to deal with three kinds of objects:

• A probability distribution µ on a finite set A.

• A random variable X assuming values in A, with the probability dis-
tribution µ.

• A probability measure Pµ on the power set 2A, associated with the
probability disbribution µ.

We will use whichever interpretation is most convenient and natural in the
given context. As for notation, throughout the text, bold face greek letters
such as µ denote probability distributions. The probability measure cor-
responding to µ is denoted by Pµ. Strictly speaking, we should write Pµ,
but for reasons of aesthetics and appearence we prefer to use Pµ. Similar
notation applies to all other bold face greek letters.

From (2.2), it follows readily that the empty set ∅ has probability measure
zero, while the complete set A has probability measure one. This is true
irrespective of what the underlying probability distribution µ is. Moreover,
the following additional observations are easy consequences of (2.2):

Theorem 2.3 Suppose A is a finite set and µ is a probability distribution
on A, and let Pµ denote the corresponding probability measure. Then

1. 0 ≤ Pµ(A) ≤ 1 ∀A ⊆ A.

2. If A,B are disjoint subsets of A, then

Pµ (A ∪B) = Pµ(A) + Pµ(B). (2.4)

In the next paragraph we give a brief glimpse of axiomatic probability
theory in a general setting, where the set A of possible outcomes is not
necessarily finite. This paragraph is not needed to understand the remainder
of the book, and therefore the reader can skip it with no after-effects. In
axiomatic probability theory, one actually begins with generalizations of the
two properties above. One starts with a collection of subsets S of A that
has three properties:
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1. Both the empty set ∅ and A itself belong to S.

2. If A belongs to S, so does its complement Ac.

3. If {A1, A2, . . .} is a countable collection of sets belonging to S, then
their union B := ∪∞i=1Ai also belongs to S.

Then the probability measure P is defined to be a function that assigns a
number P (A) ∈ [0, 1] to each set A belonging to S such that two properties
hold. First, P (∅) = 0 and P (A) = 1. Second, if {A1, A2, . . .} is a countable
collection of pairwise disjoint sets belonging to S, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

In the case where the set A is finite, we can as well take S to be the collection
of all subsets of A. If A is finite, and if {A1, A2, . . .} is a countable collection
of pairwise disjoint sets, then the only possibility is that all but finitely many
sets are empty. So Property 3 above can be simplified to:

P (A ∪B) = P (A) + P (B) if A ∩B = ∅,

which is precisely Property 2 from Theorem 2.3. In this case, assigning a
probability measure to each subset of A while satisfying the above restriction
is the same as assigning a nonnegative weight to each element of A while
ensuring that the weights add up to one. If A is infinite but countable, we
can still use the same approach. That is, we can assign nonnegative weights
to each element of A, such that the weights add up to one, we can take S to
consist of all subsets of A, and for every subset A of A, we can define P (A) by
(2.2). This is why most ‘elementary’ books on Markov chains, for example,
assume that the underlying set A is either finite or countably infinite. But
if A is an uncountable infinite set (such as the real numbers, for example),
this approach based on assigning weights does not work.

At this point the reader can well ask: But what does it all mean? As with
much of mathematics, probability theory exists at many distinct levels. It
can be viewed as an exercise in pure reasoning, an intellectual pastime, a
challenge to one’s wits. While that may satisfy some persons, the theory
would have very little by way of application to ‘real’ situations unless the
notion of probability is given a little more concrete interpretation. So we
can think of the probability distribution µ as arising in one of two ways.
First, the distribution can be postulated, as in the previous subsection. Thus
if we are drawing from an urn containing four balls that are identical in
all respects save their color, it makes sense to postulate that each of the
four outcomes is equally likely. Similarly, if the balls are identical except
for their diameter, and if we believe that the likelihood of drawing a ball
is proportional to the surface area, then once again we can postulate that
the four components of µ are in proportion to the areas (or equivalently,
to the diameter squared) of the four balls. Then the requirement that the
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components of µ must add up to one gives the normalizing constant. Sec-
ond, the distribution can be estimated, as with the adhesive-coated balls in
Example 2.3. Thus we can declare that there is a true but unknown prob-
ability vector µ, and that our estimate of it, based on 1,000 draws of balls,
is µ̂ = [0.451 0.187 0.174 0.188]. Then we can try to develop theories that
allow us to say how close µ̂ is to µ, and with what confidence we can make
this statement. The reader is referred to Chapter 6 for a discussion of such
topics.

2.1.3 Function of a Random Variable, Expected Value

Suppose X is a random variable assuming values in a finite set A = {a1, . . . , an},
with the probability measure Pµ and the probability distribution µ. Sup-
pose f is a function mapping the set A into another set B. Since A is finite,
it is clear that the set {f(a1), . . . , f(an)} is finite. So there is no loss of
generality in assuming that the set B (the range of the function f) is also
a finite set. Moreover, it is not assumed that the values f(a1), . . . , f(an)
are distinct. Thus the image of the set A under the function f can have
fewer than n elements. Now f(X ) is itself a random variable. Moreover,
the distribution of f(X ) can be computed readily from the distribution of
X . Suppose µ ∈ Sn is the distribution of X . Thus µi = Pr{X = xi}. To
compute the distribution of f(X ), we need to address the possibility that
f(a1), . . . , f(an) may not be distinct elements. Let B = {b1, . . . , bm} denote
the set of all possible outcomes of f(X ), and note that m ≤ n. Then

Pr{f(X ) = bj} =
∑

ai∈f−1(bj)

µi.

In other words, the probability that f(X ) = bj is the sum of the probabilities
of all the preimages of bj under the function f .

Example 2.4 Let the set R equal {A,C,G,U}, the set of RNA nu-
cleotides. While chemically DNA and RNA are quite different, as explained
in Chapter 1, during the transcription phase of DNA reproduction, Thymine
(T ) gets replaced by Uracil (U). Now let the set A equal R3, the set of all
triplets over the alphabet {A,C,G,U}. As discussed in Chapter 1, each
triplet is called a ‘codon.’ Clearly X contains 43 = 64 elements. Now the
64 codons get mapped into the 20 amino acids and the STOP symbol, as
shown in Table 1.1. So we can define the function f : R3 → B, where B is
a set of cardinality 21 containing the symbols for the 20 amino acids and
the STOP symbol. From Table 1.1 it is clear that the size of the preimages
f−1(b) varies quite considerably for each of the 21 elements of B, ranging
from 6 down to 1. Thus, if we know the frequency of distribution of codons
in a particular stretch of genome (a frequency distribution on X), we can
convert this into a corresponding frequency distribution of amino acids and
stop codons.

Example 2.5 Suppose that in Example 2.1, we receive a payoff of $2 if
we draw a green ball, we pay a penalty of $1 if we draw a red ball, and we
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neither pay a penalty nor receive a payment if we draw a white ball or a
blue ball. In this case f(R) = −1, f(G) = 2, and f(W ) = f(B) = 0.

Definition 2.4 Suppose X is a real-valued random variable assuming val-
ues A = {a1, . . . , an}, with the probability distribution µ, and associated
probability measure Pµ. Then the expected value of X is defined as

E[X ] :=

n∑
i=1

aiµi. (2.5)

It is important to note that, while the notion of probability can be defined
for any random variable (for example, the set of nucleotides or the set of
amino acids), the notion of an expected value can be defined only for real-
valued random variables.

Suppose now that X is a random variable assuming values in some finite
set A (not necessarily a subset of R), and f is a function mapping the set
A into the real numbers R. Thus to each element ai ∈ A, the function f
assigns a real number f(ai). Let µ denote the distribution of X and let Pµ
denote the associated probability measure.

Definition 2.5 The expected value of the function f is denoted by E[f, Pµ]
and is defined by

E[f, Pµ] :=

n∑
i=1

f(ai)µi =

n∑
i=1

f(ai) Pr{X = ai}. (2.6)

It is left to the reader to verify that the above equation is the same as the
expected value of the random variable f(X ). The point to note is that the
formula (2.6) is valid even if the real numbers f(a1), . . . , f(an) are not all
distinct.

There is a small bit of pedantry that needs an explanation. Note that we
write E[X ] for the expected value of a random variable, without explicitly
displaying the underlying probability measure Pµ. The reasoning is that
if X ,Y both assume values in the same set A but have different different
probability distributions, then they are in reality distinct random variables.
On the other hand, in the above definition, f is a fixed function from A
into B. So if X ,Y are distinct random variables assuming values in A, then
in principle the expected values of f(X ), f(Y) could be different. So we
write E[f, Pµ]; we could also write E[f(X )] in which case the measure Pµ is
implicit through X .

Observe that the expected value is linear in the function f . Thus, if f, g
are two functions of a random variable X with probability measure Pµ and
the probability distribution µ, and α, β are two real numbers, then

E[αf + βg, Pµ] = αE[f, Pµ] + βE[g, Pµ].

Suppose X is a real-valued random variable assuming values in A =
{a1, . . . , an}, with probability measure Pµ and the probability distribution
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µ. Then the quantity defined earlier as the expected value of X , namely

E[X ] =

n∑
i=1

aiµi,

is also called the mean value or just simply the mean of X . The quantity
E[(X − E(X , Pµ))2, Pµ] is called the variance of X . The square root of
the variance is called the standard deviation of X . In many books, the
symbols µ(X ), σ(X ) are commonly used to denote the mean and standard
deviation respectively. However we do not use that notation.

Note that we can also define the variance of X as E[X 2, Pµ] − (E[X ])2.
This is because, by the linearity of the expected value operation, we have

E[(X − E(X ))2, Pµ] =E[X 2, Pµ]− 2(E[X ])2 + (E[X ])2

=E[X 2, Pµ]− (E[X ])2. (2.7)

The above argument also shows that, for every random variable X , we have

E[X 2, Pµ] ≥ (E[X ])2.

This is a special case of a very general result known as Schwarz’ inequality.

2.1.4 Total Variation Distance Between Two Probability Measures

Suppose A = {a1, . . . , an} is a finite set, and µ,ν are two probability dis-
tributions on X. Let Pµ, Pν denote the corresponding probability measures.
In this section, we show how to quantify the ‘difference’ between the two
measures.

Definition 2.6 Let Pµ, Pν be two probability measures on a finite set A =
{a1, . . . , an}, corresponding to the distributions µ,ν respectively. Then the
total variation distance between Pµ and Pν (or between µ and ν), denoted
by ρ(Pµ, Pν) (or ρ(µ,ν)), is defined as

ρ(Pµ, Pν), ρ(µ,ν) := max
A⊆A
|Pµ(A)− Pν(A)|. (2.8)

Now it is shown that ρ(·, ·) is indeed a proper metric or ‘distance’ on Sn,
which can be identified with the set of all probability distributions on the
set A of cardinality n.

Lemma 2.7 The function ρ(·, ·) defined in (2.8) satisfies the following prop-
erties:

1. ρ(Pµ, Pν) ≥ 0 for all µ,ν ∈ Sn.

2. ρ(Pµ, Pν) = 0 if and only if µ = ν.

3. ρ(Pµ, Pν) = ρ(Pν , Pµ) for all µ,ν ∈ Sn.

4. The so-called ‘triangle inequality’ is satisfied, namely:

ρ(Pµ, Pν) ≤ ρ(Pµ, Pφ) + ρ(Pφ, Pν) ∀µ,ν,φ ∈ Sn. (2.9)
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Proof. Property No. 1 is obvious. To prove Property No. 2, note that
ρ(Pµ, Pν) = 0 if µ = ν. Thus the key observation is the converse, or equiva-
lently, ρ(Pµ, Pν) > 0 if µ 6= ν. Note that if µ 6= ν, then µi 6= νi for at least
one index i (actually for at least two indices). Let A = {i}, where i is an
index such that µi 6= νi. Then

Pµ(A) = µi 6= νi = Pν(A).

Hence ρ(Pµ, Pν) > 0. Property No. 3 is again obvious. Finally, Property
No. 4 follows from the triangle inequality for real numbers, namely:

|x− y| ≤ |x− z|+ |z − y|, ∀x, y, z ∈ R.

Now suppose A ⊆ A is arbitrary. Then the triangle inequality for real
numbers implies that

|Pµ(A)− Pν(A)| ≤ |Pµ(A)− Pφ(A)|+ |Pφ(A)− Pν(A)|, ∀A ⊆ A.

Taking the maximum over all A ⊆ A proves Property No. 4. 2

As defined in (2.8), ρ(Pµ, Pν) is the maximum difference between Pµ(A)
and Pν(A) as A varies over the 2n subsets of A. Clearly, (2.8) is an impracti-
cal formula for actually computing the number ρ(Pµ, Pν). The next theorem
gives a number of equivalent formulas for computing ρ(Pµ, Pν). Note that,
given a real number x ∈ R, the symbol x+ denotes the positive part of x,
that is, max{x, 0}. Similarly x− denotes min{x, 0}.

Theorem 2.8 Suppose A = {a1, . . . , an} is a finite set, and that Pµ, Pν
are two probability measures on A with associated distributions µ and ν
respectively. Then

ρ(Pµ, Pν) =

n∑
i=1

(µi − νi)+ (2.10)

=−
n∑
i=1

(µi − νi)− (2.11)

=
1

2

n∑
i=1

|µi − νi|. (2.12)

Proof. Define δi := µi−νi, for i = 1, . . . , n. Then, since µ,ν ∈ Sn, it follows
that

∑n
i=1 δi = 0. Moreover, for any set A ⊆ A, we have that

Pµ(A)− Pν(A) =
∑
ai∈A

δi =

n∑
i=1

IA(ai)δi,

where IA(·) is the indicator function of the set A. Now, let us look at the 2n

numbers P (A)−Q(A) generated by varying A over all subsets of A. (These
numbers may not all be distinct.) Let S ⊆ R denote the set of all these
numbers. The first point to note is that

Pµ(Ac)− Pν(Ac) = [1− Pµ(A)]− [1− Pν(A)] = −[Pµ(A)− Pν(A)].



text September 25, 2011

28 CHAPTER 2

Hence the set S is symmetric: If x ∈ S (corresponding to a set A), then
−x ∈ S (corresponding to the set Ac). Observe that ρ(Pµ, Pν) is the largest
value of |x| for all x ∈ S. However, because of the symmetry of the set S,
ρ(Pµ, Pν) also equals the largest value of x ∈ S, and also

ρ(Pµ, Pν) = −min{x ∈ S}.

So if we can find the largest or the smallest element in S, then we would
have found ρ(Pµ, Pν).

Next, let N+ ⊆ {1, . . . , n} denote the set of indices i for which δi ≥ 0, and
let N− denote the set of indices i for which δi < 0. Then

Pµ(A)− Pν(A) =
∑
i∈N+

IA(ai)δi +
∑
i∈N−

IA(ai)δi.

Now the first summation consists of only nonnegative numbers, while the sec-
ond summation consists only of nonpositive numbers. Therefore the largest
possible value of Pµ(A)− Pν(A) is∑

i∈N+

IA(ai)δi =

n∑
i=1

(δi)+,

and corresponds to the choice A = {ai : i ∈ N+}. By the discussion in the
preceding paragraph, it follows that

ρ(Pµ, Pν) =

n∑
i=1

(δi)+,

which is precisely (2.10). Similarly, the smallest value of Pµ(A)− Pν(A) is∑
i∈N−

IA(ai)δi =

n∑
i=1

(δi)−,

corresponding to the choice A = {ai : i ∈ N−}. Again from the discussion
in the previous paragraph, it follows that

ρ(Pµ, Pν) = −
n∑
i=1

(δi)−,

which is precisely (2.11). Finally, observe that

n∑
i=1

|δi| =
n∑
i=1

(δi)+ −
n∑
i=1

(δi)− = 2ρ(Pµ, Pν),

which establishes (2.12). 2

From the definition (2.8), it is immediate that ρ(Pµ, Pν) ∈ [0, 1]. This
is because both Pµ(A) and Pν(A) lie in the range [0, 1], and so Pµ(A) −
Pν(A) ∈ [−1, 1]. Now the proof of Theorem 2.8 shows that, for every pair
of probability measures Pµ and Pν , there actually exists a set A such that
Pµ(A) − Pν(A) = ρ(Pµ, Pν); one such choice is A = {ai : i ∈ N+}. Now, if



text September 25, 2011

INTRODUCTION TO PROBABILITY AND RANDOM VARIABLES 29

ρ(Pµ, Pν) actually equals one, this implies that Pµ(A) = 1 and Pν(A) = 0
(and also that Pµ(Ac) = 0 and Pν(Ac) = 1). In such a case the two measures
Pµ and Pν are said to be mutually singular, because their weights are
supported on disjoint sets: The weights µi are concentrated on the set A
whereas the weights νi are concentrated on the set Ac.

Lemma 2.9 Suppose A = {a1, . . . , an} is a finite set, and Pµ, Pν are two
probability measures on A. Suppose f : A→ [−1, 1]. Then

|E[f, Pµ]− E[f, Pν ]| ≤ 2ρ(Pµ, Pν). (2.13)

Proof. The proof follows by direct substitution. We have that

|E[f, Pµ]− E[f, Pν ]|=

∣∣∣∣∣
n∑
i=1

f(ai)(µi − νi)

∣∣∣∣∣
≤

n∑
i=1

|f(ai)| · |µi − νi|

≤
n∑
i=1

|µi − νi| since |f(ai)| ≤ 1

= 2ρ(Pµ, Pν).

2

Lemma 2.10 Suppose A = {a1, . . . , an} is a finite set, and Pµ, Pν are two
probability measures on A. Suppose f : A→ [0, 1]. Then

|E[f, Pµ]− E[f, Pν ]| ≤ ρ(Pµ, Pν). (2.14)

Proof. This lemma can be derived as a corollary of Lemma 2.9 by observing
that f(X ) − 0.5 assumes values in [−0.5, 0.5]; but we will give an alternate
proof. We have that

E[f, Pµ]− E[f, Pν ] =

n∑
i=1

f(ai)(µi − νi)

≤
n∑
i=1

f(ai) · (µi − νi)+ since 0 ≤ f(ai) ∀i

≤
n∑
i=1

(µi − νi)+ since f(ai) ≤ 1 ∀i

= ρ(Pµ, Pν).

By entirely analogous reasoning, it follows that

E[f, Pµ]− E[f, Pν ] ≥
n∑
i=1

(µi − νi)− = −ρ(Pµ, Pν).

The desired bound now follows by combining these two inequalities. 2
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Problem 2.1 Suppose X is a ‘binary’ random variable, assuming just two
real values, namely 0 and 1, with Pr{X = 1} = α ∈ (0, 1). We denote this
by X = B(1, α). Compute the mean and standard deviation of X .

Problem 2.2 Suppose an urn contains both white and black balls in the
proportion α to 1− α.2 Let X be the associated binary random variable as
defined in Problem 2.1 above. Now suppose we draw n balls from the urn,
one after the other, replacing the ball drawn after each trial. Let Yn denote
the number of white balls drawn after n trials. Then Yn is a ‘binomially
distributed’ random variable, whereby

Pr{Yn = i} =

(
n
i

)
αi(1− α)n−i,

where (
n
i

)
=

n!

i!(n− i)!
is called the combinatorial parameter. Yn is the number of different se-
quences of n draws containing precisely i white balls. We denote this by
Yn = B(n, α). Compute the mean and standard deviation of Yn.

In case α is an irrational number, the urn and balls interpretation is not
meaningful. Instead we should think in terms of generating n independent
outcomes X1, . . . ,Xn where each Xi is binary with Pr{Xi = 1} = α. Such
a sequence of random variables is known as a ‘Bernoulli process’ or a set of
‘Bernoulli trials’. If we equate an outcome of 1 with ‘success’ and 0 with
‘failure’, then Yn is the number of successes in n Bernoulli trials.

Problem 2.3 A counterpart of the binomial distribution is the hyperge-
ometric distribution. Suppose an urn contains N balls, out of which M are
white. Now suppose we draw n balls one after the other, but this time with-
out replacing the ball drawn. Let Z denote the resulting number of white
balls. Show that

Pr{Z = i} =

(
M
i

)(
N −M
n− i

)
(
N
n

) .

We denote this by Z = H(n, α.N) where α = M/N is the fraction of white
balls in the urn.

Problem 2.4 Suppose Z = H(n, α,N) have the hypergeometric distri-
bution. Show that, as N →∞, the hypergeometric distribution approaches
the binomial distribution. Can you explain why?

2This suggests that α is a rational number, but the problem makes sense even without
this assumption.
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Problem 2.5 Suppose µ = [0.4 0.6],ν = [0.6 0.4]. Compute the total
variation distance ρ(µ,ν).

Problem 2.6 Let n = 10, and let Y,Z be binomially distributed random
variables, with Yn = B(10, 0.6),Z = B(10, 0.4). Compute the total variation
distance between the probability distributions of Y and Z.

Problem 2.7 Given a finite set A, let F(A) denote all functions mapping
A into the interval [0, 1]. Suppose µ,ν are two probability distributions on
A. Show that

max
f∈F(A)

|E[f, Pµ]− E[f, Pν ]| = ρ(Pµ, Pν).

Problem 2.8 Prove the following generalization of Lemma 2.9: Suppose
f : A → [a, b] where a, b are real numbers, and that µ,ν are probability
distributions on A. Then

|E[f, Pµ]− E[f, Pν ]| ≤ (b− a)ρ(Pµ, Pν).

Is this the best possible bound?

2.2 MULTIPLE RANDOM VARIABLES

2.2.1 Joint and Marginal Distributions

Up to now we have discussed only one random variable. It is also possible
to have more than one random variable, each assuming values in its own set.
Suppose A = {a1, . . . , an} and B = {b1, . . . , bm} are finite sets. Then the
cartesian product A × B has cardinality nm and consists of all pairs of the
form (a, b). Thus

A× B = {(a, b) : a ∈ A, b ∈ B}.
Suppose φ ∈ Snm. We can think of φ as the probability distribution of some
random variable Z that assumes values in the set A×B. We could of course
think of Z as a random variable that can assume one of nm values. But the
fact that the range of values of Z is a cartesian product allows us to carry
out a refined analysis. Because of the product nature of the underlying set
A × B, we refer to Z as a joint random variable (X ,Y), where X is a
random variable assuming values in A and Y is a random variable assuming
values in B. The probability distribution φ on the set A × B is called the
joint distribution of the variables X and Y. Thus

Pr{Z = (ai, bj)} = Pr{X = ai&Y = bj} = φij , ∀ai ∈ X, bj ∈ Y.
So we can arrange the nm elements of φ in an array, as shown below. φ11 . . . φ1m

...
...

...
φn1 . . . φnm

 .
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Up to now we have gained nothing by arranging the nm values of the prob-
ability distribution in an array. But now can take the analysis to another
level.

Let us define the vectors φX and φY as follows.

(φX )i :=

m∑
j=1

φij , i = 1, . . . , n, (2.15)

(φY)j :=

n∑
i=1

φij , j = 1, . . . ,m. (2.16)

Then it follows that φX ∈ Sn and φY ∈ Sm. This is because φ is a probability
distribution and as a result we have

n∑
i=1

m∑
j=1

φij = 1 ⇒
n∑
i=1

 m∑
j=1

φij

 = 1 ⇒
n∑
i=1

(φX )i = 1.

Similarly

n∑
i=1

m∑
j=1

φij = 1 ⇒
m∑
j=1

(φY)j = 1.

So φX ∈ Sn and φY ∈ Sm. The distribution φX is called the marginal
distribution of the random variable X . Similarly φY is called the marginal
distribution of the random variable Y. Depending on the context, it may
be more natural to write φA in the place of φX and φB in the place of φy.
Mimicking earlier notation, we refer to the measure corresponding to the
distribution φ ∈ Snm as the joint measure Pφ of the joint random variable
(X ,Y). We refer to the measure corresponding to the distribution φX ∈ Sn
as the marginal measure of X (or the marginal measure on the set A),
and denote it by Pφ,X or Pφ,A. The symbols Pφ,Y and Pφ,B are defined
analogously.

Now we proceed to show that indeed it is the case that

Pr{X = ai} = (φX )i, ∀i = 1, . . . , n.

To see this, fix an index i and observe that the sets {(ai, b1)} through
{(ai, bm)} are all pairwise disjoint subsets of A × B. Moreover, it is clear
that

{(X ,Y) ∈ A× B : X = ai} =

m⋃
j=1

{(ai, bj)}.
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Hence from Property 2 of Theorem 2.3, we can conclude that

Pr{X = ai}= Pr{(X ,Y) ∈ A× B : X = ai}

=Pφ

 m⋃
j=1

{(ai, bj)}


=

m∑
j=1

Pφ{(ai, bj)}

=

m∑
j=1

φij = (φX )i.

By entirely analogous reasoning, it follows that

Pr{Y = bj} =

n∑
i=1

φij = (φY)j , ∀j = 1, . . . ,m.

2.2.2 Independence, Conditional Distributions

Up to now we have introduced the notion of a joint distribution of the two
random variables X and Y, as well as their individual distributions, which
can be obtained as the marginal distributions of the joint distribution. The
next notion is perhaps the fundamental notion of probability theory.

Definition 2.11 Suppose X ,Y are random variables assuming values in fi-
nite sets A and B respectively. Let Pφ denote their joint probability measure,
and let φ ∈ Snm denote their joint distribution. Then the two random vari-
ables are said to be independent under the measure Pφ (or the distribution
φ) if

φij = (φX )i · (φY)j , ∀i = 1, . . . , n, j = 1, . . . ,m. (2.17)

An equivalent way of stating (2.17) is:

Pr{X = ai&Y = bj} = Pr{X = ai} · Pr{Y = bj}, ∀ai ∈ A, bj ∈ B. (2.18)

The above definition can be made a little more intuitive by introducing the
notion of a ‘product’ distribution. Suppose µ ∈ Sn,ν ∈ Sm are distributions
on the sets A,B respectively. Then their product distribution µ × ν on
the set A× B is defined by

(µ× ν)ij = µi · νj , ∀i, j. (2.19)

With this definition, it follows that the two random variables X ,Y are inde-
pendent under the distribution φ if and only if φ = φX × φY .

In the sequel we will often have occasion to speak about ‘independent
and identically distributed’ random variables. This notion can be made to
fit into the above frame work by using product distributions where each of
the marginals is the same. Thus if µ ∈ Sn, then the product distribution
µ2 ∈ Sn2 is defined by

(µ2)ij = µi · µj , ∀i, j.
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The associated probability measure is often denoted by P 2
µ . Higher ‘powers’

of µ and Pµ are defined in an entirely analogous fashion.

Theorem 2.12 Suppose X ,Y are random variables assuming values in fi-
nite sets A and B respectively. Suppose φ ∈ Snm is their joint distribution,
that Pφ is their joint measure, and that X ,Y are independent under the mea-
sure Pφ. Suppose further that f : A→ R, g : B→ R are functions on A and
B respectively. Then

E[f(X )g(Y), Pφ] = E[f(X ), Pφ,X ] · E[g(Y), Pφ,Y ]. (2.20)

The point of the theorem is this: If f is a function of X alone and g is a
function of Y alone, then fg is a function of X and Y and the pair (X ,Y)
has the joint measure Pφ. In general, we cannot say anything about the
expected value of the function f(X )g(Y) under the measure Pφ. However,
if the two random variables are independent under the measure Pφ, then
the expected value factors neatly into the product of two different expected
values, namely the expected value of f under the marginal measure Pφ,X ,
and the expected value of g under the marginal measure Pφ,Y .

Proof. The proof is a ready consequence of (2.17). We have

E[f(X )g(Y), Pφ] =

n∑
i=1

m∑
j=1

f(ai)g(bj)φij

=

n∑
i=1

m∑
j=1

f(ai)g(bj)(φX )i(φY)j

=

[
n∑
i=1

f(ai)(φX )i

]
·

 m∑
j=1

g(bj)(φY)j


=E[f(X ), Pφ,X ] · E[g(Y), Pφ,Y ].

This is precisely the desired conclusion. 2

The above observation motivates the notion of the correlation coefficient
between two real-valued random variables.

Definition 2.13 Suppose X ,Y are real-valued random variables assuming
values in finite sets A,B ⊆ R respectively. Let φ denote their joint distribu-
tion, and φX ,φY the two marginal distributions. Let E[XY,φ], E[X ,φX ],
E[Y,φY ] denote expectations, and let σ(X ), σ(Y) denote the standard devia-
tions of X ,Y under their respective marginal distributions. Then the quantity

C(X ,Y) :=
E[XY,φ]− E[X ,φX ]E[Y,φY ]

σ(X )σ(Y)
(2.21)

is called the correlation coefficient between X and Y.

Note that some authors refer to C(X ,Y) as the ‘Pearson’ correlation co-
efficient after its inventor. It can be shown that the correlation coefficient
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C(X ,Y) always lies in the interval [−1, 1]. It is often said that X ,Y are
uncorrelated if C(X ,Y) = 0, positively correlated if C(X ,Y) > 0, and
negatively correlated if C(X ,Y) < 0. One of the advantages of the cor-
relation coefficient is that it is invariant under both scaling and centering.
In other words, if α, β, γ, δ are any real numbers, then

C(αX + β, γY + δ) = C(X ,Y). (2.22)

If two random variables are independent, then they are uncorrelated. How-
ever, the converse statement is most definitely not true; see Problem 2.11.

The next definition is almost as important as the notion of independence.

Definition 2.14 Suppose X ,Y are random variables assuming values in fi-
nite sets A and B respectively, and let φ ∈ Snm denote their joint distribu-
tion. The conditional probability of X given an observation Y = bj is
defined as

Pr{X = ai|Y = bj} :=
Pr{X = ai&Y = bj}

Pr{Y = bj}
=

φij∑n
i′=1 φi′j

. (2.23)

In case Pr{Y = bj} = 0, we define Pr{X = ai|Y = bj} = Pr{X = ai} =
(φX )i.

Let us use the notation φ{ai|bj} as a shorthand for Pr{X = ai|Y = bj}.
Then the vector

φ{X|Y=bj} := [φ{a1|bj} . . . φ{an|bj}] ∈ Sn. (2.24)

This is obvious from (2.23). So φ{X|Y=bj} is a probability distribution on
the set A; it is referred to as the conditional distribution of X , given that
Y = bj . The corresponding probability measure is denoted by Pφ,{X|Y=bj}
and is referred to as the conditional measure of X , given that Y = bj . We
also use the simplified notation φX|bj and Pφ,X|bj if the variable Y is clear
from the context.

Now we briefly introduce the notion of convex combinations of vectors;
we will discuss this idea in greater detail in Section 3.1. If x,y ∈ Rn are
n-dimensional vectors and λ ∈ [0, 1], then the vector λx + (1− λ)y is called
a convex combination of x and y. More generally, if x1, . . . ,xl ∈ Rn and
λ ∈ Sl, then the vector

∑l
i=1 λixi is called a convex combination of the

vectors x1 through xl. In the present context, it is easy to see that

(φX )i =

m∑
j=1

(φY)jφ{X|Y=bj}. (2.25)

Thus, the marginal distribution φX is a convex combination of the m condi-
tional distributions φ{X|Y=bj}, j = 1, . . . ,m. The proof of (2.25) is a straight-
forward consequence of the definitions and is left as an exercise.

Thus far we have introduced a lot of terminology and notation, so let
us recapitulate. Suppose X and Y are random variables, assuming values
in finite sets A = {a1, . . . , an} and B = {b1, . . . , bm} respectively. Then
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they have a joint probability measure Pφ, defined on the product set A× B.
Associated with Pφ is a marginal probability Pφ,X , which is a measure on A,
and a marginal probability Pφ,Y , which is a measure on B. Finally, for each
of the m possible values of Y, there is an associated conditional probability
Pφ,{X|Y=bj}, which is a measure on A. Similarly, for each of the n possible
values of X , there is an associated conditional probability Pφ,{Y|X=ai}, which
is a measure on B.

Example 2.6 Let us return to the problem studied earlier of an urn con-
taining four uniform balls with colors red, blue, green and yellow. Suppose
we draw two balls from the urn, one after the other, but without replacing
the first ball before drawing the second ball. Let X denote the color of the
first ball, and Y the color of the second ball. We can ask: What is the
probability of drawing a red ball the second time? The answer is somewhat
counter-intuitive because, as shown below, the answer is 0.25. We know
that, when we make the second draw, there are only three balls in the urn,
and which three colors they represent depends on X , the outcome of the
first draw. Nevertheless, the probability of drawing a red ball (or any other
colored ball) turns out to be 0.25, as is shown next.

Let us first compute the marginal or ‘unconditional’ distribution of X ,
the outcome of the first draw. Since the balls are assumed to be uniform
and there are four balls when we draw for the first time, we can define
A = {R,B,G, Y } and with this definition the distribution φX of X is given
by

φX = [0.25 0.25 0.25 0.25].

Now let us compute the conditional probability of Y given X . If X = R,
then at the second draw there are only B,G, Y in the urn. So we can say
that

φ{Y|X=R} = [0 1/3 1/3 1/3].

Similarly,

φ{Y|X=B} = [1/3 0 1/3 1/3],

φ{Y|X=G} = [1/3 1/3 0 1/3],

φ{Y|X=Y } = [1/3 1/3 1/3 0].

Therefore

Pr{Y = R}= Pr{Y = R|X = R} · Pr{X = R}+ · · ·
+ Pr{Y = R|X = Y } · Pr{X = Y },

and so on for the other three colors. Doing this routine calculation shows
that

φY = [0.25 0.25 0.25 0.25].

This somewhat counter-intuitive result can be explained as follows: When
we make the second draw to determine Y, there are indeed only three balls



text September 25, 2011

INTRODUCTION TO PROBABILITY AND RANDOM VARIABLES 37

in the urn. However, which three they are depends on X , the outcome of
the first draw. There are four possible sets of three colors, and each of them
is equally likely. Hence the probability of getting a red ball the first time
is exactly the same as the probability of getting a red ball the second time,
even though we are not replacing the first ball drawn.

Example 2.7 The purpose of this example is to show that it is necessary to
verify the condition (2.26) for every possible value bj . Suppose A = {a1, a2},
B = {b1, b2, b3}, and that the joint probability distribution is

[φij ] =

[
0.12 0.08 0.20
0.20 0.10 0.30

]
.

Then it follows from (2.15) and (2.16) that

φX = [0.4 0.6] and φY = [0.32 0.18 0.50].

It can be readily checked that the condition (2.26) holds when j = 3 but not
when j = 1 or j = 2. Hence the variables X and Y are not independent.

Lemma 2.15 Suppose X ,Y are random variables assuming values in finite
sets A and B respectively, and let φ ∈ Snm denote their joint distribution.
Then X and Y are independent if and only if

φ{X|Y=bj} = φX , ∀bj ∈ Y. (2.26)

There is an apparent asymmetry in the statement of Lemma 2.15. It
appears as though we should say ‘X is independent of Y if (2.26) holds’ as
opposed to ‘X and Y are independent if (2.26) holds.’ It is left as an exercise
to show that (2.26) is equivalent to the statement

φ{Y|X=ai} = φY , ∀ai ∈ X. (2.27)

Lemma 2.16 Suppose X ,Y are random variables assuming values in finite
sets A and B respectively, and let φ ∈ Snm denote their joint distribution.
Then X and Y are independent if and only if the matrix

Φ :=

 φ11 . . . φ1m

...
...

...
φn1 . . . φnm


has rank one.

The proof is easy and is left as an exercise.
In the preceding discussion, there is nothing special about having two

random variables – we can have any finite number of them. We can also
condition the probability distribution on multiple events, and the results are
consistent. To illustrate, suppose X ,Y,Z are random variables assuming
values the finite sets A = {a1, . . . , an}, B = {b1, . . . , bm}, C = {c1, . . . , cl}
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respectively. Let Pθ denote their joint probability measure and θ = [θijk] ∈
Snml their joint probability distribution. Then

Pr{X = ai|Y = bj&Z = ck} =
Pr{X = ai&Y = bj&Z = ck}

Pr{Y = bj&Z = ck}
. (2.28)

In the shorthand notation introduced earlier, this becomes

θ{ai|bj&ck} =

[
θijk∑n
i′=1 θi′jk

, i = 1, . . . , n

]
∈ Sn. (2.29)

When there are three random variables, the ‘law of iterated conditioning’
applies, namely:

θ{X|Y=bj&Z=bk} = θ{{X&Y|Z=ck}|Y=bj}. (2.30)

In other words, in order to compute the conditional distribution of X given
that Y = bj and Z = ck, we can think of two distinct approaches. First,
we can directly apply (2.28). Second, we can begin by computing the joint
conditional distribution of X&Y given that Z = ck, and then condition this
distribution of Y = bj . Both approaches give the same answer.

The proof of (2.30) is straightforward. To begin with, we have

θ{X&Y|Z=ck} =

[
θijk∑n

i′=1

∑m
j′=1 θi′j′k

, i = 1, . . . , n, j = 1, . . . ,m

]
∈ Snm.

(2.31)
To make this formula less messy, let us define

φk :=

n∑
i′=1

m∑
j′=1

θi′j′k.

Then

θ{X&Y|Z=ck} =

[
θijk
φk

, i = 1, . . . , n, j = 1, . . . ,m

]
.

If we now condition this joint distribution of X&Y on Y = bj , we get

θ{{X&Y|Z=ck}|Y=bj}=

[
θijk/φk∑n
i′=1 θi′jk/φk

, i = 1, . . . , n

]
=

[
θijk∑n
i′=1 θi′jk

, i = 1, . . . , n

]
,

which is the same as (2.29).
From Definition 2.11, the following observation follows readily.
The next notion introduced is conditional independence, which is very

important in the case of hidden Markov processes, which are a central theme
of this book.

Definition 2.17 Suppose X ,Y,Z are random variables assuming values in
finite sets A = {a1, . . . , am}, B = {b1, . . . , bm} and C = {c1, . . . , cl} respec-
tively. Then we say that X ,Y are conditionally independent given Z
if, for all ck ∈ C, bj ∈ B, ai ∈ A, we have

Pr{X = ai&Y = bj |Z = ck} = Pr{X = ai|Z = ck} · Pr{Y = bj |Z = ck}
(2.32)
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Example 2.8 Consider three random variables X ,Y,Z, each assuming
values in {0, 1}. Suppose the joint distribution of the three variables is given
by[

φ000 φ001

φ010 φ011

]
=

[
0.018 0.056
0.042 0.084

]
,

[
φ100 φ101

φ110 φ111

]
=

[
0.096 0.192
0.224 0.288

]
,

where φijk denotes Pr{X = i&Y = j&Z = k}. It is now shown that X
and Y are conditionally independent given Z. This is achieved by verifying
(2.32).

From the given data, we can compute the joint distributions of X&Z, and
of Y&Z. This gives

X&Z 0 1
0
1

[
φ000 + φ010 φ001 + φ011

φ100 + φ110 φ101 + φ111

]
=
X&Z 0 1

0
1

[
0.06 0.14
0.32 0.48

]
Hence

φ{X|Z=0} =
1

0.38

[
0.06
0.32

]
,φ{X|Z=1} =

1

0.62

[
0.14
0.48

]
.

An entirely similar computation yields that

Y&Z 0 1
0
1

[
φ000 + φ100 φ001 + φ101

φ010 + φ110 φ011 + φ111

]
=
Y&Z 0 1

0
1

[
0.114 0.248
0.266 0.372

]
Hence

φ{Y|Z=0} =
1

0.38
[0.114 0.266] = [0.3 0.7],

φ{Y|Z=1} =
1

0.62
[0.248 0.372] = [0.4 0.6].

Next, let us compute the joint distribution of X&Y conditioned on Z.
From either of the above computations, it is clear that the marginal distri-
bution of Z is given by

φZ = [0.38 0.62].

Therefore the joint distribution of X&Y conditioned on Z can be computed
using (2.31). This gives

X&Y|Z = 0 0 1
0
1

[
0.018/0.38 0.042/0.38
0.096/0.38 0.224/0.38

]
=

1

0.38

[
0.06
0.32

]
[0.3 0.7]

=φ{X|Z=0} × φ{Y|Z=0}.

Similarly,

X&Y|Z = 1 0 1
0
1

[
0.056/0.62 0.084/0.62
0.192/0.62 0.288/0.62

]
=

1

0.62

[
0.14
0.48

]
[0.4 0.6]

=φ{X|Z=1} × φ{Y|Z=1}.
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Hence X and Y are conditionally independent given Z.
Note that, if we are not ‘given Z,’ then X and Y are not independent.

From earlier discussion, it follows that the joint distribution of X and Y is
given by

Pr{X = ai&Y = bj} =

l∑
k=1

Pr{X = ai&Y = bj |Z = ck} · Pr{Z = ck}.

So if we were to write the joint distribution of X and Y in a matrix, then it
would be[

0.018 0.042
0.096 0.224

]
+

[
0.056 0.084
0.192 0.288

]
=

[
0.074 0.126
0.288 0.512

]
,

where the rows correspond to the values of Y and the columns correspond to
the values of X . Since this matrix does not have rank one, X and Y are not
independent. The point is that a convex combination of rank one matrices
need not be of rank one.

Once we have the notion of a conditional distribution, the notion of con-
ditional expected value is natural. Suppose X ,Y are random variables as-
suming values in A and B respectively, and suppose f : A → R is some
real-valued function. Let φ denote the joint distribution of X and Y. Then
the ‘unconditional’ expected value of f is denoted by E[f, Pφ,X ] or less cum-
bersomely by E[f,φX ], and is defined as

E[f,φX ] =

n∑
i=1

f(ai)(φX )i.

The ‘conditional’ expected value of f is denoted by E[f, Pφ,{X|Y=bj}] or less
cumbersomely by E[f,φ{X|Y=bj}], and is defined as

E[f,φ{X|Y=bj}] =

n∑
i=1

f(ai)φ{ai|bj}.

We conclude this subsection by introducing another notion called the con-
ditional expectation of a random variable. The dual usage of the adjective
‘conditional’ is a source of endless confusion to students. The conditional
expected value of a random variable (or a function of a random variable) is
a real number, whereas the conditional expectation of a random variable is
another random variable. Unfortunately, this dual usage is too firmly en-
trenched in the probability literature for the present author to deviate from
it.

Suppose X ,Y are random variables assuming values in finite sets A =
{a1, . . . , an}, B = {b1, . . . , bm} respectively. Let φ ∈ Snm denote their joint
distribution. Now suppose h : A × B → R is a function of both X and
Y. One can ask: What is the best approximation of h(X ,Y) in terms of a
function of X alone? In other words, we seek a function f : A → R such
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that f best approximates h. A natural error criterion is the ‘least-squares
error,’ namely:

J(f) = E[f − h, Pφ] =

n∑
i=1

m∑
j=1

(fi − hij)2φij ,

where we use the shorthand fi = f(ai), hij = h(ai, bj). The choice of f that
minimizes J is easy to compute. Note that

∂J

∂fi
= 2

m∑
j=1

(fi − hij)φij .

Hence the optimal choice of fi is obtained by setting this partial derivative
to zero, that is,

fi =

∑m
j=1 hijφij∑m
j=1 φij

=

∑m
j=1 hijφij

(φX )i
. (2.33)

Hence if we define a function f : A→ R by f(ai) = fi, then f(X ) is the best
approximation to h(X ,Y) that depends on X alone. We formalize this idea
through a definition.

Definition 2.18 Suppose X ,Y are random variables assuming values in fi-
nite sets A = {a1, . . . , an}, B = {b1, . . . , bm} respectively. Let φ ∈ Snm
denote their joint distribution. Suppose h : A × B → R. Then the condi-
tional expectation of h with respect to X is the function f : A → R
defined by (2.33), and is denoted by hA or hX .

In the above definition, if (φX )i = 0 for some index i, then the corre-
sponding value fi can be assigned arbitrarily. This is because, if (φX )i = 0
for some index i, then φij = 0 for all j. As a result, we can actually just drop
the corresponding element ai from the set A and carry on without affecting
anything.

Lemma 2.19 Suppose h : A × B → R+. Then hX : A → R+. Suppose h :
A× B→ [α, β] for some finite numbers α < β. Then Then hX : A→ [α, β].

Proof. The first part of the lemma says that if the original function h assumes
only nonnegative values, then so does its conditional expectation hX . This
fact is obvious from the definition (2.33). The second part follows readily
upon observing that if h : A × B → [α, β], then both h − α and β − h are
nonnegative-valued functions. 2

A very useful property of the conditional expectation is given next.

Theorem 2.20 Suppose h : A × B → R and that g : A → R. Let φ ∈ Snm
denote a probability distribution on A× B. Then

E[gh, Pφ] = E[ghX , Pφ,A]. (2.34)
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Proof. This follows from just writing out the expected value as a summation.
We have

E[gh, Pφ] =

n∑
i=1

m∑
j=1

gihijφij

=

n∑
i=1

gi

m∑
j=1

hijφij

=

n∑
i=1

gi(hA)i(φA)i

=E[ghX , Pφ,A].

This is the desired result. 2

2.2.3 Bayes’ Rule

The next result, known as Bayes’ rule, is widely used.

Lemma 2.21 Suppose X and Y are random variables assuming values in
finite sets A and B of cardinality n and m respectively. Then

Pr{X = ai|Y = bj} =
Pr{Y = bj |X = ai} · Pr{X = ai}

Pr{Y = bj}
. (2.35)

Proof. An equivalent way of writing (2.32) is:

Pr{X = ai|Y = bj} · Pr{Y = bj} = Pr{Y = bj |X = ai} · Pr{X = ai}.

But this statement is clearly true, since each side is equal to Pr{X = ai&Y =
bj}. 2

Example 2.9 A typical use of Bayes’ rule is when we try to invert the
hypothesis and conclusion, and assess the probability of the resulting state-
ment. To illustrate, suppose there is a diagnostic test for HIV, which is
accurate 98% of the time on HIV-positive patients and 99% accurate on
HIV-negative patients. In other words, the probability that the test is posi-
tive when the patient has HIV is 0.98, while the probability that the test is
negative when the patient does not have HIV is 0.99. We may therefore be
lulled into thinking that we have a very good test at hand. But the question
that really interests us is this: What is the probability that a patient who
tests positive actually has HIV?

Let us introduce two random variables: X for a patient’s actual condition,
and Y for the outcome of a test. Thus X assumes values in the set X =
{H,F}, where H denotes that the patient has HIV, while F denotes that the
patient is free from HIV. Similarly, Y assumes values in the set Y = {P,N},
where P denotes that the test is positive, while N denotes that the test is
negative. The data given thus far can be summarized as follows:

Pr{Y = P |X = H} = 0.98,Pr{Y = N |X = F} = 0.99. (2.36)
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But what we really want to know is the value of

Pr{X = H|Y = P},
that is, the probability that the patient really has HIV when the test is
positive.

To compute this quantity, suppose the fraction of the population that has
HIV is 1%. Thus the marginal probability distribution of X is

[Pr{X = H} Pr{X = F}] = [0.01 0.99].

With this information and (2.36), we can compute the joint distribution of
the variables X and Y. We get[

φX=H&Y=P φX=H&Y=N

φX=F&Y=P φX=F&Y=N

]
=

[
0.0098 0.0002
0.0099 0.9801

]
.

So by adding up the two columns, we get

[Pr{Y = P} Pr{Y = N}] = [0.0197 0.9803].

Hence, by Bayes’ rule, we can compute that

Pr{X = H|Y = P} =
0.0098

0.0197
≈ 0.5.

So actually the diagnostic is quite unreliable, because the likelihood of a pa-
tient who tests positive not having HIV is just about equal to the likelihood
of a patient tests positive actually having HIV.

This apparent paradox is easily explained: For the sake of simplicity,
assume that the test is equally accurate both with patients actually having
HIV and with patients not having HIV. Let β denote the inaccuracy of the
test. Thus

Pr{Y = P |X = H} = Pr{Y = N |X = F} = 1− β.
Let α denote the fraction of the population that actually has HIV. We can
carry through all of the above computations in symbolic form and obtain[

φX=H&Y=P φX=H&Y=N

φX=F&Y=P φX=F&Y=N

]
=

[
α(1− β) αβ
(1− α)β (1− α)(1− β)

]
.

So

Pr{X = H|Y = P} =
α(1− β)

α(1− β) + (1− α)β
.

If, as is reasonable, both α and β are small, we can approximate both 1−α
and 1− β by 1, which leads to

Pr{X = H|Y = P} ≈ α

α+ β
.

So, unless β � α, we get a test that is pretty useless. On the other hand, if
β � α, then Pr{X = H|Y = P} is very close to one and we have an excellent
diagnostic test. The point to note is that the error of the diagnostic test must
be small, not in comparison with 1, but with the likelihood of occurance of
the condition that we are trying to detect.
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2.2.4 MAP and Maximum Likelihood Estimates

In the previous subsections, we have discussed the issue of computing the
probability distribution of one random variable, given an observation of an-
other random variable. Now let us make the question a little more specific,
and ask: What is the most likely value of one random variable, given an
observation of another random variable. It is shown below that there are
two distinct ways of formalizing this notion, and each is reasonable in its
own way.

Definition 2.22 Suppose X and Y are random variables assuming values
in finite sets A = {a1, . . . , an} and B = {b1, . . . , bm} respectively. Let φ
denote their joint distribution. Then the maximum a posteriori (MAP)
estimate of X given an observation Y = bj is the ai∗ such that

φ{ai∗ |bj} = max
i
φ{ai|bj}. (2.37)

Thus the MAP estimate of X given an observation Y = bj is the most
likely value of X using the conditional distribution φ{X|Y=bj}. Since

φ{ai|bj} =
φij

(φY)j
,

and the denominator is independent of i, we can see that

i∗ = arg min
i
φij .

So computing the MAP estimate is very easy. Given an observation Y = bj ,
we simply scan down the j-th column of the joint distribution matrix, and
pick the row i where the element φij is the largest. (If there is a tie, we can
use any sensible tie-breaking rule.)

The next definition gives an alternate way of defining the ‘most likely’
value of X .

Definition 2.23 Suppose X and Y are random variables assuming values
in finite sets A = {a1, . . . , an} and Y = {b1, . . . , bm} respectively. Let φ
denote their joint distribution. Then the maximum likelihood estimate
(MLE) of X given an observation Y = bj is defined as the index i∗ such
that Pr{Y = bj |X = ai} is maximized when i = i∗.

Thus the MLE of X given the observation Y = bj is the choice of ai that
makes the observed value the most likely one.

The choice between MAP and MLE is essentially dictated by whether
we believe that X ‘causes’ Y, or vice versa. The joint distribution φ is
strictly neutral, and does not at all address the issue of what causes what.
If we believe that Y causes X , then we should believe that, following the
observation Y = bj , the probability distribution of X has shifted from the
marginal distribution φX to the conditional distribution φ{X|Y=bj}. Thus
MAP is the most logical way to estimate X . If on the other hand we believe
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that X causes Y, we should choose the MLE of X , because that estimate
makes the observation most likely.

Example 2.10 To show that MAP and MLE can lead to diametrically
opposite conclusions, consider the case where n = m = 2 and the joint
distribution of X ,Y is given by

φ =

[
0.1 0.2
0.4 0.3

]
,

where the rows correspond to the value of X and the columns to the values
of Y. Suppose we observe Y = b2. Then, by examining the second column
of φ, we see that the MAP estimate of X is a2, because φ22 > φ12. On the
other hand, to compute the MLE of X , we compute

φ{Y|X=x1} = [1/3 2/3], φ{Y|X=x2} = [4/7 3/7].

Thus b2 is the most likely value of Y if X = a1, so the MLE of X given the
observation Y = y2 is a1.

Problem 2.9 Prove (2.22).

Problem 2.10 Show that if X ,Y are independent real-valued random
variables, then their correlation coefficient is zero.

Problem 2.11 Suppose the joint distribution of two random variables X
and Y, each of them assuming one of the five values {1, 2, 3, 4, 5}, is as shown
in the table below.

Φ =


X \ Y 1 2 3 4 5

1 0.0800 0.0260 0.0280 0.0320 0.0340
2 0.0280 0.0900 0.0300 0.0270 0.0250
3 0.0260 0.0200 0.0800 0.0340 0.0400
4 0.0340 0.0300 0.0290 0.0800 0.0270
5 0.0320 0.0340 0.0330 0.0270 0.0740

 .

Compute the following:

1. The five conditional probability distributions φX|Y=n}, for n = 1, . . . , 5.

2. The five conditional probability distributions φY|X=n}, for n = 1, . . . , 5.

3. The five conditional expected values E[X|Y = n] for n = 1, . . . , 5.

4. The five conditional expected values E[Y|X = n] for n = 1, . . . , 5.

5. The MAP estimates of X given that Y = n for n = 1, . . . , 5.

6. The MAP estimates of Y given that X = n for n = 1, . . . , 5.

7. The correlation coefficient C(X ,Y).
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Problem 2.12 Prove (2.25).

Problem 2.13 Show that (2.26) and (2.27) are equivalent conditions.

Problem 2.14 Prove Lemma 2.16.

Problem 2.15 Suppose, as in (2.33), that h : A × B → R. For each
ai ∈ A, define the function hi· : B→ R by

hi· = hij .

Show that the expression (2.33) for the conditional expectation of h with
respect to X can be defined as

(hX )i = E[hi·,φ|X=ai ].

2.3 RANDOM VARIABLES ASSUMING INFINITELY MANY

VALUES

Until now we have steadfastly restricted ourselves to random variables that
assume values in a finite set. However, there are situations in which it
is desirable to relax this assumption, and examine situations in which the
range of the random variable under study is infinite. Within this, we make
a further distinction between two situations: Where the range is a countable
set and where the range is an uncountable set. Recall that a set is said
to be countable if it can be placed in one-to-one correspondence with the
set of natural numbers N = {1, 2, . . .}.3 For example, the set of integers
and the set of rational numbers are both countable sets. Next, suppose
M is a finite set, such as {H,T}, the set of possible outcomes of a coin
toss experiment, or {A,C,G, T}, the set of nucleotides. Let M∗ denote
the set of all finite sequences taking values in M. Thus M∗ consists of all
sequences {u1, . . . , un} where ui ∈ M for all i. Then M∗ is countable. But
uncountably infinite sets are also relevant. For instance, ifM is a finite set,
then the set of all sequences (not just finite sequences) taking values in M
is an uncountably infinite set. The set of real numbers is also uncountable.

It turns out that the method adopted thus far to define probabilities over
finite sets, namely just to assign nonnegative ‘weights’ to each element in
such a way that the weights add up to one, works perfectly well on countable
sets. However, the approach breaks down when the range of the random
variable is an uncountably infinite set. The great Russian mathematician A.
N Kolmogorov introduced the axiomatic foundations of probability theory
precisely to cope with this situation; see [71]. Though the theory is very
beautiful and comprehensive, we will not be needing the more advanced
theory in the present book.

3Some authors also include 0 in N.
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Accordingly, suppose X = {xi, i ∈ N} is a countable set. Let pi ≥ 0 be
chosen such that

∑∞
i=1 pi = 1. Then for every subset A ⊆ X, we can define

the corresponding probability measure in analogy with (2.2), namely

P (A) :=

∞∑
i=1

IA(xi)pi.

We can think of P (A) as the probability Pr{X ∈ A} that the random variable
X belongs to the set A. With this definition, the ‘axiomatic’ properties
described just after Theorem 2.3 continue hold, namely:

1. 0 ≤ P (A) ≤ 1 for all subsets A ⊆ X.

2. If {Ai}i≥1 is a countable collection of pairwise disjoint subsets of X,
then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

For a random variable X assuming values in the countable set X with
the probability measure P defined above, we can define its mean, variance,
and higher moments just as we did earlier for finite-valued random variables.
Thus, if f : X → R is a function, then we define

E[f, P ] :=

∞∑
i=1

f(xi)pi.

The major potential difficulty is that, because we are dealing with an infinite
sum, the above expected value is not guaranteed to exist. In particular,
suppose we try to compute the mean value of the random variable X using
the above definition, as

E[X , P ] =

∞∑
i=1

xipi.

Without loss of generality, we can renumber the xi’s in such a way that
xi < xi+1 for all i. Since the pi’s add up to one, it is obvious that pi → 0
as i → ∞. However, depending on the relationship between xi and pi, the
above summation may or may not converge. In case the expectation of the
random variable X is not defined, it is said to be a ‘heavy-tailed’ random
variable. The next example illustrates one such variable.

Example 2.11 This example is sometimes referred to as the ‘St. Peters-
berg paradox.’ Suppose a gambler visits a casino where he plays a coin-
tossing game. At each step, both the gambler and the casino put up equal
stakes, after which the gambler predicts the outcome of the coin toss. If he
calls correctly, he gets the entire stake, whereas if he calls incorrectly, the
casino gets the entire stake. The game is fair, with the coin turning up heads
or tails with equal probability. Moreover, each coin toss is independent of
all previous coin tosses. To simplify the notation, let us suppose that the
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gambler always calls heads. In view of the independence assumption, this
strategy has just as good a chance of winning as any other.

Now the following strategy is ‘guaranteed’ to fetch a positive payoff to the
gambler: At each step, he merely doubles his stake. Thus, at the first step,
he bets $1. If he wins, he quits and goes home. If he loses, he bets $2. If
he loses again, he bets $4 at the next step, and so on. The game reaches n
steps only if the gambler has lost all n times, meaning that his accumulated
losses are $ 1 + 2 + . . . 2n = 2n+1 − 1. At the (n+ 1)-st step, he bets 2n+1.
If he wins, his cumulative winning amount is precisely $1, the inital bet.

One feels that there is something strange about this strategy; indeed the
difficulty is that the random variable in this case is heavy-tailed and does not
have a finite expectation. We can see that the game has a countable set of
possible outcomes, namely H,TH, T 2H, . . . , TnH, . . ., where TnH denotes a
sequence of n tails followed by a head. The probability of TnH is obviously
2−(n+1) because the coin is fair. In this case, the accumulated losses at time
n are 2n+1−1. Thus, in order to bet 2n+1 at the next step, the gambler must
have an initial sum of 2n+2 − 1. Therefore, the amount of money that the
player must have to begin with, call it X , equals 2n+2 − 1 with probability
2−(n+1). If we try to compute the expected value of this random variable,
we see that

n∑
i=1

(2n+2 − 1) · 2−(n+1) =

n∑
i=1

2− 2−(n+1).

Now, as n → ∞, the second summation converges nicely to −1. Unfor-
tunately, the first summation blows up. Hence, unless one has an infinite
amount of money to begin with, the above ‘strategy’ will not work.

2.4 TAIL PROBABILITY ESTIMATES: MARKOV AND CHEBY-

CHEFF INEQUALITIES

In this section, we introduce two very useful inequalities known as ‘Markov’s
inequality’ and ‘Chebycheff’s inequality’. We use the formalism of a random
variable assuming real values in order to state the result. Since the set of real
numbers is uncountably infinite, the earlier approach of assigning a weight
to each possible outcome does not work, and we need to adopt a different
approach. What follows is a very superficial introduction to the subject, and
a reader interested in a serious discussion of the subject is referred to any of
the classic texts on the subject, such as [22, 19] for example.

With each real-valued random variable X we associate a so-called prob-
ability distribution function (pdf) PX , defined as follows:

PX (a) = Pr{X ≤ a}, ∀a ∈ R.
The pdf is monotonically nondecreasing, as is obvious from the definition;
thus

a ≤ b ⇒ PX (a) ≤ PX (b).



text September 25, 2011

INTRODUCTION TO PROBABILITY AND RANDOM VARIABLES 49

The pdf also has a property known as ‘cadlag,’ which is an abbreviation of
the French expression ‘continué à droite, limité à gauche.’ In English this
means ‘continuous from the right, and limit exists from the left.’ In other
words, the function PX has the property that, for each real number a,

lim
x→a+

PX (x) = PX (a),

while limx→a− PX (x) exists, but may or may not equal PX (a). Due to the
monotonicity of the pdf, it is clear that

lim
x→a+

PX (x) ≤ PX (a).

If the above holds with equality, then PX is continuous at a. Otherwise it
has a positive jump equal to the difference between PX (a) and the limit on
the left side.

In general the function PX need not be differentiable, or even continuous.
However, for the purposes of the present discussion, it is sufficient to consider
the case where PX is continuously differentiable everywhere, except for a
countable set of points {xi}∞i=1, where the function has a jump. Thus

lim
x→x−i

PX (x) < PX (xi),

but PX (·) is continuously differentiable at all x 6= xi. In such a case, the
difference

PX (xi)− lim
x→x−i

PX (x) =: µi

can be interpreted as the (nonzero) probability that the random variable
X exactly equals xi. For all other values of x, it is interpreted that the
probability of the random variable X exactly equaling x is zero. However,
if a < b, then the probability of the random variable X lying in the interval
(a, b] is taken as PX (b)− PX (a).

To define the expected value of the random variable X , we adapt the
earlier formulation to the present situation. To simplify notation, let P (·)
denote the pdf of X . Then we define

E[X , P ] =

∫ ∞
−∞

xP (dx),

where the integral is a so-called Riemann-Stiltjes integral. If P is continu-
ously differentiable over some interval [a, b], we define∫ b

a

f(x)P (dx) =

∫ b

a

f(x)
dP

dx
dx,

and add the term f(xi)µi whenever the interval [a, b] contains one of the
points xi where PX has a jump discontinuity. As before, the existence of the
expected value is not guaranteed.

Theorem 2.24 (Markov’s Inequality) Suppose X is a real-valued ran-
dom variable with the property that |X | has finite expectation. Then, for
every real number a, we have

Pr{|X | ≥ a} ≤ E[|X |, P ]

a
. (2.38)
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Proof. By definition, we have

E[|X |, P ] =

∫
|x|<a

|x|P (dx) +

∫
|x|≥a

|x|P (dx)

≥
∫
|x|≥a

|x|P (dx)

≥
∫
|x|≥a

aP (dx)

= aPr{|X | ≥ a}.

The desired inequality follows by dividing both sides by a. 2

Corollary 2.25 Suppose X is a nonnegative-valued random variable with
finite expectation. Then, for every real number a, we have

Pr{X ≥ a} ≤ E[X , P ]

a
. (2.39)

The proof is entirely analogous to that of Theorem 2.24.
Markov’s inequality in the above form is not particularly useful. However,

we get a more useful version if we examine a function of X .

Corollary 2.26 Suppose X is a real-valued random variable. Then for ev-
ery ε > 0, γ ≥ 0, we have

Pr{X ≥ ε} ≤ exp(−γε)E[exp(γX ), P ], ∀γ ≥ 0, (2.40)

provided only that exp(γX ) has finite expectation.

Proof. Note that, whenever γ ≥ 0, the function x 7→ exp(γx) is nonnegative-
valued and nondecreasing. Hence, for every ε > 0, we have

X ≥ ε ⇔ exp(γX ) ≥ exp(γε).

Now apply (2.39) with X replaced by exp(γX ) and a replaced by exp(γε).
2

There is a variant of Markov’s inequality for random variables that have
not only finite expectation but also finite variance. As before, we define the
variance of X as

var(X ) := E[(X − E(X ))2],

assuming it exists of course. It is common to denote the variance by σ2, so
that σ is the standard deviation. With this notation, we now state the next
result.

Theorem 2.27 (Chebycheff’s Inequality) Suppose X is a real-valued
random variable with finite expectation and variance. Then for each ε > 0,
we have

Pr{|X − E(X )| ≥ ε} ≤ σ2

ε2
. (2.41)
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Proof. We reason as follows:

Pr{|X − E(X )| ≥ ε}= Pr{(X − E(X ))2 ≥ ε2}

≤ E[(X − E(X ))2]

ε2
by (2.39)

=
σ2

ε2
.

2
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Chapter Three

Introduction to Information Theory

In this chapter, we introduce a very important notion, called the ‘entropy’
of a probability distribution. One can think of entropy as the level of uncer-
tainty associated with a random variable (or more precisely, the probability
distribution of the random variable). Entropy has several useful properties,
and the relevant ones are brought out here. The next concept is relative en-
tropy, also known as the Kullback-Leibler divergence, named after the two
statisticians who invented the notion. The Kullback-Leibler divergence mea-
sures the ‘disparity’ between two probability distributions, and has a very
useful interpretation in terms of the rate at which one can learn to discrim-
inate between the correct and an incorrect hypothesis, when there are two
competing hypotheses. To lay the foundation to introduce these concepts,
we begin with the notion of convexity, which has many applications that go
far beyond the few that are discussed in this book.

3.1 CONVEX AND CONCAVE FUNCTIONS

In this section we introduce a very useful ‘universal’ concept known as con-
vexity (and its mirror image, concavity). Though we make use of this concept
in a very restricted setting (namely, to study the properties of the entropy
function), the concept itself has many applications. We begin with the no-
tion of a convex set, and then move to the notion of a convex (or concave)
function.

If x, y are real numbers, and λ ∈ [0, 1], the number λx + (1 − λ)y is
called a convex combination of x and y. More generally, if x,y ∈ Rn are
n-dimensional vectors and λ ∈ [0, 1], the vector λx + (1 − λ)y is called a
convex combination of x and y. If λ ∈ (0, 1) and x 6= y, then the vector
λx + (1− λ)y is called a strict convex combination of x and y.

Definition 3.1 A subset S ⊆ Rn is said to be a convex set if

λx + (1− λ)y ∈ S ∀λ ∈ [0, 1], ∀x,y ∈ S. (3.1)

Thus a set S is convex if every convex combination of two elements of S
once again belongs to S. In two dimensions n = 2, we can visualize a convex
set very simply. If x,y ∈ R2, then the set {λx + (1− λ)y : λ ∈ [0, 1]} is the
line segment joining the two vectors x and y. Thus a set S ⊆ R2 is convex
if and only if the line segment joining any two points in the set S once again
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Figure 3.1 Examples of convex and nonconvex sets

belongs to the set S. As seen in Figure 3.1 below, the set on the left is not
convex, because the line segment connecting x and y does not lie entirely in
S; in contrast, the set on the right is convex.

Example 3.1 The n-dimensional simplex Sn, which is where every n-
dimensional probability distribution has to ‘live,’ is a convex set. Thus
if p,q are n-dimensional probability distributions, then so is the convex
combination λp + (1− λ)q for every λ in [0, 1].

Example 3.2 An elaboration of the previous example comes from con-
ditional distributions. Suppose X ,Y are random variables assuming values
in finite set A = {a1, . . . , an} and B = {b1, . . . , bm} respectively, and let
φ ∈ Snm denote their joint distribution. Recall from Section 2.2 that the
marginal distributions φX ∈ Sn and φY ∈ Sm are defined by

(φX )i =

m∑
j=1

φij , (φY)j =

n∑
i=1

φij ,

while the m conditional distributions of X given the observations Y = bj are
given by

φ{X|Y=bj} =

[
φij∑n
i′=1 φi′j

, i = 1, . . . , n

]
∈ Sn.

Now it can be verified that the marginal distribution φX is a convex com-
bination of the m conditional distributions φ{X|Y=bj}, j = 1, . . . ,m, where
the weights are the components of the marginal distribution φY . This is a
straight-forward calculation and is left as an exercise.

Definition 3.1 is stated for a convex combination of two vectors, but can be
easily extended to a convex combination of any number of points. Suppose
S ⊆ Rn and x1, . . . ,xm ∈ S. Then a vector of the form

y =

m∑
i=1

λixi, λi ≥ 0 ∀i,
m∑
i=1

λi = 1

is called a convex combination of the vectors x1, . . . ,xm. It is easy to show,
by recursively applying Definition 3.1, that if S ⊆ Rn is a convex set then
every convex combination of any finite number of vectors in S again belongs
to S.
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Definition 3.2 Suppose S ⊆ Rn is a convex set and f : S → R. We say
that the function f is convex if

f [λx + (1− λ)y] ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1], ∀x,y ∈ S. (3.2)

We say that the function f is strictly convex if

f [λx+(1−λ)y] < λf(x)+(1−λ)f(y), ∀λ ∈ (0, 1), ∀x,y ∈ S,x 6= y. (3.3)

We say that the function f is concave if

f [λx + (1− λ)y] ≥ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1], ∀x,y ∈ S. (3.4)

Finally, we say that the function f is strictly concave if

f [λx+(1−λ)y] > λf(x)+(1−λ)f(y), ∀λ ∈ (0, 1), ∀x,y ∈ S,x 6= y. (3.5)

Equations (3.2) through (3.5) are stated for a convex combination of two
vectors x and y. But we can make repeated use of these equations and prove
the following facts. If f is a convex function mapping a convex set S into R,
and x1, . . . ,xm ∈ S, then

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi), whenever [λ1 . . . λm] =: λ ∈ Sm.

Analogous inequalities are valid for concave, strictly convex, and strictly
concave functions.

The above definitions are all algebraic. But in the case where S is an
interval [a, b] in the real line (finite or infinite), the various inequalities can
be given a simple pictorial interpretation. Suppose we plot the graph of the
function f . This consists of all pairs (x, f(x)) as x varies over the interval
[a, b]. Suppose (x, f(x)) and (y, f(y)) are two points on the graph. Then the
straight line joining these two points is called the ‘chord’ of the graph. (We
can assume that the two points are distinct, because otherwise the various
inequalities (3.2) through (3.5) all become trivial.) Equation (3.2) states that
for any two points x, y ∈ [a, b], the chord joining the two points (x, f(x))
and (y, f(y)) lies above the graph of the function (z, f(z)) whenever z lies
between x and y. Equation (3.4) says exactly the opposite: It says that the
chord joining the two points (x, f(x)) and (y, f(y)) lies below the graph of
the function (z, f(z)) whenever z lies between x and y. Equation (3.3) says
that, not only does the chord joining the two points (x, f(x)) and (y, f(y))
lie above the graph of the function (z, f(z)) whenever z lies between x and
y, but in fact the chord does not even touch the graph, except at the two
extreme points (x, f(x)) and (y, f(y)). Equation (3.5) says the opposite of
the above. Finally, observe that f is (strictly) convex if and only if −f is
(strictly) concave.

Figure 3.1 depicts the interpretation of the definition of convexity. This
figure depicts the fact that, for all z belonging to the chord connecting x and
y, the value f(z) lies below the chord value. The same figure also suggests
that, if the chord is extended beyond the two original points x and y, then
the value f(z) actually lies above the chord value. This intuition is indeed
correct, and not just in one dimension either!
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Figure 3.2 Graph below chord interpretation of a convex function

Lemma 3.3 Suppose f : Rn → R is convex, and suppose x,y ∈ Rn with
x 6= y. Then, for every λ < 0 and every λ > 1, we have that

f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y). (3.6)

Proof. We begin with the case λ < 0. Let λ = −α where α > 0, and define
z = λx + (1− λ)y. Then simple algebra shows that

y =
α

1 + α
x +

1

1 + α
z,

so that y is a convex combination of x and z. Now the convexity of f(·)
implies that

f(y) ≤ α

1 + α
f(x) +

1

1 + α
f(z),

which can be rearranged as

f(z) ≥ −αf(x) + (1 + α)f(y) = λf(x) + (1− λ)f(y).

The case where λ > 1 is handled entirely similarly by interchanging the roles
of x and y. 2

It can be shown that, for all practical purposes, a convex function (and
thus a concave function) has to be continuous. But if a function is not
merely continuous but also differentiable, then it is possible to give alter-
nate characterizations of convexity (and of course concavity) that are more
interesting.

Lemma 3.4 Suppose f : [a, b] → R is convex and is continuously differen-
tiable on (a, b). Then

f(y) ≥ f(x) + f ′(x)(y − x), ∀x ∈ (a, b), y ∈ [a, b], y 6= x. (3.7)
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Figure 3.3 The graph above tangent property of a convex function

If f is concave on [a, b] and continuously differentiable on (a, b), then

f(y) ≤ f(x) + f ′(x)(y − x), ∀x ∈ (a, b), y ∈ [a, b], y 6= x. (3.8)

If f is strictly convex on [a, b] and continuously differentiable on (a, b), then

f(y) > f(x) + f ′(x)(y − x), ∀x ∈ (a, b), y ∈ [a, b], y 6= x. (3.9)

If f is strictly concave on [a, b] and continuously differentiable on (a, b), then

f(y) < f(x) + f ′(x)(y − x), ∀x ∈ (a, b), y ∈ [a, b], y 6= x. (3.10)

We do not give the proof of this or other such lemmas, as they are beyond
the scope of the book. Instead, the reader is referred to the classic text
of Rockafellar [93]. But we give instead the interpretations of the various
inequalities above. Suppose f is continuously differentiable on (a, b). Then
for every x ∈ (a, b), the function y 7→ f(x)+f ′(x)(y−x) is the tangent to the
graph of f at the point (x, f(x)). Thus (3.7) says that for a convex function,
the tangent lies below the graph. This is to be contrasted with (3.2), which
says that the chord lies above the graph. Equation (3.9) says that if the
function is strictly convex, then not only does the tangent lie below the
graph, but the tangent touches the graph only at the single point (x, f(x)).
The interpretations of the other two inequalities are entirely similar. Figure
3.1 depicts the ‘graph above the tangent’ property of a convex function,
which is to be contrasted with the ‘graph below the chord’ property depicted
in Figure 3.1.

If the function is in fact twice continuously differentiable, then we can give
yet another set of characterizations of the various forms of convexity.

Lemma 3.5 Suppose f : [a, b] → R is twice continuously differentiable on
(a, b). Then
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1. f is convex if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).

2. f is concave if and only if f ′′(x) ≤ 0 for all x ∈ (a, b).

3. f is strictly convex if and only if f ′′(x) > 0 for all x ∈ (a, b).

4. f is strictly convex if and only if f ′′(x) < 0 for all x ∈ (a, b).

This lemma is also found in [93].
We now study two very specific functions that are very relevant to infor-

mation theory.

Example 3.3 Consider the function f(x) = log x, defined on (0,∞).1

Since

f ′(x) = 1/x, f ′′(x) = −1/x2 < 0 ∀x ∈ (0,∞),

it follows that log x is strictly concave on (0,∞). As a result, if we substitute
x = 1 in (3.10), we get

log y < y − 1, ∀y > 0, y 6= 1. (3.11)

Example 3.4 The function

h(p) = p log(1/p) = −p log p, p ∈ [0, 1] (3.12)

plays a very central role in information theory. For p ∈ (0, 1] the function is
well-defined and can be differentiated as many times as one wishes. When
p = 0 we can define h(0) = 0, since it is easy to verify using L’Hôpital’s rule
that h(p)→ 0 as p→ 0+. Note that

h′(p) = − log p− 1, h′′(p) = −1/p < 0 ∀p ∈ (0, 1).

Thus h(·) is strictly concave on [0, 1] (and indeed on (0,∞), though values
of p larger than one have no relevance to information theory). In particular,
h(p) > 0 ∀p ∈ (0, 1), and h(0) = h(1) = 0.

Now we present a very useful result, known as Jensen’s inequality.

Theorem 3.6 Suppose X is a random variable assuming one of n real val-
ues x1, . . . , xn belonging an open interval (a, b), with probabilities µ1, . . . , µn.
Suppose f : (a, b)→ R is convex. Then

f(E[X , Pµ]) ≤ E[f(X ), Pµ] (3.13)

Proof. The proof is a ready consequence of the definition of convexity. By
definition, we have

E[X , Pµ] =

n∑
i=1

µixi,

1Here and elsewhere log denotes the natural logarithm, while lg denotes the binary
logarithm, that is, logarithm to the base 2.
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f(E[X , Pµ]) = f

(
n∑
i=1

µixi

)
≤

n∑
i=1

µif(xi) = E[f(X ), Pµ],

which is the desired conclusion. 2

The above theorem statement and proof don’t really do justice to Jensen’s
inequality, which actually holds in a far more abstract setting than the above.

Problem 3.1 Given a function f : S → R where S is a convex subset of
some Euclidean space Rd, its epigraph is denoted by epi(f) and is defined
by

epi(f) = {(x, y) : x ∈ S, y ∈ R and y ≥ f(x)}.
Show that f is a convex function if and only if epi(f) is a convex set in
Rd+1. State and prove the analog of this statement for concave functions.

Problem 3.2 Suppose S is a convex set and f : S → R. Show that f is
a convex function if and only if −f is a concave function.

Problem 3.3 Suppose S is a convex subset of some Euclidean space Rd
and f : S → R is convex, while g : R → R is convex and nondecreasing.
In other words, α ≤ β implies that g(α) ≤ g(β). Show that the function
x 7→ g(f(x)) is convex. Here the symbol 7→ is read as ‘mapsto’, and x 7→
g(f(x)) means the function that associates g(f(x)) with each x ∈ S. State
and prove analogous statements for strictly convex, concave, and strictly
concave functions.

Problem 3.4 Using Lemma 3.5, show that the function h(u) = −u log u
is a strictly concave function of u.

Problem 3.5 Consider the following three probability distributions:

φ = [0.2 0.3 0.5],ψ = [0.4 0.5 0.1],θ = [0.3 0.4 0.3].

Can you express any one of these three distributions as a convex combination
of the other two? Justify your answer.

3.2 ENTROPY

The notion of entropy is very central to information theory. In this section
we introduce this concept and derive several of its properties.

3.2.1 Definition of Entropy

Definition 3.7 Suppose µ ∈ Sn is an n-dimensional probability distribu-
tion. The entropy of the distribution is denoted by H(µ) and is defined
by

H(µ) :=

n∑
i=1

µi log(1/µi) = −
n∑
i=1

µi logµi. (3.14)
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Note that we can also write

H(µ) =

n∑
i=1

h(µi),

where h(·) is the function defined in Example 3.4.
In (3.14), we are using the natural logarithm. It is of course possible to

replace log by lg and take the logarithm to the base two. Some authors try
to specify which logarithm is used by saying that the entropy is measured
in ‘bits’ if lg is used, and ‘nats’ if log is used. Clearly the two numbers will
always differ by the constant factor log 2, so it does not really matter which
base is used for the logarithm, so long as one is consistent.

If X is a random variable assuming values in a set A = {a1, . . . , an}, and
µ is the probability distribution of X , then we can also refer to H(µ) as
H(X ), the entropy of the random variable X , rather than as the entropy of
the probability distribution of the random variable X . It is helpful to be able
to switch back and forth between the two usages, and the two notations H(µ)
and H(X ). However, the reader is cautioned that, strictly speaking, entropy
is a property of probability distributions, and not of the random variables
associated with those probability distributions. For example, consider two
random variables: the outcome of tossing a fair coin, and drawing a ball
from a box containing two identical balls of different colours. The underlying
random variables are in some sense ‘different,’ but the entropies are the same.

3.2.2 Properties of the Entropy Function

Theorem 3.8 We have the following properties of the entropy function.

1. H(µ) ≥ 0 for all probability distributions µ ∈ Sn.

2. H(µ) = 0 if and only if µ is a degenerate distribution, i.e., there is an
index i such that µi = 1 and µj = 0 for all j 6= i.

3. H(µ) ≤ log n ∀µ ∈ Sn, with equality if and only if µ is the uniform
distribution, that is, µi = 1/n for all indices i.

Proof. By definition we have

H(µ) =

n∑
i=1

h(µi),

where the function h(·) is defined in (3.12). Since h(µi) ≥ 0 for all µi ∈
[0, 1], it follows that H(µ) ≥ 0. This proves the first statement. Moreover,
H(µ) = 0 if and only if h(µi) = 0 for all indices i, that is, if and only if
µi = 0 or 1 for every index i. But since the µi’s must add up to one, we
see that H(µ) = 0 if and only if all components of µ are zero except for
one component which must equal one. This proves the second statement.
To prove the third statement, suppose µ = (µ1, . . . , µn) ∈ Sn. Then, since
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µi ∈ [0, 1] ∀i and
∑n
i=1 µi = 1, it follows that

1

n
=

n∑
i=1

µi
n

is a convex combination of the numbers µ1 through µn (with equal weights
1/n). Now recall that the function h(·) in Example 3.4 is strictly concave.
As a result it follows that

h(1/n) = h

(
1

n

n∑
i=1

µi

)
≥ 1

n

n∑
i=1

h(µi),

with equality if and only if all µi are equal (and thus equal 1/n). Since
h(1/n) = (1/n) log n, the above equation can be rewritten as

H(µ) =

n∑
i=1

h(µi) ≤ nh(1/n) = log n,

with equality holding if and only if all µi are equal to 1/n. 2

The motivation for the next theorem is that we can view the entropy func-
tion H(·) as a function mapping the convex set Sn of n-dimensional prob-
ability distributions into the set R+ of nonnegative numbers. The theorem
states that the entropy function is strictly concave.

Theorem 3.9 For each integer n, the function H(·) : Sn → R+ is strictly
concave. Thus if µ,ν ∈ Sn are probability distributions and λ ∈ (0, 1), then

H[λµ+ (1− λ)ν] ≥ λH(µ) + (1− λ)H(ν). (3.15)

Moreover, equality holds if and only if µ = ν.

Proof. Recall that the function h(·) defined in (3.12) is strictly concave.
From the definition of H(·) it follows that

H[λµ+ (1− λ)ν] =

n∑
i=1

h(λµi + (1− λ)νi)

≥
n∑
i=1

λh(µi) + (1− λ)h(νi)

=λ

n∑
i=1

h(µi) + (1− λ)

n∑
i=1

h(νi)

=λH(µ) + (1− λ)H(ν).

Moreover, if µi 6= νi for even a single index i, then the corresponding in-
equality in the second step becomes strict. 2

3.2.3 Conditional Entropy

Suppose X and Y are random variables assuming values in finite sets A =
{a1, . . . , an} and B = {b1, . . . , bm} respectively. In Section 2.2 we studied
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the notions of the joint distribution of X and Y, as well as the conditional
distribution of X given an observed value of Y. Specifically, let φ denote
the joint distribution of (X ,Y). Then φ ∈ Snm, but we can represent φ as
a doubly indexed set of numbers, as follows:

φ =

 φ11 . . . φ1m

...
...

...
φn1 . . . φnm

 .
We also defined the ‘marginal distributions’ φX onX and φY on Y as follows:

(φX )i =

m∑
j=1

φij , i = 1, . . . , n, and (φY)j =

n∑
i=1

φij , j = 1, . . . ,m.

Given an observation X = aj , we defined the conditional probability distri-
bution φ{Y|X=ai} as2

φ{Y|X=ai} = [φ{b1|ai} . . . φ{bm|ai}],

where

φ{bj |ai} :=
φij

(φX )i
=

φij∑m
j′=1 φij′

.

Then φ{Y|X=ai} ∈ Sm ∀i. All of the above is just a reprise of previously
discussed material for the convenience of the reader.

Definition 3.10 Suppose X and Y are random variables assuming values in
finite sets A = {a1, . . . , an} and B = {b1, . . . , bm} respectively. Let φ denote
their joint probability distribution and let φX and φY denote the marginal
distributions. Then the quantity

H(Y|X ) :=

n∑
i=1

(φX )iH(φ{Y|X=ai})

is called the conditional entropy of the random variable Y with respect to
the random variable X .

Theorem 3.11 Suppose X and Y are random variables assuming values in
finite sets A = {a1, . . . , an} and B = {b1, . . . , bm} respectively. Then

H(Y) ≥ H(Y|X ), (3.16)

or equivalently

H(φY) ≥
n∑
i=1

(φX )iH(φ{Y|X=ai}). (3.17)

2Just for variety’s sake we are using the conditional distribution of Y given X , whereas
in Chapter 2 we used the conditional distribution of X given Y.
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Proof. It is obvious from the various formulas that

φY =

n∑
i=1

(φX )i · φ{Y|X=ai}. (3.18)

In other words, the marginal probability distribution φY of the random
variable Y is a convex combination of the various conditional probability
distributions φ{Y|X=ai}, weighted by the probabilities (φX )i. Thus the de-
sired inequality (3.17) follows from Theorem 3.9 and repeated application of
(3.15). 2

The quantity H(φ{Y|X=xi}) is the entropy of the conditional probability of
Y, after we have observed that the value of X is ai. One way of interpreting
Theorem 3.11 is that, on average, the conditional entropy of Y following
an observation of another variable X is no larger than the unconditional
entropy H(Y). But this statement applies only ‘on average.’ It is quite
possible that for some specific observations, this entropy is in fact higher
than the ‘unconditional entropy’ H(φY); see Example 3.5 below. However,
Theorem 3.11 states that on average, one cannot be worse off by making an
observation of X than by not observing X .

Example 3.5 Suppose |X| = |Y | = 2, and that the joint probability
distribution φ equals

φ =

[
0.1 0.3
0.2 0.4

]
,

where the rows correspond to the values of X and the columns to values of
Y. Thus

φX = [0.4 0.6], φY = [0.3 0.7].

So, if we know nothing about X , we get

H(Y) = H(φY) = −0.3 log 0.3− 0.7 log 0.7 ≈
Now suppose we measure X and it turns out that X = a1. Then

φ{Y|X=a1} = [0.1/0.4 0.3/0.4] = [1/4 3/4].

In this case we have

H(φ{Y|X=a2}) = (1/4) log 4 + (3/4) log(4/3) ≈
which is lower than the unconditional entropy. On the other hand,

φ{Y|X=a2} = [1/3 2/3],

and

H(φ{Y|X=a2}) ≈
which is higher than the unconditional entropy. Finally

H(Y|X ) = (φX )1H(φ{Y|X=a1}) + (φX )2H(φ{Y|X=a2}) ≈
which is lower than H(Y) = H(φY).
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Theorem 3.12 Suppose X and Y are random variables assuming values in
finite sets A = {a1, . . . , an} and B = {b1, . . . , bm} respectively. Let φ denote
their joint probability distribution and let φX and φY denote the marginal
distributions. Then

H((X ,Y)) = H(X ) +H(Y|X ). (3.19)

In the above theorem statement, we have used the convention of associ-
ating entropy with a random variable rather than with its probability dis-
tribution. Thus (3.19) says that the entropy of the joint random variable
(X ,Y) is the sum of the entropy of X by itself, and the conditional entropy
of Y given X .

Proof. The desired equality (3.19) is equivalent to

H(Y|X ) = H((X ,Y))−H(X ). (3.20)

To establish this relation, let us compute the right side, observing that

(φX )i =

n∑
j=1

φij ∀i, φij = (φX )iφbj |ai ∀i, j.

Thus

H((X ,Y))−H(X ) =−
n∑
i=1

m∑
j=1

φij log φij +

n∑
i=1

(φX )i log(φX )i

=−
n∑
i=1

m∑
j=1

φij log φij +

n∑
i=1

m∑
j=1

φij log(φX )i

=−
n∑
i=1

m∑
j=1

φij log

(
φij

(φX )i

)

=−
n∑
i=1

m∑
j=1

(φX )iφbj |ai log φbj |ai

=−
n∑
i=1

(φX )i

m∑
j=1

φbj |ai log φbj |ai

=

n∑
i=1

(φX )iH(φ{Y|X=ai}) = H(Y|X ).

This establishes (3.20) and completes the proof. 2

Corollary 3.13 Let all notation be as in Theorem 3.12. Then

H((X ,Y)) = H(X ) +H(Y)

if and only if X and Y are independent.

Proof. The statement H((X ,Y)) = H(X )+H(Y) is equivalent to H(Y|X ) =
H(Y). Now we know from (3.18) that φY is a convex combination of the n
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conditional probability distributions φ{Y|X=ai}. Since the entropy function
H(·) is strictly concave, we have that

H(Y) = H(φY) ≥
n∑
i=1

(φX )iH(φ{Y|X=ai}) = H(Y|X ),

with equality if and only if

φ{Y|X=ai} = φY ∀i,

which is the same as saying that X and Y are independent. 2

Corollary 3.14 Let X ,Y be as in Theorem 3.12. Then

H((X ,Y)) = H(Y) +H(X|Y).

Proof. From the definition it is obvious that H((X ,Y)) = H((Y,X )). The
conclusion now follows from Corollary 3.13 by interchanging X and Y. 2

Definition 3.15 Suppose X and Y are random variables assuming values in
finite sets A = {a1, . . . , an} and B = {b1, . . . , bm} respectively. Let φ denote
their joint probability distribution and let φX and φY denote the marginal
distributions. Then the quantity

I(X ,Y) := H(X ) +H(Y)−H((X ,Y)) = H(φX ) +H(φY)−H(φ)

is called the mutual information between X and Y.

From the above definition, it is clear that the mutual information is ‘sym-
metric’, that is, I(X ,Y) = I(Y,X ). However, as the next lemma shows,
there are other, equivalent, definitions that do not appear to be symmetric.

Lemma 3.16 Suppose X and Y are random variables assuming values in
finite sets A = {a1, . . . , an} and B = {b1, . . . , bm} respectively. Then

I(X ,Y) = H(Y)−H(Y|X ) = H(X )−H(X|Y).

Thus I(X ,Y) ≥ 0, and I(X ,Y) = 0 if and only if X ,Y are independent.

Proof. From Theorem 3.12, we have that

H(Y|X ) = H((X ,Y))−H(X ), H(X|Y) = H((X ,Y))−H(Y).

So

I(X ,Y) =H(X ) +H(Y)−H((X ,Y))

=H(X ) +H(Y)− [H(Y|X ) +H(X )]

=H(Y)−H(Y|X ),

and similarly for the other equation. The second statement is obvious. 2
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3.2.4 Uniqueness of the Entropy Function

Up to now we have established a few key properties of the entropy function.
First, as shown in Property 3 in Theorem 3.8, for each integer n the entropy
function H(φ) is maximized when φ is the uniform distribution in Sn. Sec-
ond, as shown in Theorem 3.12, the entropy of a joint distribution is given
by (3.19), so that H(X ,Y)) = H(X ) + H(Y|X ). In a remarkable paper,
the Russian probabilist A. N. Khinchin showed that, with one technical as-
sumption, the only way to define a continuous entropy function that satisfies
the above two properties is via (3.14). An English translation of this paper
can be found as a part of [70]. We reproduce that proof below, with some
changes in notation.

Theorem 3.17 Suppose {fn} is a family of functions such that fn : Sn →
[0,∞), satisfying the following properties:

1. fn(·) is continuous on Sn for each n.

2. For each n, it is the case that

fn(φ) ≤ fn(un) ∀φ ∈ Sn,

where un denotes the uniform probability distribution on n entries, that
is, un = (1/n, . . . , 1/n).

3. For each n and each φ ∈ Sn, define φ̄ ∈ Sn+1 as

φ̄ = (φ, 0).

Then

fn+1(φ̄) = fn(φ). (3.21)

4. The function fn satisfies a property analogous to (3.19). To amplify,
suppose X ,Y are random variables assuming values in {1, . . . , n} and
{1, . . . ,m} respectively, and let φ ∈ Snm denote their joint distribution.
Then

fnm(φ) =

n∑
i=1

(φX )ifm(φ{Y|X=i}) + fn(φX ). (3.22)

With these assumptions, there exists a constant λ, independent of n, such
that

fn(φ) = λH(φ), ∀φ ∈ Sn, ∀n ≥ 1,

where H(·) is defined in (3.14).

Remarks:

1. Suppose φ ∈ Sn. Then φ̄ ∈ Sn+1 can be thought of as a probability
distribution on n + 1 elements, except that the additional element
has zero probability, that is, its occurence is an ‘impossible’ event.
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So (3.21) states that adding one impossible event to any probability
distribution does not change the value of its ‘entropy-like’ function.
Note that, by repeated application of (3.21), we can readily establish
the following property. Suppose φ ∈ Sn and let l be any integer. Then

fn+l((φ,0l)) = fn(φ). (3.23)

2. A ready consequence of (3.22) is that if X ,Y are independent random
variables, so that φij = (φX )i · (φY)j for all i, j, then

fnm(φ) = fn(φX ) + fm(φY). (3.24)

3. Thus Theorem 3.17 states that the only continuous function that sat-
isfies the technical condition (3.21) along with the analogs of Property
3 in Theorem 3.8 and (3.19) is the function H(·) defined in (3.14), or
some scalar multiple thereof.

Proof. For convenience, define

L(n) = fn(un),

where as before un denotes the uniform distribution on n elements. By
Property 3, we have that

fn+1((ūn)) = fn(un) = L(n).

Next, by Property 2, it follows that

fn+1((ūn)) ≤ fn+1(un+1) = L(n+ 1).

Combining these two inequalities leads to the conclusion

L(n) ≤ L(n+ 1).

Thus {L(n)} is a nondecreasing sequence as a function of n.
Next, suppose n = lm, and consider un = ulm. Since 1/n = (1/l) · (1/m),

we can equate un with the joint distribution of X ,Y, where X is uniformly
distributed over {1, . . . , l}, Y is uniformly distributed over {1, . . . ,m}, and
X ,Y are independent. Thus it follows from (3.24) applied to this situation
that

flm(ulm) = fl(ul) + fm(um),

or equivalently

L(lm) = L(l) + L(m) ∀l,m.

In particular

L(m2) = 2L(m), and

L(ms+1) = L(ms) + L(m) = (s+ 1)L(m), (3.25)

where the last step follows by induction.
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Next, suppose l,m, n are arbitrary integers ≥ 2, and determine a unique
integer s according to

ms ≤ ln < ms+1.

This implies that

s logm ≤ n log l ≤ (s+ 1) logm, or

s

n
≤ log l

logm
≤ s

n
+

1

n
. (3.26)

Now since L(·) is a nondecreasing function, it follows that

L(ms) ≤ L(ln) ≤ L(ms+1).

Applying (3.25) now shows that

sL(m) ≤ nL(l) ≤ (s+ 1)L(m),

or

s

n
≤ L(l)

L(m)
≤ s

n
+

1

n
. (3.27)

Combining (3.26) and (3.27) shows that∣∣∣∣ log l

logm
− L(l)

L(m)

∣∣∣∣ ≤ 1

n
.

Since the left side of the inequality does not contain n, we can let n → ∞,
which shows that

log l

logm
=

L(l)

L(m)
,

or

L(m) =
L(l)

l
logm, ∀l,m.

However, since l,m are arbitrary, we can define

λ :=
L(2)

2
,

and conclude that

L(m) = λ logm, ∀m. (3.28)

Next, suppose µ ∈ Sn contains only rational numbers. Specifically, sup-
pose µi = gi/g for all i, where gi, g are all integers. It is clear that

∑n
i=1 gi =

g since µ ∈ Sn. Let m denote the largest number among the gi, that is,
m := maxi gi. We now define a joint distribution φ on {1, . . . , n}×{1, . . . ,m}
that is closely related to µ. Define

φij :=

{
1/g, 1 ≤ j ≤ gi,
0, j > gi.
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We can think of φ as the joint distribution of (X ,Y) where X is a random
variable taking values in {1, . . . , n} and Y is a random variable taking values
in {1, . . . ,m}. From this distribution, two facts are readily apparent. First,
the marginal distribution φX is given by

(φX )i =

m∑
j=1

φij = gi/g, ∀i.

Thus X has the distribution µ with which we started. Second, to compute
the conditional distribution φY , observe that

Pr{Y = j|X = i} =
Pr{Y = j&X = i}

Pr{X = i}
=

{
1/gi, 1 ≤ j ≤ gi,
0, j > gi.

In other words,

φ{Y|X=i} = (ugi ,0m−gi).

Therefore, by Property 3 and its consequence (3.23), we get

fm(φ{Y|X=i}) = fgi(ugi) = Lgi(gi) = λ log gi.

Now the distribution φ itself, viewed on a set of nm elements, consists of
the uniform distribution ug augmented by nm− g zeros. Thus by Property
3 again, we get

fnm(φ) = fg(ug) = λ log g.

To complete this step, we apply Property 4 to φ and recall that φX = µ,
the original distribution. Then it follows from (3.22) that

λ log g =

n∑
i=1

gi
g
λ log gi + fn(µ),

−fn(µ) =λ

n∑
i=1

[
gi
g

log gi

]
− λ log g

=λ

n∑
i=1

[
gi
g

log gi −
gi
g

log g

]
since

∑
i

gi = g

=λ

n∑
i=1

gi
g

log
gi
g

=−λH(µ),

where H(·) is defined in (3.14).
Thus it has been shown that fn(µ) = λH(µ) whenever every entry of

µ ∈ Sn is a rational number. To complete the proof, observe that every real
number can be approximated arbitrarily closely by a rational number, and
that fn is continuous on Sn, for each n. So we conclude that

fn(µ) = λH(µ) ∀µ ∈ Sn, ∀n,
which is the desired conclusion. 2
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3.3 RELATIVE ENTROPY AND THE KULLBACK-LEIBLER

DIVERGENCE

In this section we introduce a very important notion known as relative en-
tropy. It is also called the Kullback-Leibler divergence after the two persons
who invented this notion.

Definition 3.18 If µ,ν ∈ Sn are probability vectors with n components
each, define µ� ν or ν � µ (read as ‘µ is dominated by ν,’ or ‘ν dominates
µ’) if νi = 0 ⇒ µi = 0. Then

H(µ‖ν) :=

n∑
i=1

µi log(µi/νi) (3.29)

is called the relative entropy of µ with respect to ν, or the Kullback-
Leibler (K-L) divergence of µ with respect to ν.

Note that if νi = 0 for some index i, the assumption that µ� ν guarantees
that µi also equals zero. So in defining the K-L divergence, we take 0 log(0/0)
to equal 0. If µ 6� ν, then there exists an index i such that νi = 0 but µi 6= 0.
In this case we can take H(µ‖ν) =∞.

As is customary in the information theory community, we use the same
symbol H for both the ‘absolute’ entropy of one distribution as defined in
(3.14), as well as the ‘relative’ entropy between two distributions. This dual
usage should not cause confusion because the number of arguments of the
H function should make it clear which usage is meant.

Actually, the quantity defined by Kullback and Leibler in their original
paper [76] would correspond to H(µ‖ν) + H(ν‖µ), which would result in
a quantity that is symmetric in µ and ν. However, subsequent researchers
have recognized the advantages of defining the divergence as in (3.29).

From the definition (3.29), it is not even clear that the K-L divergence
is nonnegative. Since both µ and ν are probability distributions, it is clear
that the components of both vectors add up to one. Hence, if µ 6= ν, then
for some i the ratio µi/νi exceeds one and for other i it is less than one. So
log(µi/νi) is positive for some i and negative for other i. Why then should
the divergence be nonnegative? The question is answered next.

Theorem 3.19 Suppose µ,ν ∈ Sn with µ � ν. Then H(µ‖ν) ≥ 0, and
H(µ‖ν) > 0 if µ 6= ν.
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Proof. Observe that log is a strictly concave function, whence − log is a
strictly convex function. Therefore

H(µ‖ν) =

n∑
i=1

µi log
µi
νi

=−
n∑
i=1

µi log
νi
µi

≥− log

(
n∑
i=1

µi
νi
µi

)

=− log

(
n∑
i=1

νi

)
=− log(1) = 0.

To prove the second part of the conclusion, note that if µ 6= ν, then there
exist at least two indices i, j such that µi 6= νi, µj 6= νj . In this case, the
quantity

n∑
i=1

µi
νi
µi

is a nontrivial convex combination of the number ν1/µ1, . . . , νn/µn. Thus
the inequality in the above becomes strict, because log(·) is a strictly concave
function. 2

A ready corollary of the above argument is the following.

Corollary 3.20 Suppose µ,ν ∈ Sn are probability distributions with n com-
ponents, and we define the ‘loss’ function

J(µ,ν) :=

n∑
i=1

µi log(1/νi). (3.30)

Then, viewed as a function of ν, the loss function assumes its minimum
value when ν = µ, and the minimum value is H(µ). In other words,

J(µ,ν) ≥ J(µ,µ) = H(µ) ∀ν ∈ Sn. (3.31)

Moreover, equality holds if and only if ν = µ.

Proof. Routine algebra shows that

H(µ‖ν) = J(µ,ν)− J(µ,µ).

Since we already know that H(µ‖ν) ≥ 0 and that H(µ‖ν) = 0 if and only if
µ = ν, it follows that J(µ,ν) ≥ J(µ,µ) with equality if and only if ν = µ.
It is routine to verify that J(µ,µ) = H(µ). 2

The proof of Theorem 3.19 makes it clear that if we define the ‘divergence’
between two probability distributions µ,ν ∈ Sn by replacing the logarithm
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function by any strictly convex function η(·) such that η(1) = 0,3 the con-
clusions of Theorem 3.19 would still hold. In other words, if η(·) is strictly
convex and satisfies η(1) = 0, and we define

Dη(µ‖ν) := −
n∑
i=1

µiη(νi/µi),

then we would have Dη(µ‖ν) ≥ 0 ∀µ,ν ∈ Sn, and Dη(µ‖ν) = 0 if and only
if µ = ν. The paper [79] contains a survey of the various ‘divergences’ that
can be obtained for different choices of the function η, and their properties.
However, Corollary 3.20 depends crucially on the fact that log(νi/µi) =
log νi − logµi and thus does not hold for more general ‘divergences.’

The K-L divergence has a very straight-forward interpretation in terms
of the likelihood of misclassifying an observation. Suppose X is a random
variable taking values in the set A = {a1, . . . , an}. Suppose we are told that
the random variable X has the distribution µ or ν, and our challenge is
to decide between the two competing hypotheses (namely ‘X is distributed
according to µ’ and ‘X is distributed according to ν’). For this purpose, we
make a series of independent observations of X , resulting in a ‘sample path’
ul1 := (u1, u2, . . . , ul) of length l, where each uk belongs to A.

In order to discriminate between the two competing hypotheses, we com-
pute the likelihood of the observed sample path under each of the two
hypotheses. Now, given the observation ul1 of length l, let li denote the
number of occurences of ai in the sample path. Then the likelihood of this
sample path, in case the underlying distribution is µ, equals

Lµ(ul1) =

n∏
i=1

µlii .

Similarly, the likelihood of this sample path in case the underlying distribu-
tion is ν equals

Lν(ul1) =

n∏
i=1

νlii .

We choose the hypothesis that is more likely. Thus, we say that the under-
lying distribution is µ if Lµ(ul1) > Lν(ul1), and that the underlying distri-
bution is ν if Lµ(ul1) < Lν(ul1), For the time being, let us not worry about
a ‘tie,’ because the probability of a tie approaches zero as l → ∞. Now,
instead of comparing Lµ(ul1) and Lν(ul1), it is more customary to compute
the log likelihood ratio log(Lµ(ul1)/Lν(ul1)). There are many reasons for
this. From the standpoint of analysis, taking the logarithm turns products
into sums, and thus the log likelihood function is often easier to analyze.
From the standpoint of computation, the true likelihoods Lµ(u) and Lν(u)
often approach zero at a geometric rate as l → ∞. So if l is at all a large

3This by itself is not a limitation, because if η(·) is a strictly convex function, so is
η(·)− η(1).
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number, then Lµ(ul1) and Lν(ul1) rapidly fall below the machine zero, thus
making computation difficult.

Now we can compute that

log(Lµ(ul1)/Lν(ul1)) =

n∑
i=1

li log(µi/νi).

However, the indices li are themselves random numbers, as they correspond
to the number of times that the outcome ai appears in the sample path.
Suppose now that ‘the truth’ is µ. In other words, the underlying probability
distribution really is µ. Then the expected value of li equals µil. Thus the
expected value of the log likelihood ratio, when ‘the truth’ is µ, equals

E[log(Lµ(ul1)/Lν(ul1)), Pµ] = l

n∑
i=1

µi log(µi/νi) = lH(µ‖ν).

In other words, the expected value of the log likelihood ratio equals H(µ‖ν)
multiplied by the length of the observation. For this reason, we can also
interpret H(µ‖ν) as the ‘per sample’ contribution to the log likelihood ratio.
This computation shows us two things. First, if we are trying to choose
between two competing hypotheses where one of them is the ‘truth’ and the
other is not, then ‘in the long run’ we will choose the truth. Moreover, ‘the
farther’ the other competing hypothesis is from the ‘truth,’ the more quickly
the log-likelihood classifier will zero in on the ‘truth.’

We shall return to this argument again in Chapter 7, when we discuss
large deviation theory.

This interpretation can be extended to a more general situation. The
interpretation of the K-L divergence given above assumes that one of the
two competing hypotheses is in fact the truth. What if this assumption does
not hold? Suppose the samples are generated by an underlying probability
distribution µ, and the competing hypotheses are that the distribution is ν
or θ. Then

E[log(Lν(ul1)/Lθ(ul1)), Pµ] = l

n∑
i=1

µi log(νi/θi)

=
n∑
i=1

µi log

(
νi
µi

)
−

n∑
i=1

µi log

(
θi
µi

)
=H(µ‖θ)−H(µ‖ν).

Hence, in the long run, the maximum likelihood classifier would choose ν
if H(µ‖ν) < H(µ‖θ), and choose θ if the inequality is reversed. In other
words, the K-L divergence induces a partial order on the set of probability
distributions. Given a fixed µ ∈ Sn, all the other ν ∈ Sn can be ranked in
terms of the divergence H(µ‖ν). If we try to choose between two competing
hypotheses ν and θ when the ‘truth’ is µ, in the long run we would choose
the one that is ‘closer’ to the ‘truth.’

Unfortunately the K-L divergence is not symmetric in general. That is,
in general

H(µ‖ν) 6= H(ν‖µ).
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Moreover, in general

H(µ‖ν) +H(ν‖θ) 6≥ H(µ‖θ).

Hence we cannot use the K-L divergence to define any kind of a ‘metric’
distance between probability measures. Nevertheless, the K-L divergence is
very useful, because it quantifies the probability of misclassification using
the log-likelihood criterion. Again, it is shown in [79] that if the log function
is replaced by some other strictly convex function, then it is possible for
the resulting ‘divergence’ to satisfy the triangle inequality. However, all the
other nice features such as the interpretation in terms of the log-likelihood
function would be lost.

In Definition 3.15, we introduced the notion of ‘mutual information’ be-
tween two random variables. It is now shown that the mutual information
can also be defined in terms of the K-L divergence.

Theorem 3.21 Suppose X ,Y are random variables assuming values in fi-
nite sets A,B respectively, and let φ denote their joint distribution. Then
the mutual information I(X ,Y) is given by

I(X ,Y) = H(φ‖φX × φY).

Proof. By definition we have that

I(X ,Y) = H(X ) +H(Y)−H((X ,Y)).

Now substitute directly in terms of φ, and observe that

(φX )i =

m∑
j=1

φij , (φY)j =

n∑
i=1

φij .

This gives

I(X ,Y) =−
n∑
i=1

 m∑
j=1

φij

 log(φX )i −
m∑
j=1

[
n∑
i=1

φij

]
log(φY)j

+

n∑
i=1

m∑
j=1

φij log φij

=

n∑
i=1

m∑
j=1

φij log

[
φij

(φX )i(φY)j

]
=H(φ‖φX × φY).

2

The above line of reasoning is extended in the next result, which is some-
times referred to as the ‘information inequality’.

Theorem 3.22 Suppose A,B are finite sets, that µA,µB are distributions
on A,B respectively, and that ν is a distribution on the product set A × B.
Then

H(ν‖µA × µB) ≥ H(νA‖µA) +H(νB‖µB). (3.32)

with equality if and only if ν is a product distribution, i.e. ν = νA × νB.
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Proof. Let us write the K-L divergence in terms of the loss function, and
note that H(ν) ≤ H(νA) +H(νB). This gives

H(ν‖µA × µB) = J(ν‖µA × µB)−H(ν)

≥ J(ν‖µA × µB)−H(νA)−H(νB)

= J(νA‖µA) + J(νB‖µB)−H(νA)−H(νB)

=H(νA‖µA) +H(νB‖µB).

Here we make use of the easily proved fact

J(ν‖µA × µB) = J(νA‖µA) + J(νB‖µB).

In order for the inequality to be an equality, we must have H(ν) = H(νA) +
H(νB), which is the case if and only if ν is a product distribution, i.e.
ν = νA × νB. 2

The next theorem gives a nice expression for the K-L divergence between
two probability distributions of joint random variables. In [26], p. 24, this
result is referred to as the “chain rule” for the K-L divergence.

Theorem 3.23 Suppose φ,θ are probability distributions on a product set
A× B, where |A| = n and |B| = m. Suppose φ� θ. Let φX ,θX denote the
marginal distributions on A. Then

H(φ‖θ) = H(φX ‖θX ) +

n∑
i=1

(φX )iH(φ{Y|X=ai}‖θ{Y|X=ai}). (3.33)

Proof. To simplify the notation, let us use the symbols

fi :=

m∑
j=1

φij , 1 ≤ i ≤ n, f := [f1 . . . fn] ∈ Sn,

gi :=

m∑
j=1

θij , 1 ≤ i ≤ n,g := [g1 . . . gn] ∈ Sn.

Thus both f and g are probability distributions on A. Next, for each i
between 1 and n, define

cij :=
φij
fi
, dij :=

θij
gi
, 1 ≤ j ≤ m.

ci := [ci1 . . . cim],di := [di1 . . . dim].

Then clearly

φ{Y|X=ai} = ci, and θ{Y|X=ai} = di.

As per the conventions established earlier, if fi = 0 for some i, we take
ci = φY . In other words, when conditioned on the ‘impossible’ event X = ai,
the conditional distribution of Y is taken as its marginal distribution. Similar
remarks apply in case gi = 0 for some i. Next let us study the dominance
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between these conditional distributions. If gi = 0 for some index i, then
it follows that θij = 0 ∀j. Since φ � θ, this implies that φij = 0 ∀j,
i.e., that fi = 0. In other words, the dominance condition φ � θ implies
that φX � θX . The same dominance condition φ � θ also implies that
ci � di ∀i.

Now, in terms of the new symbols, the desired conclusion (3.33) can be
rewritten as

H(φ‖θ) = H(f‖g) +

n∑
i=1

fiH(ci‖di).

This relationship can be established simply by expanding H(φ‖θ). Note
that

H(φ‖θ) =

n∑
i=1

m∑
j=1

φij log

(
φij
θij

)

=

n∑
i=1

m∑
j=1

φij log

(
ficij
gidij

)

=

n∑
i=1

 m∑
j=1

φij

 log
fi
gi

+

n∑
i=1

m∑
j=1

ficij log

(
cij
dij

)

=H(f‖g) +

n∑
i=1

fiH(ci‖di).

This is the desired relationship. 2

We conclude this chapter with a couple of useful properties of the K-L
divergence.

Theorem 3.24 The K-L divergence H(φ‖θ) is jointly convex in φ,θ; that
is, if φ1,φ2,θ1,θ2 ∈ Sn with φ1 � θ1, φ2 � θ2 and λ ∈ (0, 1), we have

H(λφ1+(1−λ)φ2‖λθ1+(1−λ)θ2) ≤ λH(φ1‖θ1)+(1−λ)H(φ2‖θ2). (3.34)

The proof of Theorem 3.24 depends on an auxiliary lemma called the ‘log
sum inequality’ that is of independent interest.

Lemma 3.25 Suppose α1, . . . , αm, β1, . . . , βm are nonnegative, and that at
least one αi and at least one βj are positive. Assume further that βi = 0 ⇒
αi = 0. Then

m∑
i=1

αi log

(
αi
βi

)
≥

(
m∑
i=1

αi

)
· log

(∑m
i=1 αi∑m
j=1 βj

)
. (3.35)

Remark: Note that neither the αi’s nor the βi’s need to add up to one
in order for (3.35) to hold.
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Proof. (of Lemma 3.25) Define

A =

n∑
i=1

αi, B =

n∑
i=1

βi, ai =
αi
A
, bi =

βi
B
, i = 1, . . . , n.

Then the vectors a = [a1 . . . an],b = [b1 . . . bn] ∈ Sn. Thus it follows from
Theorem 3.19 that

n∑
i=1

ai log

(
ai
bi

)
≥ 0.

Now let us substitute αi = Aai, βi = Bbi for all i. This leads to

m∑
i=1

αi log

(
αi
βi

)
=A

[
n∑
i=1

ai log

(
ai
bi

)
+

n∑
i=1

ai log
A

B

]

=A

[
n∑
i=1

ai log

(
ai
bi

)
+ log

A

B

]
because

n∑
i=1

ai = 1

≥A log
A

B
.

This is precisely (3.35). 2

Proof. (of Theorem 3.24): The left side of (3.34) is the sum over i = 1, . . . , n
of the term

gi := [λφ1i + (1− λ)φ2i] · log

(
λφ1i + (1− λ)φ2i

λθ1i + (1− λ)θ2i

)
.

Now apply the log sum inequality with m = 2 and

α1i = λφ1i, a2i = (1− λ)φ2i, β1i = λθ1i, b2i = (1− λ)θ2i.

Note that since φ1 � θ1, φ2 � θ2, it follows that βji = 0 ⇒ αji = 0 for
j = 1, 2. Then it follows from (3.35) that, for each i, we have

gi = (α1i + α2i) log
α1i + α2i

β1i + β2i

≤α1i log
α1i

β1i
+ α2i log

α2i

β2i

=λφ1i log
φ1i

θ1i
+ (1− λ)φ2i log

φ2i

θ2i
.

Summing over i = 1, . . . , n shows that

n∑
i=1

gi ≤ λH(φ1‖θ1) + (1− λ)H(φ2‖θ2),

which is the desired inequality. 2

The last result of this chapter relates the total variation metric and the
Kullback-Leibler divergence.
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Theorem 3.26 Suppose ν,µ ∈ Sn, and that µ� ν. Then

ρ(µ,ν) ≤ [(1/2)H(µ‖ν)]1/2. (3.36)

Proof. Let us view µ,ν as distributions on some finite set A. Define A+ :=
{i : µi ≥ νi}, and A− := {i : µi < νi}. Then together A+,A− partition A.
Next, let us define

p :=
∑
i∈A+

µi, q :=
∑
i∈A+

νi,

and observe that p ≥ q by the manner in which we have defined the two sets.
Moreover, it follows from (2.12) that

ρ(µ,ν) = p− q.
Next, by definition we have

H(µ‖ν) =
∑
i∈A+

µi log

(
µi
νi

)
+
∑
i∈A−

µi log

(
µi
νi

)
≥ p log

p

q
+ (1− p) log

1− p
1− q

.

The last step follows from the log sum inequality because∑
i∈A+

µi log

(
µi
νi

)
≥

∑
i∈A+

µi

 log

(∑
i∈A+

µi∑
i∈A+

νi

)
= p log

p

q
,

and similarly for the other term.
Thus the proof of the inequality (3.36) can be achieved by studying only

distributions on a set of cardinality two. Define φ = (p, 1−p),ψ = (q, 1− q)
and suppose p ≥ q. The objective is to prove that

p− q ≤ [(1/2)H(φ‖ψ)]1/2,

or equivalently that

2(p− q)2 ≤ p log
p

q
+ (1− p) log

1− p
1− q

, ∀q ∈ (0, p), ∀p ∈ (0, 1). (3.37)

To prove (3.37), define

f(q) := p log
p

q
+ (1− p) log

1− p
1− q

− 2(p− q)2,

viewed as a function of q for a fixed p. Then the objective is to show that
f(q) ≥ 0 for all q ∈ (0, p]. Clearly f(p) = 0. Moreover,

f ′(q) =−p
q

+
1− p
1− q

+ 4(p− q)

=
−p(1− q) + (1− p)q + 4(p− q)q(1− q)

q(1− q)

=−(p− q)4q2 − 4q + 1

q(1− q)

=−(p− q) (2q − 1)2

q(1− q)
.
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Hence f ′(p) = 0. Moreover, since (2q − 1)2 ≥ 0, q(1 − q) ≥ 0 always, it
follows that f ′(q) ≤ 0 ∀q < p. Hence f(q) ≥ 0 ∀q < p. 2

The result above is universally known as ‘Pinsker’s inequality’, but it
would be fairer to credit also Csiszar; see [29]. It turns out that if we seek a
bound of the form

H(µ‖ν) ≥ C[ρ(µ,ν)]2,

then C = 2 is the best possible constant. More generally, suppose we seek a
bound of the form

H(µ‖ν) ≥
∞∑
i=1

C2iV
2i,

where V = ρ(µ,ν). Then it is shown in [104] that

H(µ‖ν) ≥ 1

2
V 2 +

1

36
V 4 +

1

270
V 6 +

221

340200
V 8.

The same paper also gives a general methodology for extending the power
series further, if one has the patience.

A couple of final comments. First, since the total variation metric is
symmetric while the K-L divergence is not, we can also write (3.36) as

ρ(µ,ν) ≤ max{[(1/2)H(µ‖ν)]1/2, [(1/2)H(ν‖µ)]1/2}. (3.38)

Second, there is no lower bound for the total variation metric in terms of
the K-L divergence. Indeed, there cannot be. Just choose ν,µ such that
for some index i we have νi = 0 but µi is very small but positive. Then
ρ(ν,µ) is small but H(µ‖ν) is infinite. So there cannot exist a lower bound
analogous to (3.38).
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Chapter Four

Nonnegative Matrices

In this chapter, the focus is on nonnegative matrices. They are relevant in
the study of Markov processes (see Chapter 5), because the state transition
matrix of a Markov process is a special kind of nonnegative matrix, known
as a stochastic matrix.1 However, it turns out that practically all of the
useful properties of a stochastic matrix also hold for the more general class
of nonnegative matrices. Hence it is desirable to present the theory in the
more general setting, and then specialize to Markov processes. The reader
may find the more general results useful in some other context.

Nonnegative matrices have two very useful properties. First, through sym-
metric row and column permutations, every nonnegative matrix can be put
into a corresponding “canonical form” that is essentially unique. Second, the
eigenvalues of a nonnegative matrix, subject to some additional conditions,
have a very special structure. The two sections of the present chapter are
devoted respectively to these two properties.

4.1 CANONICAL FORM FOR NONNEGATIVE MATRICES

In this section it is shown that to every nonnegative matrix A there corre-
sponds an essentially unique canonical form C. Moreover, A can be trans-
formed into C via symmetric row and column permutations.

4.1.1 Basic Version of the Canonical Form

Let R+ denote the set [0,∞) of nonnegative numbers. Suppose A ∈ Rn×n+ is
a given nonnegative matrix. It turns out that the canonical form associated
with A depends only on which elements of A are positive, but does not
otherwise depend on the size of the positive elements. Thus, to capture the
location of the positive elements of A, we defind the associated incidence
matrix T corresponding to A as follows: T ∈ {0, 1}n×n, and

tij =

{
1 if aij > 0,
0 if aij = 0.

Since A has n rows and columns, we can think of N := {1, . . . , n} as the
set of nodes of a directed graph, and place an edge from node i to node j if
and only if aij > 0 (or equivalently, tij = 1). A path of length l from node

1Both of these terms are defined in Chapter 5.
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i to node j is a sequence of pairs {(n0, n1), . . . , (nl−1, nl)}, where n0 = i,

nl = j, and in addition ans,ns+1
> 0 for all s = 0, . . . , l − 1. Let a

(l)
ij denote

the ij-th element of Al. From the matrix multiplication formula

a
(l)
ij =

n∑
s1=1

· · ·
n∑

sl−1=1

ais1as1s2 · · · asl−1j

it is obvious that a
(l)
ij > 0 if and only if there exists a path of length l from

i to j.
At this point the reader may wonder why we don’t define a path from i

to j as a sequence of length ≤ n. Clearly, in any sequence of length ≥ n+ 1,
there must exist at least one cycle (a path whose starting and end nodes are
the same). This cycle can be removed without affecting the existence of a
path from i to j. In short, there exists a path from i to j 6= i if and only if
there exists a path of length ≤ n− 1 from i to j. There exists a path from i
back to i if and only if there exists a path from i to itself of length ≤ n. So
why then do we not restrict the length of the path to be ≤ n?

The answer is found in the sentence at the end of the next to previous
paragraph. Given a matrix A, we wish to study the pattern of nonzero (or
positive) elements of successive power Al for all values of l, not just when

l ≤ n. Note that the statement “a
(l)
ij > 0 if and only if there exists a path of

length l from i to j” is valid for every value of l, even if l ≥ n+ 1.
We say that a node i leads to another node j if there exists a path of

positive length from i to j. We write i → j if i leads to j. In particular, i
leads to i if and only if there is a cycle from node i to itself. Thus it is quite
possible for a node not to lead to itself.

A node i is said to be inessential if there exists a j (of necessity, not
equal to i) such that i→ j, but j 6→ i. Otherwise, i is said to be essential.
Note that if i is essential, i leads to j implies j leads to i. By convention, if
a node i does not lead to any other node j, then i is taken to be inessential.
For instance, if row i of the matrix A is identically zero, then i is inessential.

With the above definitions, we can divide the set of nodes N = {1, . . . , n}
into two disjoint sets: I denoting the set of inessential nodes, and E denoting
the set of essential nodes.

Now it is claimed that if i ∈ E and i → j ∈ N , then j ∈ E . In other
words, an essential node can lead only to another essential node. The proof
of this claim makes use of the property that the relation → is transitive, or
in other words, i→ j and j → k implies that i→ k. The transitivity of→ is
clear from the definition of a path, but we give below an algebraic proof. If

i→ j, then there is an integer l such that a
(l)
ij > 0. Similarly, if j → k, then

there exists another integer r such that a
(r)
jk > 0. Now from the formula for

matrix multiplication, it follows that

a
(l+r)
ik =

n∑
s=1

a
(l)
is a

(r)
sk ≥ a

(l)
ij a

(r)
jk > 0.
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Thus i → k. Coming back to the main issue, we are given that i ∈ E and
that i → j ∈ N ; we wish to show that j ∈ E . For this purpose, we must
show that if j → k ∈ N , then k → j. Accordingly, suppose that j → k.
Since i→ j and j → k, the transitivity of→ implies that i→ k. Next, since
i ∈ E , it follows that k → i. Invoking once again the transivity property, we
conclude from k → i and i→ j that k → j. Since k is arbitrary other than
that j → k, this shows that j ∈ E .

We have just shown that if i ∈ E and i→ j, then j ∈ E . As a consequence,
if i ∈ E and j ∈ I, then i 6→ j. In particular, if i ∈ E and j ∈ I, then aij = 0.
Otherwise, if aij > 0, then i → j (because there is a path of length one),
which is a contradiction. We can now summarize this observation through
a very preliminary version of the canonical form.

Lemma 4.1 Renumber the rows and columns of A in such a way that all
the nodes in E come first, followed by all the nodes in I. Let Π denote the
permutation matrix corresponding to the renumbering. Then

Π−1AΠ =
E I

E
I

[
P 0
R Q

]
.

(4.1)

Example 4.1 Suppose a 10 × 10 matrix A has the following structure,
where × denotes a positive element. This notation is chosen deliberately to
highlight the fact that the actual values of the elements of A don’t matter,
only whether they are positive or zero. Note that the incidence matrix
corresponding to A can be obtained simply by changing all occurences of ×
to 1.

A =



0 × 0 0 × 0 0 × 0 0
0 0 × 0 0 0 × 0 × 0
0 × 0 × 0 × × 0 0 0
0 0 0 0 0 0 0 × 0 0
0 0 0 0 0 0 × 0 0 0
0 0 0 × 0 0 0 0 0 0
0 0 0 0 × 0 0 0 0 0
0 0 0 0 0 × 0 0 0 0
0 0 0 0 0 0 0 0 0 ×
0 0 0 0 0 0 0 0 × 0


.

With this matrix we can associate a directed graph where there is an edge
from node i to another node j if and only if aij > 0.

Let us compute the reachability matrix M of this graph, where we write
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mij = + if i→ j and mij = · if i 6→ j. Thus

M =



· + + + + + + + + +
· + + + + + + + + +
· + + + + + + + + +
· · · + · + · + · ·
· · · · + · + · · ·
· · · + · + · + · ·
· · · · + · + · · ·
· · · + · + · + + +
· · · · · · · · + +
· · · · · · · · + +


.

From the reachability matrix we can see that nodes 1, 2, 3 are inessential,
whereas nodes 4 through 10 are essential. So if we simply make a cyclic
permuation and shift 1, 2, 3 to the end, the matrix A now looks like

Π−1AΠ =

4 5 6 7 8 9 10 1 2 3
4
5
6
7
8
9

10
1
2
3



0 0 0 0 × 0 0 0 0 0
0 0 0 × 0 0 0 0 0 0
× 0 0 0 0 0 0 0 0 0
0 × 0 0 0 0 0 0 0 0
0 0 × 0 0 0 0 0 0 0
0 0 0 0 0 0 × 0 0 0
0 0 0 0 0 × 0 0 0 0
0 × 0 0 × 0 0 0 × 0
0 0 0 × 0 × 0 0 0 ×
× 0 × × 0 0 0 0 × 0


Thus the triangular structure of A is brought out clearly. As we develop the
theory further, we shall return to this example and refine further the matrix
on the right side.

Example 4.2 The purpose of this example is to demonstrate the possi-
bility that every node can be inessential. Suppose

A =

[
0 ×
0 0

]
.

Then it is easy to see that both nodes are inessential.

The next lemma shows when such a phenomenon can occur.

Lemma 4.2 Suppose A ∈ Rn×n+ and that every row of A contains at least
one positive element. Then there exists at least one essential node.

Proof. Suppose by way of contradiction that every node is inessential. Recall
that there are two ways in which a node i can be inessential: (i) i does not
lead to any other node, or (ii) there exists a j ∈ N such that i → j but
j 6→ i. By assumption, no row of A is identically zero. Hence every node i
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leads to at least one other node j (which could be the same as i). Hence the
first possibility is ruled out. Now choose a node i0 ∈ N arbitrarily. Since
i0 is inessential, there exists a node i1 ∈ N such that i0 → i1 but i1 6→ i0.
Clearly this implies that i1 6= i0. Now i1 is also inessential. Hence there
exists an i2 ∈ N such that i1 → i2 but i2 6→ i1. This implies, inter alia,
that i2 6= i1 and that i2 6= i0. It is obvious that i2 6= i1. If i2 = i0 then
i2 = i0 → i1, which is a contradiction. Now repeat the procedure. At step
l, we have l + 1 nodes i0, i1, . . . , il such that

i0 → i1 → · · · → il−1 → il, but il 6→ il−1.

We claim that this implies that il is not equal to any of i0, . . . , il−1; otherwise,
the transitivity property of → implies that we have il → il−1, which is a
contradiction. Hence all the l + 1 nodes are distinct. After we repeat the
process n times, we will supposedly have n + 1 distinct nodes i0, i1, . . . , in.
But this is impossible since there are only n nodes. Hence it is not possible
for every node to be inessential. 2

Lemma 4.3 Suppose A ∈ Rn×n+ and that every row of A contains at least
one positive element. Then every inessential node (if any) leads to an es-
sential node.

Proof. As before let E denote the set of essential nodes and I the set of
inessential nodes. From Lemma 4.2, we know that E is nonempty. If I is
nonempty, the lemma states that for all i ∈ I there exists a j ∈ E such that
i→ j. Accordingly, suppose i ∈ I is arbitrary. Since every row of A contains
at least one positive element, node i leads to at least one other node. Since
node i is inessential, there exists a j ∈ N such that i→ j but j 6→ i. If j ∈ E
the claim is established, so suppose j ∈ I. So there exists a k ∈ N such that
j → k but k 6→ j. Clearly k 6= j and also k 6= i since i → j. If k ∈ E , then
i → j → k and the claim is established, so suppose k ∈ I. Proceeding as
before, we can choose l ∈ N such that k → l but l 6→ k. Clearly l 6= i, j, k. If
l ∈ E then i→ j → k → l implies i→ l ∈ E . Proceeding in this fashion, we
will construct a sequence of nodes, all of them distinct, and all belonging to
I. Since I is a finite set, sooner or later this process must stop with some
node l ∈ E . Hence i → l ∈ E . Then it follows from Lemma 4.3 that there
exists a j ∈ E such that aij > 0. 2

These two lemmas lead to a slightly refined version of the canonical form.

Lemma 4.4 Suppose A ∈ Rn×n+ and that every row of A contains at least
one positive element. Then in the canonical form (4.1), the set E is nonempty.
Moreover, if the set I is also nonempty, then

1. The matrix R contains at least one positive element, i.e., R 6= 0.

2. Let m = |I|, the number of inessential nodes. Express Am in the form

Π−1AmΠ =
E I

E
I

[
Pm 0
R(m) Qm

]
.

(4.2)
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Then each row of R(m) contains at least one nonzero element.

Proof. The fact that E is nonempty follows from Lemma 4.2. If rij = 0 ∀i ∈
I, j ∈ E , then i 6→ j whenever i ∈ I, j ∈ E . We know from Lemma 4.3 that
this cannot be. This establishes the first statement.

The proof of the second statement is based on Lemmas 4.1 and 4.3. Note
that, since Π−1AΠ is block triangular, the diagonal blocks of Π−1AmΠ are
indeed Pm and Qm respectively. However, the off-diagonal block is a compli-
cated function of P and Q, so we denote it by R(m). Let i ∈ I be arbitrary.
Then from Lemma 4.3, there exists a j ∈ E such that i → j. It can be as-
sumed without loss of generality that the path from i to j does not contain
any other essential nodes. If the path from i to j does indeed pass through
another j′ ∈ E , then we can replace j by j′. So suppose i → j, and that
the path from i to j does not pass through any other essential node; thus
the path must pass through only inessential nodes. Since there are only m
inessential nodes, this implies that the path from i to j must have length no
larger than m. Denote this length by l(i, j). Next, since j ∈ E , there exists a
j′ ∈ E such that ajj′ > 0. This is because, if ajj′ = 0 for all j′, then clearly
the node j does not lead to any other node, and by definition j would be
inessential. Thus there exists a j′ such that ajj′ > 0. Now, it is obvious
that j → j′, and we already know from Lemma 4.1 that an essential node
can lead only to another essential node. Thus there exists a j′ ∈ E such that
ajj′ > 0. Concatenating the path of length l(i, j) from i to j with the path
of length one from j to j′, we get a path of length l(i, j) + 1 from i ∈ I to
j′ ∈ E . Repeating this process m − l(i, j) times gives a path from i ∈ I to
some k ∈ E that has length exactly equal to m. Thus, in the matrix R(m),
the ik-th entry is positive. Since i is arbitrary, this establishes the second
statement. 2

4.1.2 Irreducible Matrices

In order to proceed beyond the basic canonical form (4.1), we introduce the
notion of irreducibility.

Definition 4.5 A matrix A ∈ Rn×n+ is said to be reducible if there exists
a partition of N into disjoint nonempty sets I and J such that, through a
symmetric permutation of rows and columns, A can be brought into the form

Π−1AΠ =
I J

I
J

[
A11 0
A21 A22

]
, (4.3)

where Π is a permutation matrix. If this is not possible, then A is said to be
irreducible.

From the above definition, we can give an equivalent charactertization of
irreducibility: A ∈ Rn×n+ is irreducible if and only if, for every partition of
N into disjoint nonempty sets I and J , there exist i ∈ I and j ∈ J such
that aij > 0.
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The next result brings out the importance of irreducibility.

Theorem 4.6 For a given A ∈ Rn×n+ , the following statements are equiva-
lent:

(i) A is irreducible.

(ii) Every i ∈ N leads to every other j ∈ N .

Proof. (ii) ⇒ (i). Actually we prove the contrapositive, namely: If (i)
is false, then (ii) is false. Accordingly, suppose (i) is false and that A is
reducible. Put A in the form (4.3). Then it is easy to see that

Π−1AlΠ =
I J

I
J

[
Al11 0
Al21 Al22

]
.

Hence a
(l)
ij = 0 ∀i ∈ I, j ∈ J , ∀l. In turn this implies that i 6→ j whenever

i ∈ I, j ∈ J . Hence (ii) is false.
(i) ⇒ (ii). Recall the alternate characterization of irreducibility given

after Definition 4.5. Choose i ∈ N arbitrarily. It is shown that i leads to
every j ∈ N . To begin the argument, let l = 1, i1 = i, and consider the
partition I1 = {i1}, J1 = N \ I1. Since A is irreducible, there exists an
i2 ∈ J1 such that ai1i2 > 0. So i1 → i2. Next, let l = 2, and consider the
partition I2 = {i1, i2} and J2 = N \ I2. Since A is irreducible, there exists
an i3 ∈ J2 such that aisi3 > 0 for either s = 1 or s = 2. If s = 1, then
ai1i3 > 0 implies that i1 → i3. If s = 2, then i2 → i3. Since i1 → i2, the
transitivity of → implies that i1 → i3. In either case we can conclude that
i1 → i3. Repeat the argument. At step l we would have identified l distinct
nodes i1, . . . , il such that i1 → is for s = 2, . . . , l. Now consider the partition
Il = {i1, . . . , il}, Jl = N \Il. Since A is irreducible, there exists an il+1 ∈ Jl
such that aisil+1

> 0 for some s = 1, . . . , l. Since i1 → is for s = 2, . . . , l,
this implies that i1 → il+1. Notice that at each step we pick up yet another
distinct node. Hence, after l = n − 1 steps, we conclude that i → j for all
j 6= i, which is (i). 2

Corollary 4.7 For a given A ∈ Rn×n+ , the following statements are equiva-
lent:

(i) A is irreducible.

(ii) For each i, j ∈ N , there exists an integer l such that a
(l)
ij > 0.

(iii) Define

B :=

n−1∑
l=1

Al.

Then bij > 0 ∀i, j ∈ N , i 6= j. In other words, all off-diagonal elements
of B are positive
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Proof. (i) ⇒ (ii). The only difference between the present Statement (ii)
and Statement (ii) of Theorem 4.6 is that there is no restriction here that
i 6= j. Suppose A is irreducible. Then, as shown in Theorem 4.6, for every
i, j ∈ N , i 6= j, we have that i → j. By the same logic, j → i also. Thus
i→ i ∀i ∈ N .

(ii) ⇒ (i). Suppose (ii) is true. Then in particular i → j whenever
i, j ∈ N , i 6= j. So from Theorem 4.6, A is irreducible.

(iii) ⇔ (ii). Statement (iii) is equivalent to: For each i, j ∈ N , i 6= j,

there exists an l ≤ n − 1 such that a
(l)
ij > 0. This is the same as: For each

i, j ∈ N , i 6= j, there exists a path of length ≤ n− 1 from i to j. Clearly (iii)
implies (ii). To see that (ii) implies (iii), observe that if there is a path of
any length l from i to j 6= i, and if l ≥ n, then the path must include a cycle
(a path starting and ending at the same node). This cycle can be removed
from the path without affecting the reachability of j from i. Hence it can be
assumed that l ≤ n− 1, which is (iii). 2

4.1.3 Final Version of Canonical Form

With the aid of Theorem 4.6, we can refine the basic canonical form intro-
duced in Lemma 4.1.

We begin by reprising some definitions from Subsection 4.1.1. Given a
matrix A ∈ Rn×n+ , we divided the nodes in N = {1, . . . , n} into two disjoint
sets: The set E of essential nodes, and the set I of inessential nodes. We
also showed that aij = 0 whenever i ∈ E and j ∈ I, leading to the canonical
form (4.1). The objective of the present subsection is to refine further the
structure of the canonical form.

For this purpose, observe that the binary relation → (“leads to”) is an
equivalence relation on the set E . In order to be an equivalence relation, →
must satisfy the following three conditions:

(a) i→ i for all i ∈ E . (Reflexivity)

(b) i→ j implies that j → i. (Symmetry)

(c) i→ j, j → k together imply that i→ k.

Let us now verify each of these conditions in succession.
Suppose i ∈ E . Recall the convention that if i does not lead to any node,

then i is taken to be inessential. Hence i ∈ E implies that there exists some
j ∈ N (which could be i) such that i→ j. By the definition of an essential
node, this in turn implies that j → i. Now the transitivity of→ implies that
i → i. Hence → is reflexive. Next, suppose i → j 6= i. Since i ∈ E , this
implies that j → i. Hence→ is symmetric. Finally, the transitivity of→ has
already been established in Subsection 4.1.1. Therefore → is an equivalence
relation on E .

Note that → need not be an equivalence relation on N , the set of all
nodes. In particular, only transitivity is guaranteed, and → need not be
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either reflexive or symmetric. If we look at the matrix A of Example 4.1,
we see that node 1 is not reachable from itself. Moreover, node 2 can be
reached from node 1, but node 1 cannot be reached from node 2.

Since→ is an equivalence relation on E , we can partition E into its disjoint
equivalence classes under →. Let s denote the number of these equivalence
classes, and let E1, . . . , Es denote the equivalence classes. Hence if i, j ∈ E
belong to disjoint equivalence classes, then it follows that i 6→ j and j 6→ i.
In particular, aij = 0 whenever i, j belong to disjoint equivalence classes.
Now let us permute the elements of E in such a way that all elements of E1
come first, followed by those of E2, and ending finally with the elements of
Es. Note that the ordering of the equivalence classes themselves, as well as
the ordering of the elements within a particular equivalence class, can both
be arbitrary. With this permutation, the matrix P in (4.1) looks like

Π−1
P PΠP =

E1 . . . Es
E1
...
Es

 P1 . . . 0
...

. . .
...

0 . . . Ps

 .

Moreover, each matrix Pl has the property that every node in El leads to
every other node in El. Hence, by Theorem 4.6, it follows that each matrix
Pl is irreducible.

We can also refine the structure of the matrix Q in (4.1). Unfortunately,
the results are not so elegant as with P . Let us begin with the set I of
inessential nodes, and partition it into I1, . . . , Ir such that each Il is a com-
municating class, that is, each Il has the property that if i, j ∈ Il then
i → j and also j → i. From the definition, it is clear that if i, j ∈ I belong
to disjoint communicating classes, then either i→ j or j → i, but not both
(or perhaps neither). Hence the communicating classes can be numbered in
such a way that if i ∈ Ir1 and j ∈ Ir2 and r1 < r2, then i 6→ j. Note that
the ordering of these communicating classes need not be unique. With this
renumbering, the matrix Q in (4.1) becomes block-triangular.

These observations can be captured in the following:

Theorem 4.8 Given a matrix A ∈ Rn×n+ , identify the set E of essential
nodes and the set I of inessential nodes. Let s denote the number of equiv-
alence classes of E under →, and let r denote the number of distinct com-
municating classes of I under →. Then there exists a permutation matrix
Π over N such that

Π−1AΠ =
E I

E
I

[
P 0
R Q

]
.

(4.4)

Moreover, P and Q have the following special forms:

P =

E1 . . . Es
E1
...
Es

 P1 . . . 0
...

. . .
...

0 . . . Ps

 , (4.5)
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Q =

I1 I2 . . . Ir
I1

I2

...
Ir


Q11 0 . . . 0
Q21 Q22 . . . 0
...

...
. . .

...
Qr1 Qr2 . . . Qrr

 . (4.6)

If every row of A contains a positive element, then the set E is nonempty.
Moreover, if the set I is also nonempty, then every row of the matrix R
contains at least one positive element.

Example 4.3 Let us return to the matrix A of Example 4.1. We have
already seen that the essential nodes are E = {4, . . . , 10} and the inessential
nodes are I = {1, 2, 3}. To complete the canonical form, we need to do
two things. First, we need to identify the equivalence classes of E under
→. Second, we need to identify the communicating classes of I under →.
From the reachability matrix, we can see that there are three equivalence
classes of E , namely E1 = {4, 6, 8}, E2 = {5, 7}, and E3 = {9, 10}. Note that
the ordering of these sets is arbitrary. Next, the reachability matrix also
shows that there are two communicating classes in I, namely I1 = {2, 3}
and I2 = {1}. Here the ordering is not arbitrary if we wish Q to have a
block-triangular structure. Hence the matrix A can be permuted into the
following canonical form:

Π−1AΠ =

4 6 8 5 7 9 10 2 3 1

4
6
8
5
7
9

10
2
3
1



0 0 × 0 0 0 0
× 0 0 0 0 0 0
0 × 0 0 0 0 0
0 0 0 0 × 0 0
0 0 0 × 0 0 0
0 0 0 0 0 0 ×
0 0 0 0 0 × 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0 0 × × 0
× × 0 0 × 0 0
0 0 × × 0 0 0

0 × 0
× 0 0
× 0 0



4.1.4 Irreducibility, Aperiodicity and Primitivity

In this subsection we go beyond studying merely irreducible matrices, and
introduce two more notions, namely: the period of an irreducible matrix,
and primitive matrices. An important tool in this theory is the greatest
common divisor (g.c.d.) of a set of integers. The g.c.d. of a finite set of
integers is the stuff of high school arithmetic, but here we study the g.c.d.
of an infinite set of integers.

In the sequel, Z denotes the set of integers, and Z+ the set of nonnegative
integers. Throughout we use the notation “a|b” to denote the fact that a ∈ Z
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divides b ∈ Z, i.e., there exists another integer c ∈ Z such that b = ac. Note
that a|b if and only if the nonnegative integer |a| divides |b|.

Suppose b1, . . . , bm ∈ Z. Then their greatest common divisor (g.c.d.)
is an integer a that satisfies two conditions:

(i) a|bi for all i.

(ii) If c|bi for all i, then c|a.

The g.c.d. is unique except for its sign. Thus if a is a g.c.d. of {b1, . . . , bm},
then −a is the only other g.c.d. By convention, here we always take the
g.c.d. to be a positive number.

The following elementary fact is well-known. Suppose that b1, . . . , bm ∈
Z+ and let a ∈ Z+ denote their g.c.d. Then there exist c1, . . . , cm ∈ Z such
that

a =

m∑
i=1

cibi.

Note that the ci need not be nonnegative; they will just be integers, and in
general some of them will be negative. Since each bi is a positive multiple
of a, an easy consequence of this is that every sufficiently large multiple of
a can be expressed as a nonnegative “linear combination” of the bi’s. More
precisely, there exists an integer l0 such that, whenever l ≥ l0, we can find
nonnegative constants c1, . . . , cm ∈ Z+ such that

la =

m∑
i=1

cibi.

Just how large is “large enough”? It is shown in [42] that l0 ≤ b20, where
b0 := maxi bi.

All of this is fine for a finite set of integers. What about an infinite set
of integers? Suppose 1 ≤ b1 < b2 < . . . is a countable collection of integers.
We can define their g.c.d. in terms of the same two conditions (i) and (ii)
above. Notice that the definition of a g.c.d. is unambiguous even when
there are infinitely many integers. Define ai to be the g.c.d. of {b1, . . . , bi}.
Then 1 ≤ ai+1 ≤ ai. So the sequence {ai} is bounded below and therefore
converges to some value, call it a. Moreover, since each ai is an integer,
there exists an integer i0 such that ai = a ∀i ≥ i0. These observations
can be summarized as follows: Every set of integers {b1, b2, . . .}, ordered
such that 1 ≤ b1 < b2 < . . ., has a g.c.d., call it a. Moreover, there exists
an integer i0 such that a is the g.c.d. of {b1, . . . , bi0}. Every sufficiently
large multiple of a can be represented as a nonnegative linear combination
of b1, . . . , bi0 .

The next important concept is that of the period of a primitive matrix,
given in Definition 4.13. We lead up to this important definition in stages.

Lemma 4.9 Suppose A ∈ Rn×n+ is irreducible. Then for each i ∈ N , there

exists an integer r > 0 such that a
(r)
ii > 0.
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Proof. Given i ∈ N , choose an arbitrary j 6= i. Since A is irreducible,
Theorem 4.6 implies that i→ j and j → i Now the transitivity of→ implies

that i→ i. Hence a
(r)
ii > 0 for some integer r > 0. 2

Definition 4.10 Suppose A ∈ Rn×n+ is irreducible, and let i ∈ N . The

period of i is defined as the g.c.d. of all integers r such that a
(r)
ii > 0.

Example 4.4 Suppose A has the form

A =

 0 × 0
× 0 ×
× 0 0

 .
Then there are two cycles from node 1 to itself, namely: 1→ 2→ 1 (length

= 2) and 1 → 2 → 3 → 1 (length = 3). Hence a
(2)
ii > 0 and a

(3)
ii > 0. Since

the g.c.d. of 2 and 3 is one, the period of node 1 is 1.

Example 4.5 Suppose A has the form

A =


0 × 0 0
× 0 0 ×
× 0 0 0
0 0 × 0

 .
Then there are cycles from node 1 to itself of length 2 (1→ 2→ 1) and length
4 (1→ 2→ 4→ 3→ 1). All cycles from node 1 to itself are concatenations
of these two cycles. Hence every cycle from node 1 to itself has even length.
Therefore the period of node 1 is 2.

Now consider node 4. There is no cycle of length 2 from node 4 to itself,
but there are cycles of length 4 (4 → 3 → 1 → 2 → 4) and length 6
(4 → 3 → 1 → 2 → 1 → 2 → 4). The g.c.d. of 4 and 6 is also 2, so the
period of node 4 is also 2.

We shall see shortly that this is not a coincidence, but is a general property
of irreducible matrices. Incidentally, this example also shows the rationale
behind permitting the cycles to have lengths larger than the size of the
matrix.

Theorem 4.11 Suppose A ∈ Rn×n+ is irreducible. Then every node in N
has the same period.

Proof. For a node i, define

Si := {r : a
(r)
ii > 0}.

In words, Si consists of the lengths of all cycles from node i to itself. Let pi
denote the period of node i. Then by definition pi is the g.c.d. of all integers
in the set Si. In particular, pi|r ∀r ∈ Si.
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Choose any j 6= i. Since A is irreducible, we have from Corollary 4.7 that

i → j and j → i. So there exist integers l and m such that a
(l)
ij > 0 and

a
(m)
ji > 0. As a consequence,

a
(l+m)
ii =

n∑
s=1

a
(l)
is a

(m)
si ≥ a

(l)
ij a

(m)
ji > 0.

So l +m ∈ Si and as a result pi|(l +m).

Now let r ∈ Sj be arbitrary. Then by definition a
(r)
jj > 0. Therefore

a
(l+m+r)
ii =

n∑
s=1

n∑
t=1

a
(l)
is a

(r)
st a

(m)
ti ≥ a

(l)
ij a

(r)
jj a

(m)
ji > 0.

So l +m+ r ∈ Si, and pi|(l +m+ r). Since it has already been shown that
pi|(l +m), we conclude that pi|r. But since r is an arbitrary element of Sj ,
it follows that pi divides every element of Sj , and therefore pi|pj (where pj
is the period of node j).

However, i and j are arbitrary nodes, so their roles can be interchanged
throughout, leading to the conclusion that pj |pi. This shows that pi = pj
for all i, j. 2

Theorem 4.11 shows that we can speak of “the period of an irreducible
matrix” without specifying which node we are speaking about.

Definition 4.12 An irreducible matrix is said to be aperiodic if its period
is one.

Definition 4.13 A matrix A ∈ Rn×n+ is said to be primitive if there exists
an integer m such that Am > 0.

The next theorem is one of the key results in the theory of nonnegative
matrices.

Theorem 4.14 Given a matrix A ∈ Rn×n+ , the following statements are
equivalent:

(i) A is irreducible and aperiodic.

(ii) A is primitive.

Proof. We begin with a simple observation. Consider two statements:

1. There exists an integer m such that Am > 0 (that is, A is primitive as
defined in Definition 4.13).

2. There exists an integer l0 such that Al > 0 ∀l ≥ l0.

We claim that both statements are equivalent. It is clear that Statement
2 implies Statement 1; just take m = l0. To prove the implication in the
opposite direction, suppose Statement 1 is true. Then clearly no row of A
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can be identically zero. (If a row of A is identically zero, then the same row
of Am would continue to be identically zero for all values of m.) Suppose

a
(m)
ij > 0 ∀i, j ∈ N . Then

a
(m+1)
ij =

n∑
s=1

aisa
(m)
sj > 0 ∀i, j,

since ais > 0 for at least one value of s for each given i, and a
(m)
sj > 0 for

every s, j. This shows that Am+1 > 0. Now repeat with m replaced by
m+ 1, and use induction.

(ii) ⇒ (i). Suppose A is primitive. Then A has to be irreducible. If A
has the form

Π−1AΠ =

[
× 0
× ×

]
after symmetric permutation of rows and columns, then Am has the form

Π−1AmΠ =

[
× 0
× ×

]
for every value of m. So a reducible matrix cannot be primitive. Second,
suppose A is irreducible but has period p > 1. Then, by the definition of

the period, it follows that a
(l)
ii = 0 whenever l is not a multiple of p. Hence

Statement 2 above is false and A cannot be primitive.
(i) ⇒ (ii). Suppose A is irreducible and aperiodic. Fix a value i ∈ N .

Let d1, d2, . . . denote the lengths of all the cycles from i to itself. By the
definition of the period, the g.c.d. of all these lengths is one. Hence the
g.c.d. of a finite subset of these lengths is also one. Let d1, . . . , ds denote
the finite subset of the cycle lengths whose g.c.d. is one. Then, as discussed
at the beginning of this subsection, every sufficiently large integer r can be
expressed as a nonnegative linear combination of the form r =

∑s
t=1 µtdt.

Clearly, if there are cycles of lengths d1, . . . , ds from node i to itself, then
there is a cycle of length

∑s
t=1 µtdt for every set of nonnegative integers

µ1, . . . , µs. (Follow the cycle of length dt µt times, and do this for t =
1, . . . , s.) So the conclusion is that there exists an integer ri such that,
for every integer r ≥ ri, there is a cycle of length r from node i to itself.
Note that the smallest such integer ri may depend on i. Now define r∗ :=
max{r1, . . . , rn}. Then by the manner in which in which r∗ has been chosen,
it follows that

a
(r)
ii > 0, ∀i ∈ N , ∀r ≥ r∗.

Now it is shown that Ar
∗+n−1 > 0; this is enough to show that A is primitive.

To show that Ar
∗+n−1 > 0, we must show that for each i, j ∈ N , there

exists a path of length exactly equal to r∗ + n from node i to node j. It

can be assumed that i 6= j, since a
(r∗+n−1)
ii is already known to be positive

for all i. Since A is irreducible, we have from Theorem 4.6 that every i
leads to every other j. Choose a path of length µ(i, j) from node i to
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node j. Without loss of generality, it can be assumed that µ(i, j) ≤ n − 1.
Now by the characterization of the integer r∗, there exists a path of length
r∗ + n− 1− µ(i, j) from node i to itself. If this is concatenated with a path
of length µ(i, j) from node i to node j, we will get a path of length r∗+n−1
from node i to node j. Hence Ar

∗+n−1 > 0 and A is primitive. 2

Theorem 4.14 shows that, if A is irreducible and aperiodic, then Al > 0
for all sufficiently large l. Now we answer the question of how large l needs
to be.

Theorem 4.15 Suppose A ∈ Rn×n+ is irreducible and aperiodic. Define

m0(A) := min{m : Am > 0}.
Next, define

µ(n) := max
A∈Rn×n

+

m0(A),

where it is understood that the maximum is taken only over the set of irre-
ducible and aperiodic matrices. Then

(n− 2)(n− 1) ≤ µ(n) ≤ 3n2 + n− 1. (4.7)

Proof. As a preliminary first step, we repeat the trick from the proof of
Theorem 4.14. Define

l0(A) := min{l∗ : Al > 0 ∀l ≥ l∗}.
Then it is claimed that l0(A) = m0(A). It is obvious that m0(A) ≤ l0(A),
since by definition Al0(A) > 0. To prove the converse, observe as before that
if A is irreducible, then no row of A can be identically zero. Let m = m0(A).

Then by assumption a
(m)
ij > 0 ∀i, j. So

a
(m+1)
ij =

n∑
s=1

aisa
(m)
sj > 0 ∀i, j,

since ais > 0 for some s and a
(m)
sj > 0 for every s. Repeating this argument

with m replaced by m+ 1,m+ 2 etc. shows that Al > 0 ∀l ≥ m0(A). Hence
l0(A) ≤ m0(A).

First we establish the lower bound for µ(n). Note that the bound is trivial
if n = 1 or 2, since the left side equals zero in either case. So suppose n ≥ 3,
and define A ∈ Rn×n+ to be a cyclic permutation matrix on N = {1, . . . , n}
with one extra positive element, as follows:

a1,2 = 1, a2,3 = 1, . . . , ai,i+1 = 1 for i = 1, . . . , n− 1, an,1 = 1,

and in addition an−1,1 = 1. All other elements of A are zero. To illustrate,
if n = 5, then

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0

 .
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Now there are two cycles of length n− 1 and n respectively from node 1 to
itself; these are 1→ 2→ · · · → n−1→ 1 and 1→ 2→ · · · → n−1→ n→ 1.
There are no other cycles of length ≤ n − 1. Hence all cycles from node 1
to itself are have lengths of the form α(n− 1) + βn for nonnegative integers
α and β. It is easy to verify that (n − 2)(n − 1) is the smallest integer
l0 with the property that every integer l ≥ l0 can be expressed in the form
α(n−1)+βn for nonnegative integers α and β. Hence l0(A) = (n−2)(n−1),
whence µ0(A) ≥ (n− 2)(n− 1).

The proof of the upper bound requires a result that is not proven here;
see [1, 2], Lemma 2.3. It follows from this lemma that if A is irreducible
and aperiodic, then for every integer s ≥ 3n2, there exits a cycle of length
s from node i to itself for every i. Now we can repeat the argument in
the proof of Theorem 4.14 to show that for every integer l ≥ 3n2 + n − 1,
there exists a path of length l from node i to node j, for every i, j. Hence
l0(A) ≤ 3n2 + n− 1, for every irreducible and aperiodic A. 2

4.1.5 Canonical Form for Periodic Irreducible Matrices

Up to now we have been studying aperiodic irreducible matrices. In this
section, the focus is on irreducible matrices whose period is greater than
one.

Lemma 4.16 Suppose A ∈ Rn×n+ is irreducible and has period p ≥ 2.
Then for each i, j ∈ N = {1, . . . , n}, there exists a unique integer r(i, j) ∈
{0, . . . , p− 1} such that the length of every path from node i to node j equals
r(i, j) mod p.

Proof. Consider two distinct paths from node i to node j, of lengths l1 and l2
respectively. The desired conclusion is that l1 = l2 mod p, or equivalently,
that p|(l1 − l2). Choose some path of length m from node j to node i. Such
a path exists because A is irreducible. By concatenating this path with the
two paths from node i to node j, we get two cycles from node i to itself, of
lengths l1 + m and l2 + m respectively. Now, since p is the period of A, it
divides the length of each cycle. Thus p|(l1 + m) and p|(l2 + m). Hence p
divides the difference, i.e., p|[(l1 +m)− (l2 +m)], or p|(l1 − l2). 2

Lemma 4.17 Suppose A ∈ Rn×n+ is irreducible and has period p ≥ 2. Define
the integer r(·, ·) as in Lemma 4.16. Then for all i, j, k ∈ N , we have that

r(i, k) = [r(i, j) + r(j, k)] mod p.

Proof. Choose a path of length l from node i to node j, and of length m from
node j to node k. By concatenating the two paths, we get a path of length
l+m from node i to node k. Now Lemma 4.16 implies that r(i, k) = (l+m)
mod p, irrespective of how the paths are chosen. But clearly

r(i, k) = (l +m) mod p = [l mod p+m mod p] mod p

= [r(i, j) + r(j, k)] mod p.
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This is the desired conclusion. 2

The above two lemmas suggest a way of partitioning the nodes in N .
Choose an arbitrary node i ∈ N . Define

Cs := {j ∈ N : r(i, j) = s}, s = 1, . . . , p− 1.

THus Cs consists of all nodes reachable from node i by paths of length s
mod p. Finally, define

C0 := N \
[
∪p−1
s=1Cs

]
.

Clearly i ∈ C0, since every cycle from node i to itself has length 0 mod p,
and as a result i 6∈ Cs for s = 1, . . . , p− 1. But C0 could contain other nodes
as well. (See Example 4.6 below.) In fact, C0 consists of all nodes that are
reachable from node i by paths whose lengths are multiples of p. Now the
following observation is a ready consequence of Lemma 4.17.

Lemma 4.18 Partition N into disjoint sets C0, . . . , Cp−1 as above. Then,
for j1 ∈ Cs1 and j2 ∈ Cs2 , we have

r(j1, j2) = (s2 − s1) mod p.

Proof. Note that

jl ∈ Csl ⇒ r(i, sl) = sl mod p, for l = 1, 2.

Hence, from Lemma 4.17,

r(j1, j2) = [r(i, j2)− r(i, j1)] mod p = (s2 − s1) mod p.

This is the desired conclusion. 2

Now we are in a position to state the main result of this section.

Theorem 4.19 Suppose A ∈ Rn×n+ is irreducible and has period p ≥ 2.
Partition N into disjoint sets C0, . . . , Cp−1 as above. Then, by a symmetric
permutation of rows and columns, A can be put in the form

Π−1AΠ =

C0 C1 C2 . . . Cp−2 Cp−1

C0
C1
C2
...
Cp−2

Cp−1



0 A01 0 . . . 0 0
0 0 A12 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 Ap−2,p−1

Ap−1,0 0 0 . . . 0 0


=: B,

(4.8)
where the matrix As,s+1 has dimension |Cs| × |Cs+1|. This canonical form is
unique to within (i) a cyclic permutation of the classes C0, . . . , Cp−1, and (ii)
an arbitrary permutation of the indices within each class. Moreover, each of
the p cyclic products

M0 := A01A12 · · ·Ap−1,0,



text September 25, 2011

98 CHAPTER 4

M1 := A12 · · ·Ap−1,0A01, . . .

Mp−1 := Ap−1,0A01 · · ·Ap−2,p−1 (4.9)

is primitive.

Proof. It readily follows from Lemma 4.18 that if i ∈ Cs and j ∈ Ct, then
aij = 0 unless t = (s+1) mod p. This is because if aij > 0, then there exists
a path of length one from node i to node j, which implies that r(i, j) = 1,
which in turn implies that t = (s+1) mod p. This shows that the permuted
matrix Π−1AΠ has the block-cyclic form shown in (4.8).

It remains only to show that each of the matrices in (4.9) is primitive. Note
that the matrix B defined in (4.8) has a nonzero matrix only in block (i, i+1)
for i = 0, . . . , p− 1. (Here and elsewhere in this proof, all indices exceeding
p − 1 should be replaced by their values mod p.) Hence, for every integer
m ≥ 1, Bm has a nonzero matrix only in blocks (i, i+m) for i = 0, . . . , p−1.
In particular, Bp is block-diagonal and equals

Bp =

C0 . . . Cp−1

C0
...
Cp−1

 M0 . . . 0
...

. . .
...

0 . . . Mp−1

 .

So for every integer l, Bpl equals

Bpl = (Bp)l =

C0 . . . Cp−1

C0
...
Cp−1

 M l
0 . . . 0

...
. . .

...
0 . . . M l

p−1

 .

The assertion that each Mi is primitive is equivalent to the statement that
each of the diagonal blocks of Bpl is a strictly positive matrix for all suf-
ficiently large values of l. Hence the assertion that each Mi is primitive is
equivalent to the following statement: There exists an integer l0 such that,
for all l ≥ l0, there exists a path of length lp from node i to node j whenever
they both belong to the same class Cs, for some s ∈ {0, . . . , p− 1}. Accord-
ingly, suppose i, j belong to the same class Cs. By the definition of these
classes, it follows that there is a path from node i to node j whose length
is a multiple of p; call it m(i, j)p. By the definition of the period, the g.c.d.
of the lengths of all cycles from node i to itself is p. Hence there exists an
integer l0(i) such that there exist cycles of length lp from node i to itself for
all l ≥ l0(i). Hence there exist paths of length lp from node i to node j for
all l ≥ l0(i) +m(i, j). Since there are only finitely many i, j, the quantity

l0 := max
i,j
{l0(i) +m(i, j)}

is finite. Moreover, for all l ≥ l0, there exist paths of length lp from node i
to node j whenever i, j belong to the same class Cs, This shows that each
matrix Mi is primitive. 2
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Example 4.6 Suppose A is a 9× 9 matrix of the form

A =

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9



0 × 0 × 0 0 × 0 ×
0 0 × 0 0 × 0 × 0
0 0 0 0 × 0 0 0 0
0 0 0 0 0 × 0 0 0
0 × 0 0 0 0 × 0 0
× 0 0 0 0 0 0 0 0
0 0 × 0 0 0 0 × 0
× 0 0 0 × 0 0 0 0
0 0 × 0 0 0 0 0 0


It can be verified that A has period 3. The classes (starting from node 1)
are:

C0 = {1, 5}, C1 = {2, 4, 7, 9}, C2 = {3, 6, 8}.

After permuting rows and columns accordingly, the matrix A can be put in
the form

Π−1AΠ =

1 5 2 4 7 9 3 6 8

1
5
2
4
7
9
3
6
8



0 0 × × × × 0 0 0
0 0 × 0 × 0 0 0 0
0 0 0 0 0 0 × × 0
0 0 0 0 0 0 0 × 0
0 0 0 0 0 0 × 0 ×
0 0 0 0 0 0 × 0 0
0 × 0 0 0 0 0 0 0
× 0 0 0 0 0 0 0 0
× 0 0 0 0 0 0 0 0



4.2 PERRON-FROBENIUS THEORY

In this section, we present various theorems about primitive and irreducible
matrices. The first such theorems are due to Perron [87] and Frobenius [50,
51, 52]. Perron’s original paper was for positive matrices, while Frobenius
extended the theory to nonnegative matrices. The paper by Wielandt [117]
was very influential in that most subsequent expositions of the theory follow
his approach. But the theory continues to be known by the names of the
two originators. A substantial generalization of the theory results when
nonnegative matrices are replaced by matrices that leave a given “cone”
invariant. For an exposition of this approach, see [17]. Much of the discussion
in this section follows [99], Chapter 1.

Throughout this section, we write x ≥ 0 to indicate that every component
of a (row or column) vector x is nonnegative, and x > 0 to indicate that
every component of x is positive. Similarly, A ≥ 0 (A > 0) indicates that
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every component of the matrix A is nonnegative (positive). Expressions such
as x ≥ y or B < A are self-explanatory. Also, given an arbitrary row vector
x ∈ Cn, the symbol x+ denotes the vector [|x1| . . . |xn|] ∈ Rn+. Note that x+

always belongs to Rn+. The notation A+ is defined analogously. Finally, as
in Chapter 2, the symbol Sn denotes the n-dimensional simplex, i.e.,

Sn = {x ∈ Rn+ :

n∑
i=1

xi = 1}.

Given a matrix A, the spectrum of A consists of all eigenvalues of A and
is denoted by spec(A). If spec(A) = {λ1, . . . , λn}, then

ρ(A) := max{|λi| : λi ∈ spec(A)}
is called the spectral radius of A. Note that spec(A) can contain complex
numbers, but ρ(A) is always real and nonnegative.

4.2.1 Perron-Frobenius Theorem for Primitive Matrices

In this section, we state and prove the principal result for primitive matrices.
In the next subsection, it shown that very similar results hold for irreducible
matrices even if they are not primitive.

We begin with an upper bound for the spectral radius of an arbitray
matrix.

Lemma 4.20 Given a matrix A ∈ Rn×n, define

r(A; x) := min
j∈N

(xA+)j
xj

∀x ∈ Sn,

and

r(A) := max
x∈Sn

r(A; x). (4.10)

Then ρ(A) ≤ r(A).

Proof. Note that in the definition of r(A; x), we take the ratio (xA+)j/xj to
be ∞ if xj = 0. However, since x ∈ Sn, clearly xj 6= 0 for at least one index
j ∈ N . Hence r(A; x) is finite for all x ∈ Sn. An equivalent and alternate
definition of r(A; x) is:

r(A; x) := max{λ ∈ R+ : xA+ ≥ λx}.
This definition brings out clearly the fact that, for a fixed matrix A, the
map x 7→ r(A; x) is upper semi-continuous.2 Suppose λi → λ0,xi →
x0, A+xi ≥ λixi where λi, λ0 ∈ R+ and xi,x0 ∈ Sn. Then it is obvious
that A+x0 ≥ λ0x0, whence r(A; x0) ≥ λ0. In particular, if xi → x0 and
r0 = lim supi→∞ r(A; xi), then r(A; x0) ≥ r0. Since Sn is a compact subset
of Rn, r(A; ·) attains its maximum on Sn.

2The reader is referred to [95] for various concepts and results from real analysis, such
as compactness, semi-continuity etc.
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To show that ρ(A) ≤ r(A), let λ ∈ C be an arbitrary eigenvalue of A, and
let z ∈ Cn be an associated eigenvector. Without loss of generality, we can
scale z such that z+ ∈ Sn. Now

λzj =

n∑
i=1

ziaij ∀j ∈ N ,

|λ||zj | =

∣∣∣∣∣
n∑
i=1

ziaij

∣∣∣∣∣ ≤
n∑
i=1

|zi||aij | ∀j ∈ N ,

|λ| ≤ min
j∈N

(z+A+)j
(z+)j

≤ r(A).

Hence ρ(A) ≤ r(A). 2

Now we come to the Perron-Frobenius theorem for primitive matrices.

Theorem 4.21 Suppose A ∈ Rn×n+ is primitive. Then

(i) ρ(A) is an eigenvalue of A.

(ii) There exists a row eigenvector v > 0 of A corresponding to the eigen-
value ρ(A).

(iii) If B ∈ Rn×n satisfies 0 ≤ B ≤ A, then ρ(B) ≤ ρ(A), with equality if
and only if B = A.

(iv) Rank[ρ(A)I −A] = n− 1, so that the eigenvectors of A associated with
the eigenvalue ρ(A) are multiples of each other.

(v) ρ(A) is a simple eigenvalue of A.

(vi) If λ is any other eigenvalue of A, then |λ| < ρ(A).

Proof. Since r(A; ·) is an upper semi-continuous function on Sn and Sn is a
compact subset of Rn+, there exists a vector v ∈ Sn such that r(A; v) = r(A).
For brevity, let r stand for r(A). Also, let l be an integer such that Al > 0.
Such an integer l exists because A is primitive.

(i). Since r(A; v) = r(A), it follows from the definition of r(·) that vA−
rv ≥ 0. (Note that A+ = A since A is a nonnegative matrix.) Let z denote
vA− rv. If z = 0 then vA = rv and we are through, so suppose by way of
contradiction that z 6= 0. Then, since z ≥ 0, z 6= 0, and Al > 0, it follows
that

0 < zAl = (vAl)A− r(vAl).

Now vAl > 0 since v ≥ 0,v 6= 0 and Al > 0. Hence vAl can be scaled such
that y := (1/µ)vAl belongs to Sn. Since dividing by the constant µ does
not affect the sign of anything, we have

0 < yA− ry.
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Hence we can choose a number λ > r such that yA − λy ≥ 0. So r(y) is
strictly larger than r = r(A). But this contradicts the definition of r(A) in
(4.10). Hence it must be the case that z = 0, that is, vA = rv. Therefore
r(A) is an eigenvalue of A. In turn this implies that ρ(A) ≥ r(A). But
ρ(A) ≤ r(A) from Lemma 4.20. We conclude that ρ(A) = r(A) and that
ρ(A) is an eigenvalue of A.

(ii). It has already been established that vA = rv for some v ≥ 0, v 6= 0.
Hence vAl = [ρ(A)]lv. Moreover, v ≥ 0,v 6= 0 and Al > 0 together imply
that vAl > 0. Finally v = (1/[ρ(A)]l)vAl > 0. Hence there exists a strictly
positive row eigenvector of A corresponding to the eigenvalue ρ(A).

(iii). Suppose 0 ≤ B ≤ A. Let β be an eigenvalue of B and let y ∈ Cn
be an associated column eigenvector of B; that is, By = βy. Since B ≤ A,
it follows that xB ≤ xA ∀x ∈ Rn+. Also, By = βy implies that

|β|y+ ≤ By+ ≤ Ay+. (4.11)

Multiplying both sides by v gives

|β|vy+ ≤ vAy+ = ρ(A)vy+.

Now vy+ > 0 since v > 0 and y+ ≥ 0,y+ 6= 0. So we can divide both sides
of the above inequality by vy+ > 0, and conclude that |β| ≤ ρ(A). Since β
is an arbitrary eigenvalue of A, it follows that ρ(B) ≤ ρ(A).

To prove the second part of the claim, suppose |β| = ρ(A) = r. Then
(4.11) implies that

z := Ay+ − ry+ ≥ 0.

As in the proof of Statement (i), if z 6= 0, then we get a contradiction to
the definition of r(A). Hence z = 0, or Ay+ = ry+. Now we can multiply
both sides by Al > 0 to get A(Al)y+ = rAly+ and in addition, Aly+ > 0.
Also, since Ay+ = ry+, we have that Aly+ = rly+ > 0, which means that
y+ > 0. Now (4.11) also implies that

ry+ = By+ = Ay+, or (B −A)y+ = 0,

since the two extreme inequalities are in fact equalities. Since B − A ≤ 0
and y+ > 0, the only way for (B−A)y+ to equal 0 is to have B = A. Hence
Statement (iii) is proved.

(iv). Suppose ry = yA, so that y is also a row eigenvector of A corre-
sponding to the eigenvalue r = ρ(A). Then, as in the proof of Lemma 4.18
and Statement (i) above, it follows that y+ also satisfies ry+ = y+A. Also,
by noting that y+A

l = rly+ > 0, and that y+ ≥ 0 and y+ 6= 0, it follows
that y+A

l > 0 and hence y+ > 0. Hence every row eigenvector of A cor-
responding to the eigenvalue r = ρ(A) must have all nonzero components.
Now let v denote the vector identified in the proof of Statement (i). Then
r(v−cy) = (v−cy)A for all complex constants c. Suppose y is not a multiple
of v. Then it is possible to choose the constant c in such a way v− cy 6= 0,
but at least one component of v− cy equals zero. Since v− cy 6= 0, v− cy
is a row eigenvector of A corresponding to the eigenvalue r = ρ(A), and it
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has at least one component equal to zero, which is a contradiction. Hence y
is a multiple of v. Thus it has been shown that the equation y(rI −A) = 0
has only one independent solution, i.e., that Rank(rI −A) = n− 1.

(v). Let φ(λ) := det(λI − A) denote the characteristic polynomial of A,
and let Adj(λI − A) denote the adjoint matrix of λI − A. We have already
seen that ρ(A) = r is an eigenvalue of A; hence φ(r) = 0. Now it is shown
that φ′(r) 6= 0, which is enough to show that r is a simple zero of the
polynomial φ(·) and hence a simple eigenvalue of A.

For brevity let M(λ) denote Adj(λI−A). Then it is easy to see that each
element of M(λ) is a polynomial of degree ≤ n− 1 in λ. For every value of
λ, we have

(λIn −A)M(λ) = φ(λ)In.

Differentiating both sides with respect to λ leads to

M(λ) + (λIn −A)M ′(λ) = φ′(λ).

Let v > 0 denote the eigenvector found in the proof of Statement (i). Then
rv = vA, or v(rIn−A) = 0. So if we right-multiply both sides of the above
equation by v and substitute λ = r, we get

φ′(r)v = vM(r) + v(rIn −A)M ′(λ) = vM(r). (4.12)

Thus the proof is complete if it can be shown that vM(r) > 0, because that
is enough to show that φ′(r) > 0.

We begin by establishing that no row of M(r) is identically zero. Specifi-
cally, it is shown that the diagonal elements of M(r) are all strictly positive.
For each index i ∈ N , the ii-th element of M(r) is the principal minor given
by

mii(r) = det(rIn−1 − Āi),

where Āi ∈ R(n−1)×(n−1)
+ is obtained from A by deleting the i-th row and

i-th column. Now it is claimed that ρ(Āi) < ρ(A) = r. To see this, suppose
first (for notational convenience only) that i = 1. Then the two matrices

Ā1 =

 a22 . . . a2n

...
. . .

...
an2 . . . ann

 , and A∗1 =


0 0 . . . 0
0 a22 . . . a2n

...
...

. . .
...

0 an2 . . . ann


have exactly the same spectrum, except that A∗1 has an extra eigenvalue at
zero. For other values of i, A∗i equals A with the i-th row and i-th column set
equal to zero, while Āi is obtained from A by deleting the i-th row and i-th
column. Hence, for all i, the matrices A∗i and Āi have the same spectrum,
except that A∗i has an extra eigenvalue at zero. Now 0 ≤ A∗i ≤ A. Moreover,
A∗i 6= A since A is irreducible and thus cannot have an identically zero row
or zero column. Hence by Statement (iii) above, ρ(A∗i ) < ρ(A) = r. In
particular, r is not an eigenvalue of Āi, and as a consequence,

mii(r) = det(rIn−1 − Āi) 6= 0 ∀i ∈ N .
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Actually, we can conclude that

mii(r) = det(rIn−1 − Āi) > 0 ∀i ∈ N . (4.13)

To see this, define the characteristic polynomial φi(λ) := det(λI−Āi). Then
φi(λ) > 0 when l is positive and sufficiently large. So if φi(r) < 0, then φi(·)
would have a real zero > r, which contradicts the fact that ρ(A∗i ) < r. Hence
(4.13) is established.

We have thus far established that every row of M(r) contains a positive
element. Now

M(r)(rIn −A) = φ(r)In = 0.

Hence every nonzero row of M(r) is a row eigenvector of A corresponding
to the eigenvalue r. Since mii(r) > 0 for each i, it follows that every row of
M(r) is a positive multiple of v. In other words, M(r) has the form

M(r) = wv,w ∈ Rn+.

Now let us return to (4.12). Substituting for M(r) and “cancelling” v (which
is permissible since v > 0) shows that

φ′(r) = wv > 0.

Hence r is a simple eigenvalue of A.
(vi). The claim is that if λ is any eigenvalue of A such that |λ| = ρ(A) = r,

then of necessity λ = ρ(A). Suppose |λ| = ρ(A) = r with corresponding row
eigenvector z ∈ Cn. Then

λzj =

n∑
i=1

ziaij , ∀j ∈ N , and λlzj =

n∑
i=1

zia
(l)
ij , ∀j ∈ N .

As before, let z+ ∈ Rn+ denote the vector [|z1| . . . |zn|]. Then, just as in the
proof of Lemma 4.18, λz = zA implies that |λ|z+ ≤ z+A. However, |λ| = r
by assumption. Hence, as in the proof of Statement (i), rz+ ≤ z+A implies
that in fact rz+ equals z+A, and as a consequence rlz = zAl. In other
words,

|λlzj | =

∣∣∣∣∣
n∑
i=1

zia
(l)
ij

∣∣∣∣∣ =

n∑
i=1

|zi|a(l)
ij , ∀j ∈ N .

Since the zi are complex numbers in general, and since a
(l)
ij > 0 for all i, j,

the magnitude of the sum of zia
(l)
ij equals the sum of the magnitudes of zia

(l)
ij

if and only if all these complex numbers are aligned, i.e., there is a common
number θ such that

zia
(l)
ij = |zi|a(l)

ij exp(iθ) ∀i, j ∈ N ,

where i =
√
−1. Dividing through by the positive number aij shows that

zi = |zi| exp(iθ) ∀i ∈ N .
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Let us return to rz+ = z+A. By Statement (iv), this implies that z+ = cv
for some positive constant c, or

z = c exp(iθ)v.

Therefore

zA = c exp(iθ)vA = c exp(iθ)rv = rz.

Since zA = λz, this shows that rz = λz, and since at least one component
of z is nonzero, this shows that λ = r. 2

4.2.2 Perron-Frobenius Theorem for Irreducible Matrices

In this section, we study irreducible matrices that have a period p ≥ 2. From
Theorem 4.14, we know that an aperiodic irreducible matrix is primitive. So
Theorem 4.21 applies to such matrices.

There are two distinct ways to approach the study of such matrices. First,
we can examine the proof of Theorem 4.21 and see how much of it can
be salvaged for periodic matrices. Second, we can use Theorem 4.19 in
conjunction with Theorem 4.21. It turns out that each approach leads to its
own distinctive set of insights. We begin with a preliminary result that is
useful in its own right.

Lemma 4.22 Suppose A ∈ Rn×m and B ∈ Rm×n. Then every nonzero
eigenvalue of AB is also an eigenvalue of BA.

Proof. Suppose λ 6= 0 is an eigenvalue of AB, and choose x 6= 0 such that
ABx = λx. Clearly Bx 6= 0. Now

BABx = λBx.

Since Bx 6= 0, this shows that λ is also an eigenvalue of BA with corre-
sponding eigenvector Bx. The converse follows by interchanging A and B
throughout. 2

Note that the above reasoning breaks down if λ = 0. Indeed, if n 6= m
(say n > m to be precise), then the larger matrix (AB if n > m) must
necessarily be rank deficient, and thus must have at least n−m eigenvalues
at zero. But if BA is nonsingular, then it will not have any eigenvalues at
zero. Therefore Lemma 4.22 can be stated as follows: Given two matrices
A,B of complementary dimensions (so that both AB and BA are well-
defined), both AB and BA have the same spectrum, except for the possibility
that one of them may have some extra eigenvalues at zero. In particular,
ρ(AB) = ρ(BA).

Theorem 4.23 Suppose A ∈ Rn×n+ is irreducible and has period p ≥ 2.
Then

(i) The eigenvalues of A exhibit cyclic symmetry with period p. Specifi-
cally, if λ is an eigenvalue of A, so are

λ exp(i2πk/p), k = 1, . . . , p− 1.
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(ii) In particular, r = ρ(A) is an eigenvalue of A, and so are

r exp(i2πk/p), k = 1, . . . , p− 1.

Proof. (i). Suppose λ ∈ C is an eigenvalue of A, and note that if λ = 0, then
λ exp(i2πk/p) = 0 for all k. So we need to study only the case where λ 6= 0.
Without loss of generality, we can assume that A is in the canonical form
(4.8), because permuting the rows and columns of a matrix does not change
its spectrum. So we use the symbol A (instead of B) for the canonical form.
Suppose λ ∈ C is an eigenvalue of A, and choose x 6= 0 such that λx = xA.
Partition x commensurately with the canonical form. Then λx = xA can
be also be partitioned, and implies that

xjAj,j+1 = λxj+1, j = 0, . . . , p− 1, (4.14)

where if j = p − 1 we take j + 1 = 0 since p = 0 mod p. Now let α :=
exp(i2π/k) denote the p-th root of 1. Fix an integer k between 1 and p− 1,
and define the vector y(k) ∈ Cn by

y
(k)
j = α−jkxj = exp(−i2πjk/p)xj , j = 0, . . . , p− 1.

Now it follows from (4.14) that

y
(k)
j Aj,j+1 =α−jkxjAj,j+1

=α−jkλxj+1 = λαkα−(j+1)kxj+1

=λαkyj+1.

Hence y(k) is an eigenvector of A corresponding to the eigenvalue λαk. This
argument can be repeated for each integer k between 1 and p − 1. This
establishes Statement (i).

(ii). Again, assume without loss of generality that A is in the canonical
form (4.8), and define matrices M0, . . . ,Mp−1 as in (4.9). Thus, as in the
proof of Theorem 4.19, it follows that

Ap = Block Diag{M0, . . . ,Mp−1}.
Hence the spectrum of Ap is the union of the spectra of M0, . . . ,Mp−1. More-
over, it is clear from (4.9) that these p matrices are just cyclic products of
A01 through Ap−1,0. Hence repeated application of Lemma 4.22 shows that
each of these matrices has the same set of nonzero eigenvalues. (Since these
matrices may have different dimensions, they will in general have different
numbers of eigenvalues at zero.) As a consequence

ρ(M0) = ρ(M1) = · · · = ρ(Mp−1) =: c, say.

We also know from Theorem 4.19 that each of the p matrices M0, . . . ,Mp−1

is primitive. Hence ρ(Mi) = c is an eigenvalue of Mi for each i. Therefore
c is a p-fold eigenvalue of Ap. Since the spectrum of Ap consists of just the
p-th powers of the spectrum of A, we see that some p-th roots of c are also
eigenvalues of A. However, it now follows from Statement (i) that in fact
every p-th root of c is an eigenvalue of A. This is precisely Statement (ii).
2
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Theorem 4.24 Suppose A ∈ Rn×n+ is irreducible. Then

(i) ρ(A) is an eigenvalue of A.

(ii) There exists a row eigenvector v > 0 of A corresponding to the eigen-
value ρ(A).

(iii) If B ∈ Rn×n satisfies 0 ≤ B ≤ A, then ρ(B) ≤ ρ(A), with equality if
and only if B = A.

(iv) Rank[ρ(A)I −A] = n− 1, so that the eigenvectors of A associated with
the eigenvalue ρ(A) are multiples of each other.

(v) ρ(A) is a simple eigenvalue of A.

(vi) If A is aperiodic, then every other eigenvalue λ of A satisfies |λ| <
ρ(A). Otherwise, if A has period p ≥ 2, then each of the p numbers
ρ(A) exp(i2πk/p), k = 0, . . . , p − 1 is an eigenvalue of A. All other
eigenvalues λ of A satisfy |λ| < ρ(A).

Remarks: Comparing Theorem 4.21 and 4.24, we see that only Statement
(vi) is different in the two theorems.

Proof. The proof consists of mimicking the proof of Theorem 4.21 with minor
changes. Hence we give the proof in a very sketchy form.

Since A is irreducible, it follows from Corollary 4.7 that the matrix

M := I +B =

n−1∑
i=0

Ai

is strictly positive. Moreover, if zA = λz, then

zM =

(
n−1∑
i=0

λi

)
z.

(i). This is already established in Theorem 4.23, but we give an inde-
pendent proof paralleling that of Theorem 4.21. Define r(A) as in Lemma
4.20, and choose v ∈ Sn such that r(v) = r(A). Define z = vA− rv where
r = r(A). Then z ≥ 0. If z = 0 then we are through, so suppose by
way of contradiction that z 6= 0. Then zM > 0 because M > 0. Thus
b < zM = vAM−rvM = vMA−rvM because A and M commute. More-
over vM > 0 since v ∈ Sn and M > 0. So if we define y = (1/µ)vM , then
y ∈ Sn for a suitable scaling constant µ, and yA− ry > 0. This contradicts
the definition of r(A). Hence z = 0 and r is an eigenvalue of A.

(ii). We know that vA = rv. So vAM = vMA = rvM , and vM > 0.
So there exists a strictly positive eigenvector of A corresponding to r.

(iii). The proof is identical to the proof of Statement (iii) in Theorem
4.21, except that instead of multiplying by Al we multiply by M .

(iv). Ditto.
(v). The proof is identical to that of Statement (v) in Theorem 4.21.
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(vi). It has already been shown in Statement (ii) of Theorem 4.23 that
each of the complex numbers ρ(A) exp i2πk/p, k = 0, . . . , p − 1 is an eigen-
value of A. So it remains only to show that there are no other eigenvalues
of A with magnitude ρ(A). Suppose λ is an eigenvalue of A. Then λp is an
eigenvalue of the matrix Ap. Since A has the canonical form (4.8), it follows
that λp is an eigenvalue of one of the matrices Mi. Each of these matrices
is primitive, so every eigenvalue other than [ρ(A)]p has magnitude strictly
less than [ρ(A)]p. Hence we either have λp = [ρ(A)]p, or else |λ|p < [ρ(A)]p.
This is precisely Statement (vi). 2
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Chapter Five

Markov Chains

In this chapter, we begin our study of Markov processes, which form the
core topic of the book. We define the “Markov property,” and show that
all the relevant information about a Markov process assuming values in a
finite set of cardinality n can be captured by a nonnegative n × n matrix
called the “state transition matrix.” Then we invoke the results of Chapter
4 on nonnegative matrices to analyze the temporal evolution of Markov
processes. Then we proceed to a discussion of more advanced topics such as
hitting times and ergodicity. Still more advanced topics such as mixing, and
parameter estimation are discussed in the next chapter.

5.1 THE MARKOV PROPERTY AND THE STATE TRANSI-

TION MATRIX

Throughout, N denotes a finite set {x1, . . . , xn}.1 For the purposes of the
simplified setting studied here, we define a “stochastic process” over N to be
a sequence of random variables {X0,X1,X2, . . .} or {Xt}∞t=0 for short, where
each Xt is a random variable assuming values in the set N. Though the
index t could in principle stand for just about anything, it is most common
to think of t as representing “time.” If we think of the parameter t as
representing “time,” then notions such as “past” and “future” make sense.
Thus if t < t′, then Xt is a “past” variable for Xt′ , while Xt′ is a “future”
variable for Xt. However, the index need not always represent time. For
instance, when the stochastic process corresponds to the genome sequence
of an organism, the set N is the four symbol nucleotide alphabet {A,C,G, T},
and the sequencing is spatial rather than temporal. Similarly when we think
of the primary structure of a protein, the set N is the twenty symbol set of
amino acids. In the case of both DNA and proteins, the sequences have a
definite spatial direction and therefore cannot be “read backwards.” This
spatial orientation allows us to replace the “past” and “future” by “earlier”
and “later.”

Another point worth emphasizing is is the abstract nature of the set N.
We write N = {x1, . . . , xn} as opposed to N = {1, . . . , n} to dispel the no-
tion that the elements of the set N can be identified with integers. (Having
said this, we will sometimes write N = {1, . . . , n} if that makes the notation

1Note that until now we had been using the symbols A and B to denote finite sets.
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less cumbersome.) Going back to the DNA example, in this book we write
the four nucleotides in the order {A,C,G, T}, thus arranging Adenine (A),
Cytosine (C), Guanine (G) and Thymine (T ) in English alphabetical order.
But some authors write them in the order A, T,C,G or some other permu-
tation of the four symbols. Clearly, in order to be meaningful, our methods
of analysis cannot depend on the order in which these symbols are arranged,
and must possess an inherent “permutation invariance.” To summarize the
discussion, the ordering of the elements within the set N is not meaningful
or permanent, but the ordering of the parameter t is indeed meaningful.

Let us return to the “stochastic process” {Xt}∞t=0. For each integer T ,
the random variables (X0,X1, . . . ,XT ) have a joint distribution, which is a
probability distribution over the finite set XT+1. Since in this book we try to
“avoid the infinite” to the extent possible, we will not speak about the “joint
law” of all the infinitely many random variables taken together. However,
it is essential to emphasize that our exposition is somewhat constricted due
to this self-imposed restriction, and is definitely somewhat impoverished as
a consequence. The ability to “cope with the infinite” in a mathematically
meaningful and consistent manner is one of the substantial achievements of
axiomatic probability theory.

Now we introduce a very fundamental property called the Markov prop-
erty.

Definition 5.1 The process {Xt}∞t=0 is said to possess the Markov prop-
erty, or to be a Markov process, if for every t ≥ 1 and every sequence
u0 . . . ut−1ut ∈ Nt+1, it is true that

Pr{Xt = ut|X0 = u0, . . .Xt−1 = ut−1} = Pr{Xt = ut|Xt−1 = ut−1}. (5.1)

Recall that a conditional probability of Xt, irrespective of on what mea-
surements it is conditioned, is a probability distribution on the set N. The
Markov property states therefore that the conditional probability distribu-
tion of the “current state” Xt depends only on the “immediate past” state
Xt−1, and not on any of the previous states. Thus adding some more mea-
surements prior to time t − 1 does not in any way alter the conditional
probability distribution of Xt.

For convenience, we introduce the notation X kj to denote the entity (Xi, j ≤
i ≤ k. Alternatively, X kj = (Xj ,Xj+1, . . . ,Xk−1,Xk). Clearly this notation
makes sense only if j ≤ k. With this notation, we can rephrase Definition
5.1 as follows: The stochastic process {Xt} is a Markov process if, for every
(u0, . . . , ut) ∈ Nt+1, it is true that

Pr{Xt = ut|X t−1
0 = u0 . . . ut−1} = Pr{Xt = v|Xt−1 = ut−1}.

For any stochastic process {Xt} and any sequence u0 . . . ut−1ut ∈ Nt+1,
we can always write

Pr{X t0 = u0 . . . ut} = Pr{X0 = u0} ·
t−1∏
i=0

Pr{Xi+1 = ui+1|X i0 = u0 . . . ui}.
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This follows from repeated application of the definition of conditional prob-
ability. However, if the process under study is a Markov process, then the
above formula can be simplified to

Pr{X t0 = u0 . . . ut} = Pr{X0 = u0} ·
t−1∏
i=0

Pr{Xi+1 = ui+1|Xi = ui}. (5.2)

Thus, with a Markov process, the length of the “tail” on which the condi-
tioning is carried out is always one.

In the probability literature, one often uses the name “Markov chain” to
denote a Markov process {Xt} where the underlying parameter t assumes
only discrete values (as opposed to taking values in a continuum, such as R+

for example). In the present book, attention is restricted only to the case
where t assumes values in Z+, the set of nonnegative integers. Accordingly,
we use the expressions “Markov process” and “Markov chain” interchange-
ably.

The formula (5.2) demonstrates the importance of the quantity

Pr{Xt+1 = u|Xt = v},
viewed as a function of three entities: The “current” state v ∈ N, the “next
state” u ∈ N, and the “current time” t ∈ Z+. Recall that N is a finite set.
Let us fix the time t for the time being, and define the quantity

aij(t) := Pr{Xt+1 = j|Xt = i}, i, j ∈ N = {1, . . . , n}, t ∈ Z+. (5.3)

Thus aij(t) is the probability of making a transition from the current state
i to the next state j at time t.

Definition 5.2 The n × n matrix A(t) = [aij(t)] is called the state tran-
sition matrix of the Markov process at time t. The Markov chain is said
to be homogenous if A(t) is a constant matrix for all t ∈ Z+, and inho-
mogenous otherwise.

Lemma 5.3 Suppose {Xt} is a Markov process assuming values in a finite
set N of cardinality n, and let A(t) denote its state transition matrix at time
t. Then A(t) is a stochastic matrix for all t. That is:

aij(t) ∈ [0, 1] ∀i, j ∈ N, t ∈ Z+.

n∑
j=1

aij(t) = 1 ∀i ∈ N, t ∈ Z+.

Proof. Both properties are obvious from the definition. A conditional prob-
ability always lies between 0 and 1. Moreover, the sum of the conditional
probabilities over all possible outcomes equals one. 2

Lemma 5.4 Suppose {Xt} is a Markov process assuming values in a finite
set N of cardinality n, and let A(t) denote its state transition matrix at time
t. Suppose the initial state X0 is distributed according to c0 ∈ Sn. That is,

Pr{X0 = xi} = ci ∀i ∈ N.
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Then for all t ≥ 0, the state Xt is distributed according to

ct = c0A(0)A(1) . . . A(t− 1). (5.4)

Proof. Pick an arbitrary element ut ∈ N. Then it follows from (5.2) that

Pr{Xt = ut}=
∑

u0u1...ut∈Nt+1

Pr{X0 = u0} ·
t−1∏
i=0

Pr{Xi+1 = ui+1|Xi = ui}

=
∑

u0u1...ut∈Nt+1

cu0
au0,u1

(0) . . . aut−1,ut
(t− 1).

But the right side is just the ut-th component of ct = c0A(0)A(1) . . . A(t−1)
written out in expanded form. 2

Example 5.1 This example is a variation on the card game “blackjack,”
in which the objective is to keep drawing cards until the total value of the
cards drawn equals or exceeds twenty one. In the present simplified version,
the thirteen cards are replaced by a four-sided die. (It may be mentioned
that in many ancient cultures, dice were made from animal bones, and had
only four sides since they were oblong.) The four sides are labelled as 0,
1, 2 and 3 (as opposed to the more conventional 1, 2, 3 and 4), and are
equally likely to appear on any one throw. A player rolls the die again and
again, and Xt denotes the accumulated score after t throws. If the total
exactly equals nine, the player wins; otherwise he loses. It is assumed that
the outcome of each throw is independent of all the previous throws.

It is now shown that {Xt} is a Markov process assuming values in the set
N := {0, 1, . . . , 8,W,L} of cardinality eleven. Let Yt denote the outcome of
the roll of the die at time t. Then

Pr{Yt = 0} = Pr{Yt = 1} = Pr{Yt = 2} = Pr{Yt = 3} = 1/4.

Now let us examine the distribution of Xt. We know that Xt = Xt−1 + Yt,
except that if Xt−1 +Yt = 9 we take Xt = W (win), and if Xt−1 +Yt > 9 we
take Xt = L (loss). If Xt−1 = W or L, then the game is effectively over, and
we take Xt = Xt−1. These observations can be summarized in the following
rules: If Xt−1 ≤ 5, then

Pr{Xt = Xt−1} = Pr{Xt = Xt−1 + 1}=

Pr{Xt = Xt−1 + 2} = Pr{Xt = Xt−1 + 3}= 1/4.

If Xt−1 = 6, then

Pr{Xt = 6} = Pr{Xt = 7} = Pr{Xt = 8} = Pr{Xt = W} = 1/4.

If Xt−1 = 7, then

Pr{Xt = 7} = Pr{Xt = 8} = Pr{Xt = W} = Pr{Xt = L} = 1/4.

If Xt−1 = 8, then

Pr{Xt = 8} = Pr{Xt = W} = 1/4,Pr{Xt = L} = 2/4.
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Finally, if Xt−1 = W or L, then Pr{Xt = Xt−1} = 1.
The process {Xt} is a Markov process because the probability distribution

of Xt depends only on the value of Xt−1, and does not at all depend on
how the score happened to reach Xt−1. In other words, when it comes
to determing the probability distribution of Xt, only the value of Xt−1 is
relevant, and all past values of Xi, i ≤ t− 2 are irrelevant.

The state transition matrix of the Markov process is an 11 × 11 matrix
given by

A =



1/4 1/4 1/4 1/4 0 0 0 0 0 0 0
0 1/4 1/4 1/4 1/4 0 0 0 0 0 0
0 0 1/4 1/4 1/4 1/4 0 0 0 0 0
0 0 0 1/4 1/4 1/4 1/4 0 0 0 0
0 0 0 0 1/4 1/4 1/4 1/4 0 0 0
0 0 0 0 0 1/4 1/4 1/4 1/4 0 0
0 0 0 0 0 0 1/4 1/4 1/4 1/4 0
0 0 0 0 0 0 0 1/4 1/4 1/4 1/4
0 0 0 0 0 0 0 0 1/4 1/4 2/4
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1


Since the transition matrix does not explicitly depend on t, the Markov chain
is homogeneous.

It is natural that the game begins with the initial score equal to zero.
Thus the “random variable” X0 equals zero, or in other words, the initial
distribution c ∈ R1×11 has a 1 in the first component and zeros elsewhere.
Now repeated application of the formula (5.4) gives the distributions of the
random variables X1,X2, etc. If ct denotes the distribution of Xt, then we
have

c0 = c = [1 0 . . . 0],

c1 = c0A = [1/4 1/4 1/4 1/4 0 . . . 0],

c2 = [1/16 2/16 3/16 4/16 3/16 2/16 1/16 0 0 0 0],

and so on. One noteworthy feature of this Markov process is that it is
nonstationary. Note that each Xt has a different distribution. The precise
definition of a stationary process is that the joint distribution (or law) of
all the infinitely many random variables {X0,X1,X2, . . .} is the same as the
joint law of the variables {X1,X2,X3, . . .}. A necessary, but not sufficient,
condition for stationarity is that each individual random variable must have
the same distribution. This condition does not hold in the present case.
So it is important to note that a homogeneous Markov chain can still be
nonstationary – it depends on what the initial distribution is.

Another noteworty point about this Markov chain is that if we examine
the distribution ct, then Pr{Xt = 0 through 8} approaches zero as t → ∞.
In plain English, all games will “eventually” wind up in either a win or a
loss. All other states are “transient.” This idea is made precise in the next
section.
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5.2 DYNAMICS OF STATIONARY MARKOV CHAINS

In this section, we study the dynamics of Markov chains where the state
transition matrix is constant with time. By applying the general results on
nonnegative matrices from Chapter 4, we show that it is possible to partition
the state space into “recurrent” and “transient” states. Then we analyze the
dynamics in greater detail, and derive explicit formulas for the probability
that a trajectory will hit a specified subset of the state space, as well as the
average time needed to do so.

5.2.1 Recurrent and Transient States

In this section, we specialize the contents of Chapter 4 to stochastic matrices,
which are a special kind of nonnegative matrix, and thereby draw some very
useful conclusions about the temporal evolution of stationary Markov chains.

Definition 5.5 Suppose A is a stochastic matrix of dimension n × n; that
is, A ∈ [0, 1]n×n, and

∑n
j=1 aij = 1 for all i ∈ N. Then a vector π ∈ Sn is

said to be a stationary distribution of A if πA = π.

The significance of a stationary distribution is obvious. Suppose {Xt} is a
homogeneous Markov chain with the state transition matrix A. We have seen
(as in Example 5.1) that, depending on the initial distribution, the resulting
process {Xt} may have different distributions at different times. However,
suppose A has a stationary distribution π (and at the moment we don’t
know whether a given matrix has a stationary distribution). Then πAt = π
for all t. So if X0 has the distribution π, then it follows from (5.4) that Xt
also has the same distribution π for all values of t. To put it in words, if
a Markov chain is started off in a stationary distribution (assuming there is
one), then all future states also have the same stationary distribution. It is
therefore worthwhile to ascertain whether a given stochastic matrix A does
indeed have a stationary distribution, and if so, to determine the set of all
stationary distributions of A.

Theorem 5.6 Suppose A is a stochastic matrix. Then

1. ρ(A) = 1 where ρ(·) is the spectral radius.

2. By a symmetric permutation of rows and columns, A can be put into
the canonical form

A =
E I

E
I

[
P 0
R Q

]
, (5.5)

where E is the set of essential states and I is the set of inessential
states.

3. If the set I is nonempty, then R contains at least one positive element.
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4. By further row and column permutations, P can be put in the form

P =

E1 . . . Es
E1
...
Es

 P1 . . . 0
...

. . .
...

0 . . . Ps

 , (5.6)

where each Ei is a communicating class and each Pi is irreducible.

5. ρ(Pi) = 1 for i = 1, . . . , s, and each Pi has a unique invariant distri-
bution vi ∈ Sni

, where ni = |Ei|.

6. If I is nonempty, then ρ(Q) < 1.

7. The matrix A has at least one stationary distribution. The set of all
stationary distributions of A is given by

{[λ1v1 . . . λsvs 0], λi ≥ 0 ∀i,
s∑
i=1

λi = 1}. (5.7)

8. Let c ∈ Sn be an arbitrary initial distribution. If I is nonempty,
permute the components of c to be compatible with (5.5), and write

c = [cE cI ]. Partition ct = cAt as ct = [c
(t)
E c

(t)
I ]. Then c

(t)
I → 0 as

t→∞, irrespective of c.

As a prelude to the proof, we present a lemma that may be of some interest
in its own right.

Lemma 5.7 Suppose M ∈ Rn×n+ , and define

µ(M) := max
i∈N

n∑
j=1

mij .

Then

ρ(M) = r(M) ≤ µ(M), (5.8)

where r(·) is defined in Lemma 4.3 and (4.9).

Proof. The equality of ρ(M) and r(M) follows from Statement (i) of Theo-
rem 4.24. Select an arbitrary vector x ∈ Sn. It is shown that r(x) ≤ µ(M);
then (5.8) follows from (4.9), the definition of r(M). So suppose x ∈ Sn is
arbitrary, and choose an index j∗ ∈ N such that

xj∗ = max
j∈N

xj .

The index j∗ need not be unique, but this does not matter. We can choose
any one index j∗ such that the above holds. Then

(xM)j∗ =

n∑
i=1

ximij∗ ≤
n∑
i=1

xj∗mij∗ ≤ µ(M)xj∗ .
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So

r(x) = min
j∈N

(xM)j
xj

≤ (xM)j∗

xj∗
= µ(M).

So the desired conclusion (5.8) follows. 2

Proof. (of Theorem 5.6): Everything here follows as almost a routine con-
sequence of the results that have alreadby been proved in Chapter 4.

(1) Let en denote the column vector consisting of all one’s. Then the fact
that A is stochastic can be expressed as

Aen = en.

This shows that λ = 1 is an eigenvalue of A, with corresponding column
eigenvector en. So ρ(A) ≥ 1. On the other hand, since every row of A sums
to one, it follows from Lemma 5.7 that µ(A) = 1, whence ρ(A) ≤ r(A) ≤
µ(A) = 1. Combining these two observations shows that indeed ρ(A) = 1.

(2) The canonical form (5.5) is a ready consequence of Theorem 4.8. In
fact (5.5) is the same as (4.4).

(3) Since A is stochastic, no row of A can be identically zero. So the
statement follows from Theorem 4.8.

(4) This statement also follows from Theorem 4.8.
(5) Since A is stochastic, it is obvious from (5.5) and (5.6) that each Pi is

also stochastic. Hence by Statement 1 it follows that ρ(Pi) = 1 for all i. But
now we have the additional information that each Pi is irreducible. Hence
we conclude from Statement (iv) of Theorem 4.24 that there is a positive
eigenvector φi ∈ Rni

+ such that φiPi = φi, and that all row eigenvectors of Pi
corresponding to the eigenvalue one are multiples of this φi. Choose vi ∈ Sni

to be a multiple of φi. Obviously vi is unique.
(6) Suppose I is nonempty, and let m = |I| denote the cardinality of I.

Partition Am as

Am =
E I

E
I

[
Pm 0
R(m) Qm

]
,

Then, from the second statement of Lemma 4.4, it follows that each row
of R(m) contains a nonzero element. Thus each row sum of Qm is strictly
less than one. Now it follows from Lemma 5.7 that ρ(Qm) < 1. Since
ρ(Qm) = [ρ(Q)]m, it follows that ρ(Q) < 1.

(7) Put A in the form (5.5) and look at the equation πA = π. If I is
nonempty, partition π as [πE πI ]. Then πA = π becomes

[πE πI ]

[
P 0
R Q

]
= [πE πI ].

Expanding this leads to

πEP + πIR = πE , and πIQ = πI .

But since ρ(Q) < 1, the matrix Q − I is nonsingular, and so πI = 0.
This shows that all stationary distributions have zeros in all components
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corresponding to I. So we seek all solutions to πEP = πE . If we now put
P in the form (5.6) and partition π as [π1 . . .πs], then each πi must satisfy
πiPi = πi. Each of these equations has a unique solution vi ∈ Sni

, by
Statement 5. Hence the set of all stationary distributions is given by (5.7).

(8) If A is put in the form (5.5) and I is nonempty, then At has the form

At =
E I

E
I

[
P t 0
R(t) Qt

]
.

Now, since ρ(Q) < 1, it follows that Qt → 0 as t → ∞. Hence ct = cAt

implies that

c
(t)
I = cIQ

t → 0 as t→∞,

irrespective of what cI is. This is the desired conclusion. 2

In the Markov chain parlance, the states in I are referred to as transient
states, and those in E are referred to as recurrent states. Statement 8 of
Theorem 5.6 gives the rationale for this nomenclature. Irrespective of the
initial distribution of the Markov chain, we have that

Pr{Xt ∈ I} → 0 as t→∞,

while

Pr{Xt ∈ E} → 1 as t→∞.

Within the set E of recurrent states, the disjoint equivalence classes E1, . . . , Es
are referred to as the communicating classes.

Example 5.2 Let us return to the modified blackjack game of Example
5.1. From the state transition matrix, it is obvious that each of the states 0
through 8 leads to W , but W does not lead to any of these states. (The same
statement is also true with W replaced by L.) Thus all of these states are
inessential and therefore transient. In contrast, both W and L are essential
states, because they do not lead to any other states, and thus vacuously
satisfy the condition for being essential. Hence it follows from Theorem 5.6
that

Pr{Xt ∈ {W,L}} → 1 as t→∞.

Thus all games end with the player either winning or losing; all intermediate
states are transient. Within the set of essential states, since W does not
lead to L and vice versa, both {W} and {L} are communicating classes
(consisting of singleton sets).

5.2.2 Hitting Probabilities and Mean Hitting Times

Until now we have introduced the notions of recurrent states and transient
states, and have shown that eventually all trajectories enter the set of recur-
rent states. In this subsection we analyze the dynamics of a Markov chain
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in somewhat greater detail and study the probability that a trajectory will
hit a specified subset of the state space, as well as the average time needed
to do so.

To motivate these concepts, let us re-examine the modified blackjack game
of Example 5.1. It is shown in Example 5.2 that all trajectories will hit either
W (win) or L (loss) with probability one. That is a very coarse analysis of
the trajectories. It would be desirable to know the probability of winning (or
losing) from a given starting position. The hitting probability formalizes
this notion. Further, it would be desirable to know the expected number of
moves that would result in a win or loss. The mean hitting time formalizes
this notion.

Suppose {Xt}t≥0 is a Markov process assuming values in a finite state
space N = {1, . . . , n}. A subset S ⊆ N is said to be absorbing if Xt ∈ S ⇒
Xt+1 ∈ S (and by extension, that Xt+k ∈ S for all k ≥ 1). Clearly S is
absorbing if and only if aij = 0 for all i ∈ S, j 6∈ S.

Next, suppose S ⊆ N, not necessarily an absorbing set. Define

h(S; i, t) := Pr{Xt ∈ S|X0 = i}.
Thus h(S; i, t) is the probability that a trajectory of the Markov process
starting at time 0 in state i “hits” the set S at time t. In the same spirit,
define

h̄(S; i, t) := Pr{∃l, 0 ≤ l ≤ t, s.t. Xl ∈ S|X0 = i}. (5.9)

Thus h̄(S; i, t) is the probability that a trajectory of the Markov process
starting at time 0 in state i “hits” the set S at or before time t. Note that
if S is an absorbing set, then h(S; i, t) = h̄(S; i, t). However, if S is not an
absorbing set, then the two quantities need not be the same. In particular,
h̄(S; i, t) is a nondecreasing function of t, whether or not S is an absorbing
set. The same cannot be said of h(S; i, t). Now let us define

g(S; i, t) := Pr{Xs 6∈ S for 0 ≤ s ≤ t− 1&Xt ∈ S|X0 = i}. (5.10)

Then g(S; i, t) is the probability that a trajectory of the Markov process
starting at time 0 in state i “hits” the set S for the first time at time t.
From this definition, it is easy to see that

h̄(S; i, t) = h̄(S; i, t− 1) + g(S; i, t),

and as a result

h̄(S; i, l) =

t∑
l=0

g(S; i, l).

Now, since the sequence {h̄(S; i, t)} is increasing and bounded above by
1 (since every h̄(S; i, t) is a probability), the sequence converges to some
limit as t → ∞. This limit is denoted by h̄(S; i) and called the hitting
probability of the set S given the initial state i. Incidentally, the same
argument also shows that g(S; i, t)→ 0 as t→∞. In words, the probability
of hitting a set for the first time at time t approaches zero as t becomes
larger.
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Next, let us define an integer-valued random variable denoted by λ(S; i),
whereby λ(S; i) = t if the trajectory hits S for the first time at t. We can
think of λ(S; i) as the (random) time to hit the set S starting at time 0
in the state i. From the above discussion, it is clear that λ(S; i) equals t
with probability g(S; i, t). We must, however, explicitly permit λ(S; i) equal
infinity in case

∞∑
t=0

g(S; i, t) < 1.

The mean hitting time τ(S; i) is defined as the expected value of λ(S; i);
thus

τ(S; i) :=

∞∑
t=0

tg(S; i, t) +∞ ·

[
1−

∞∑
t=0

g(S; i, t)

]
. (5.11)

If the quantity inside the square brackets is positive, then the mean hitting
time is taken as infinity, by convention. Even if this quantity is zero, the
mean hitting time could still be infinite if the hitting time is a heavy-tailed
random variable.

In spite of the apparent complexity of the above definitions, there is a
very simple explicit characterizations of both the hitting probability and
mean hitting time. The derivation of these characterizations is the objective
of this subsection.

Theorem 5.8 The vector h̄(S) := [h̄(S; 1) . . . h̄(S;n)] is the minimal non-
negative solution of the set of equations

vi = 1 if i ∈ S, vi =
∑
j∈N

aijvj if i 6∈ S. (5.12)

Proof. Here, by a “minimal nonnegative solution,” we mean that (i) h̄(S)
satisfies (5.12), and (ii) if v is any other nonnegative vector that satisfies the
same equations, then v ≥ h̄(S). To prove (i), observe that if i ∈ S, then
h(S; i, 0) = 1, whence h̄(S; i, t) = h̄(S; i, 0) = 1 for all t. Hence h̄(S; i) being
the limit of this sequence also equals one. On the other hand, if i 6∈ S, then

h(S; i, t+ 1) =
∑
j∈N

aijh(S; j, t).

This equation states that the probability of hitting S at time t+ 1 starting
from the initial state i at time 0 equals the probability of hitting S at time
t starting from the initial state j at time 0, weighted by the probability of
making the transition from i to j. In writing this equation, we have used
both the Markovian nature of the process as well as its stationarity. Now
the same reasoning shows that

h̄(S; i, t+ 1) =
∑
j∈N

aij h̄(S; j, t).
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Letting t→∞ in both sides of the above equation shows that

h̄(S; i) =
∑
j∈N

aij h̄(S; j).

Thus the vector of hitting probabilities satisfies (5.12).
To establish the second statement, suppose v ∈ Rn+ is some solution of

(5.12). Then vi = 1 for all i ∈ S. For i 6∈ S, we get from (5.12),

vi =
∑
j∈N

aijvj =
∑
j∈S

aijvj +
∑
j 6∈S

aijvj

=
∑
j∈S

aij +
∑
j 6∈S

aijvj .

Now we can substitute a second time for vj to get

vi =
∑
j∈S

aij +
∑
j 6∈S

aijvj

=
∑
j∈S

aij +
∑
j 6∈S

∑
k∈S

aijajk

+
∑
j 6∈S

∑
k 6∈S

aijajkvk.

This process can be repeated. If we do this l times, we get

vi =
∑
j1∈S

aij1

+
∑
j1 6∈S

∑
j2∈S

aij1aj1j2 + . . .

+
∑

j1 6∈S,...,jl−1 6∈S

∑
jl∈S

aij1aj1j2 . . . ajl−1jl

+
∑

j1 6∈S,...,jl−1 6∈S

∑
jl 6∈S

aij1aj1j2 . . . ajl−1jlvjl . (5.13)

Next, observe that for each index l, we have∑
j1 6∈S,...,jl−1 6∈S

∑
jl∈S

aij1aj1j2 . . . ajl−1jl = g(S; i, l),

because the left side is precisely the probability that, starting in state i at
time 0, the trajectory hits S for the first time at time l. Moreover, since
i 6∈ S, it is clear that g(S; i, 0) = 0. Finally, from (5.13), it is clear that
the last term in the summation is nonnegative, because v is a nonnegative
vector. Thus it follows from (5.13) that

vi ≥
l∑

s=1

g(S; i, l) =

l∑
s=0

g(S; i, s) = h̄(S; i, l).

Since this is true for each l, letting l → ∞ shows that vi ≥ h̄i(S; i), as
desired. 2
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In applying (5.12), it is often convenient to rewrite it as

h̄(S; i) = 1 if i ∈ S, h̄(S; i) =
1

1− aii

∑
j 6=i

aij h̄(S; j) if i 6∈ S. (5.14)

If aii < 1, then the fraction above makes sense. If aii = 1, then a trajectory
starting in state i just stays there, so clearly h̄(S; i) = 0. Note that the right
side of (5.14) is a convex combination of the quantities h̄(S; j) for j 6= i,
because

∑
j 6=i aij = 1− aii.

Example 5.3 Let us return to the simplified “blackjack” example of Ex-
amples 5.1 and 5.2. We have already seen that every trajectory approaches
W or L with probability 1. Now let us compute the probability of winning
or losing from a given initial state. To simplify notation, let us write h̄(W ; i)
to denote h̄({W}; i), and define h̄(L; i) in an analogous fashion.

From (5.14), it is obvious that h̄(W ;W ) = 1 and h̄(L;L) = 1, because
both are absorbing states. For the same reason, we have h̄(W ;L) = 0 and
h̄(L;W ) = 0. Working backwards, we have from (5.12) that

h̄(W ; 8) =
1

3
a8W h̄(W ;W ) +

2

3
a8Lh̄(W ;L) =

1

3
aWW =

1

3
.

Similarly

h̄(L; 8) =
1

3
a8W h̄(L;W ) +

2

3
a8Lh̄(L;L) =

2

3
aLL =

2

3
.

It is hardly surprising that h̄(W ; 8) + h̄(L; 8) = 1, because these are the only
two absorbing states. In fact it is true that h̄(W ; i) + h̄(L; i) = 1 for every
initial state i. Next,

h̄(W ; 7) =
1

3
h̄(W ; 8) +

1

3
h̄(W ;W ) +

1

3
h̄(W ;L) =

4

9
.

Proceeding in this manner, we get the table below.

i h̄(W ; i) h̄(L; i)
8 1/3 2/3
7 4/9 5/9
6 16/27 11/27
5 37/81 44/81
4 121/243 122/243
3 376/729 353/729
2 1072/2187 1118/2187
1 3289/6561 3272/6561
0 9889/19683 9794/19683

Thus we see that the probability of winning from a particular starting state
goes up and down like a yo-yo. The states 4 and 1 are closest to being
“neutral” in that the odds of winning and losing are roughly equal, while
the state 6 offers the best prospects for winning. This is not surprising,
because from the initial state 6 one cannot possibly lose in one time step,
but winning in one time step is possible.
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Thus far we have analyzed the hitting probability h̄(S; i). Next we analyze
the mean hitting τ(S; i) defined in (5.11). It turns out that τ(S; i) also
satisfies a simple linear recursion analogous to (5.12).

Theorem 5.9 Suppose that the hitting time τ(S; i) is finite for all i ∈ N.
Then the vector τ(S) of mean hitting times [τ(S; 1) . . . τ(S;n)] is the minimal
nonnegative solution of the equations

αi = 0 if i ∈ S, αi = 1 +
∑
j 6∈S

aijαj if i 6∈ S. (5.15)

Proof. As in Theorem 5.8, we need to establish two statements: First, the
vector of mean hitting times satisfies (5.15). Second, if α is any other solution
of (5.15), then αi ≥ τ(S; i) for all i.

To prove the first statement, suppose first that i ∈ S. Then clearly
τ(S; i) = 0. Next, suppose i 6∈ S, and consider all possible next states
j; the transition from i to j occurs with probability aij . With X0 = i and
X1 = j, we have

Pr{Xl 6∈ S for 0 ≤ l ≤ t− 1 and Xt ∈ S|X0 = i&X1 = j}
= Pr{Xl 6∈ S for 1 ≤ l ≤ t− 1 and Xt ∈ S|X1 = j}
= Pr{Xl 6∈ S for 0 ≤ l ≤ t− 2 and Xt ∈ S|X0 = j}.

Here the first equation follows from the Markovian nature of the process
{Xt}, because the behavior of Xl for l ≥ 2 depends only on X1 and is
independent of X0. The second equation follows from the stationarity of the
process. Hence, if X0 = i 6∈ S, we can distinguish between two possibilities:
If X1 = j ∈ S, then the mean hitting time from then onwards is zero, and
the mean hitting time from the start is 1. If X1 = j 6∈ S, then the mean
hitting time from then onwards is τ(S; j), and the mean hitting time from
the beginning is 1 + τ(S; j). We can average over all of these events to get

τ(S; i) =
∑
j∈S

aij +
∑
j 6∈S

aij [1 + τ(S; j)]

= 1 +
∑
j 6∈S

aijτ(S; j),

because ∑
j∈S

aij +
∑
j 6∈S

aij =
∑
j∈N

aij = 1.

Therefore the vector τ(S) of mean hitting times satisfies (5.15).
To prove the second statement, suppose α is any nonnegative solution of



text September 25, 2011

MARKOV CHAINS 123

(5.15). Then αi = 0 for i ∈ S. For i 6∈ S, it follows from (5.15) that

αi = 1 +
∑
j 6∈S

aijαj

= 1 +
∑
j 6∈S

aij

1 +
∑
k 6∈S

ajkαk


= 1 +

∑
j 6∈S

aij +
∑
j 6∈S

∑
k 6∈S

aijajkαk.

(5.16)

This process can be repeated by substituting for αk. If we do this l times,
we get

αi = 1 +
∑
j1 6∈S

aij1 +
∑

j1,j2 6∈S

aij1aj1j2 + . . .

+
∑

j1,...,jl−1 6∈S

aij1aj1j2 · · · ajl−2jl−1

+
∑

j1,...,jl 6∈S

aij1aj1j2 · · · ajl−1jlαjl . (5.17)

Now the last term is nonnegative since α ≥ 0. As for the remaining terms,
since i 6∈ S it is clear that the hitting time λ(S; i) ≥ 1 with probability one.
Thus

Pr{λ(S; i) ≥ 1} = 1.

More generally, it is easy to see that∑
j1,...,jl−1 6∈S

aij1aj1j2 · · · ajl−2jl−1
= Pr{Xs 6∈ S for 0 ≤ s ≤ l − 1|X0 = i}

= Pr{λ(S; i) ≥ l},
because the left side is the probability that the trajectory starting at i 6∈ S
at time 0 does not hit the set S during the first l−1 transitions. Hence, after
neglecting the last term on the right side of (5.17) because it is nonnegative,
we get

αi ≥
l∑

k=1

Pr{λ(S; i) ≥ k}. (5.18)

To conclude the proof, we observe that, as a consequence of (5.10), we
have

Pr{λ(S; i) ≥ k} =

∞∑
t=k

Pr{λ(S; i) = t} =

∞∑
t=k

g(S; i, t). (5.19)

We need not worry about the convergence of the infinite summation because
Pr{λ(S; i) ≥ k} ≤ 1 and so the sum converges. Substituting from (5.19) into
(5.18) shows that

αi ≥
l∑

k=1

∞∑
t=k

g(S; i, t) ≥
l∑

k=1

l∑
t=k

g(S; i, t).
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Now a simple counting argument shows that

l∑
k=1

l∑
t=k

g(S; i, t) =

l∑
t=1

tg(S; i, t). (5.20)

An easy way to see this is to consider the triangular matrix below, where gt
is shorthand for g(S; i, t).

g1 g2 . . . gl−1 gl
0 g2 . . . gl−1 gl
...

...
...

...
...

0 0 . . . gl−1 gl
0 0 . . . 0 gl


The left side of (5.20) is obtained by first summing each row and then adding
the row sums; the right side of (5.20) is obtained by first summing each
column and then adding the column sums. Clearly both procedures give the
same answer, which is what (5.20) says. Let us substitute from (5.19) and
(5.20) into (5.18). This gives

αi ≥
l∑

k=1

tg(S; i, t), ∀l.

Now letting l → ∞ shows that αi ≥ τ(S; i) ∀i, which is the desired state-
ment. 2

Example 5.4 Let us again return to the simplified blackjack game and
compute the expected duration of the game starting from each initial state.
Let us define E = {W,L}, so that Xt ∈ E suggests that the game has
ended. We can apply (5.15) to compute the mean hitting times. It is again
convenient to rewrite (5.15) as

τ(S; i) =
1

1− aii

1 +
∑

j 6∈S,j 6=i

aijτ(S; j)

 .
It is clear that τ(E;W ) = τ(E;L) = 0, as both W and L belong to E. If
X0 = 8, then

τ(E; 8) =
4

3
,

since the summation on the right side is empty and is thus taken as zero.
Next,

τ(E; 7) =
4

3
(1 + a78τ(E; 8)) =

4

3
(1 + 1/3) =

16

9
.

Proceeding in this manner, we get the table below.
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i τ(E; i) ≈
8 4/3 1.333
7 16/9 1.778
6 64/27 2.370
5 256/81 3.160
4 916/243 3.700
3 3232/729 4.433
2 11200/2187 5.121
1 37888/6561 5.775
0 126820/19683 6.443

5.3 ERGODICITY OF MARKOV CHAINS

5.3.1 Motivation

Suppose {Xt}∞t=0 is a stationary stochastic process assuming values in a finite
set X = {x1, . . . , xn}. We have not given a precise definition of stationarity,
but we do know one important consequence of stationarity: Every one of the
random variables Xt has exactly the same distribution. Let π denote this
distribution, so that

pi = Pr{Xt = xi}, i = 1, . . . , n.

Thus π is the same for all values of t because of stationarity. Now suppose
f is a function mapping the set X into the real numbers R. Then we can
think of f(X ) itself as a random variable, as discussed in Section 2.1. More-
over, since f(X ) is a real-valued random variable, it is possible to define the
expected value of f(X ) as

E[f(X ), Pπ] =

n∑
i=1

f(xi)πi. (5.21)

As discussed in Section 2.1, the above formula is valid even if the numbers
f(x1), . . . , f(xn) are not necessarily distinct.

Computing the expected value of f(X ) using (5.21) is straight-forward
provided one knows the values πi, that is, provided one knows the prob-
ability distribution of the random variable Xt. However, there are many
situations in which the statistics of the process under study are not known.
For example, suppose someone gives us a coin, and tells us that there is a
payout of 1 (in some currency) whenever the coin turns up ‘heads’ (H) and
a payback of −1 whenever the coin turns up ‘tails’ (T ). Before entering into
the game, we would like to know the expected payout

G = f(H)πH + f(T )πT = πH − πT
in this case. However, since we are seeing the coin for the first time, we have
no way of knowing the values pH and pT . So we toss the coin a number of
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times, and generate a sequence of outcomes, in the formHTHHTHTTHT · · · .
This sequence of outcomes is called a ‘sample path’ or a ‘realization’ of the
stochastic process {Xt}, where Xt is the outcome of the coin toss at time t.
We can compute the fraction of heads in the sample path and call it π̂H .
The hat over π is to remind ourselves that π̂H is only an approximation to
the true but unknown value πH . The number π̂H is called the empirical
probability of heads. It is itself a random variable, because if we repeat
the experiment, we will in general get a different value for π̂H . The number
π̂T is defined analogously. Then we can compute

Ĝ = f(H)π̂H + f(T )π̂T

based on the sample path. But how close is Ĝ to G?
More generally, suppose {Xt} is a stationary stochastic process that as-

sumes values in a set N = {x1, . . . , xn}. Then we can generate a sample path
u0u1 . . . uT−1 of the process up to time T − 1, and compute the empirical
probabilities.

π̂i =
1

T

T−1∑
t=0

Ii(ut),

where Ii(·) is the ‘indicator function’

Ii(u) =

{
1, if u = xi,
0, if u 6= xi.

So π̂i is just the fraction of times that the symbol xi occurs in the sample
path. Then we can compute the quantity

Ê(f) :=

n∑
i=1

f(xi)π̂i =
1

T

T−1∑
t=0

f(ut). (5.22)

Again, we can ask: How close is Ê(f) to E(f)? In the sequel, we refer to
E(f) as the true mean and to Ê(f) as the empirical mean.

The simplest situation to visualize is the case where {Xt} is an i.i.d. (inde-
pendent, identically distributed) process where each Xt has the distribution
π. In this case, each f(Xt) is a random variable that is independent of each
f(Xτ ) whenever t 6= τ . Therefore the samples {f(X0), f(X1), . . . , f(XT−1)}
can be thought of as an ‘ensemble’ of identical replicas of the single random
variable f(X ), and of Ê(f) as an ‘ensemble average.’ In this situation, it is
natural to expect that the empirical mean Ê(f) ‘converges’ in some appro-
priate sense to the true mean E(f). A formal statement and proof of this
result are given in Chapter 6.

A variation of this result is the case where the Xt’s are ‘nearly indepen-
dent,’ and where a suitably defined ‘index of dependence’ between Xt and
Xτ approaches zero as the difference |t− τ | approaches infinity. The notion
of ‘mixing,’ discussed in Chapter 6, is a formalization of this idea. It can be
shown that even when the stochastic process {Xt} is merely ‘mixing’ instead
of being i.i.d., the empirical mean Ê(f) still converges to the true mean
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E(f), though possibly at a slower rate than when the process {Xt} is i.i.d.
This is also shown in Chapter 6.

The topic of the present section is ‘ergodicity,’ which is a still weaker
property than mixing. Thanks to seminal work in probability theory in the
1930’s, it is known that ergodicity is sufficient for the empirical mean Ê(f)
to converge to the true mean E(f); mixing is not required. Accordingly
in this section we study the ergodicity properties of homogeneous Markov
chains.

One last comment before we conclude the discussion of the motivation for
studying ergodicity. If the state space of a Markov process is uncountably
infinite, then the probability distribution π gets replaced by an appropriate
probability measure. In computing the expected value of a function, the sum-
mation in (5.21) gets replaced by an integral with respect to the associated
probability measure. In such a general situation, even when the underlying
probability measure is known, it may be messy or intractable to compute the
expected value using this integral formulation. In contrast, even when the
state space of a Markov process is an uncountably infinite set, the formula
(5.22) for the empirical mean Ê(f) still involves only averaging a finite num-
ber of real-valued measurements f(ut). So the message is that the formula
(5.22) for generating an approximation to E(f) can be valuable even when
the statistical properties of the process {Xt} are known precisely. Indeed,
well-known methods such as Monte Carlo simulation are based on precisely
this principle.

Finally, the reader is cautioned that the words ‘ergodic’ and ‘ergodicity’
are used by different authors to mean different properties. This problem
seems to arise only in the Markov chain literature. Both mixing and ergod-
icity are properties that can be defined for arbitrary stationary stochastic
processes, not just homegeneous Markov chains, and not just stochastic pro-
cesses assuming values in a finite set. In this very general setting, there is
only one definition. In the ‘pure’ stochastic process literature, a process is
defined to be ergodic if, in some precisely defined sense, it explores all parts
of the state space. Ergodicity is actually a very weak property. Yet it is suf-
ficient for the empirical mean Ê(f) to converge to the true mean E(f). The
proof of the ergodic theorem in the 1930’s was a remarkable achievement.
The definition of ergodicity used in the present book is consistent with the
more general definition; that is, a Markov process over a finite state space
is ergodic in the sense defined here if and only if it is ergodic in the gen-
eral sense used in the stochastic process literature. Unfortunately in the
Markov process literature, the adjective ‘ergodic’ is often used to describe a
much stronger property. Thus the reader should verify the definitions in a
particular source before comparing across sources.
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5.3.2 Ergodicity of a Stationary Markov Process

In this subsection, the focus is on the following question: Suppose A ∈ Rn×n+

is a stochastic matrix, and we define

Ā(T ) :=
1

T

T−1∑
t=0

At.

We refer to Ā(T ) as the ‘ergodic average’ of A over T time instants. The
question of interest here is: Does Ā(T ) have a limit as T → ∞, and if so,
what does the limit look like? It is shown in the sequel that the limit does
exist for every stochastic matrix, and an explicit formula for the limit is
derived.

The motivation for studying the question is fairly obvious. Suppose {Xt}
is a homogeneous Markov chain with the state space N and transition matrix
A. Suppose f : N→ R is a given function, and that π is a given stationary
distribution of A. (Recall that there could be more than one stationary
distribution of A.) We wish to compute the expected value of the random
variable f(X ) with respect to the stationary distribution π. But actually
we may not know either A or π. So for this purpose we start off the Markov
chain with some initial distribution c0 = c. The underlying presumption
is that we have a way of generating a sample path {u0, u1, . . .} where the
initial state is distributed according to c (which we choose), and subsequent
state transitions are according to the possibly unknown matrix A. Then Xt
is distributed according to ct = cAt, and the corresponding random variable
f(X ) also has the same distribution. Thus, if we form the ergodic average
Ê(f) according to (5.22), then we can think of Ê(f) as a random variable
on the set N, whose underlying distribution is

c̄T :=
1

T

T−1∑
t=0

ct =
1

T

T−1∑
t=0

cAt.

Hence, if the limit

Ā := lim
T→∞

ĀT = lim
T→∞

1

T

T−1∑
t=0

At (5.23)

exists, then the limit distribution of the random variable Ê(f) will equal cĀ.
Finally then, suppose it is the case that cĀ equals the stationary distribu-

tion π for every initial distribution c. If this were to be so, then the ergodic
average Ê(f) would converge (in some sense not made very precise) to the
‘correct’ or true mean E[f(X )] where the expectation is taken with respect
to the distribution π. This then is the basis of a mathematical treatment of
ergodic theory. In order for this approach to work, the desired property is
that cĀ = π for every initial distribution c ∈ Sn. In general this property
will not hold, so we make a slight modification. We assume that, while the
stationary distribution π may not be known, at least we know which com-
ponents of π are zero and which are not. To put it another way, we know
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at least the index set S = {i : πi = 0}. Then we ensure that the initial
distribution c has zeros in the indices belonging to S; in other words, we
ensure that πi = 0 ⇒ ci = 0, or in the language of Chapter 3, that c� π
(c is dominated by π). So now we can ask a slightly restricted question: Is
it the case that cĀ = π for every c ∈ Sn such that c� π? This question is
quite tractable, and we give a complete answer in this subsection.

Now we state the main result of this subsection.

Theorem 5.10 Suppose A ∈ Rn×n+ is a stochastic matrix, and assume with-
out loss of generality that A is in the canonical form (5.5). Define the eigen-
vectors vi ∈ Sni

as in Statement 5 of Theorem 5.6, and let eni
denote the

column vector consisting of ni one’s. Then the ergodic limit Ā defined in
(5.23) exists and is given by

Ā =
E I

E
I

[
P̄ 0
R̄ 0

]
, (5.24)

where

P̄ =

E1 . . . Es
E1
...
Es

 en1v1 . . . 0
...

. . .
...

0 . . . ensvs

 , (5.25)

R̄ = (I −Q)−1RP̄ . (5.26)

The proof of the theorem proceeds via a series of lemmas. But first we
give a few explanatory notes.

1. The matrix P̄ in (5.25) is block-diagonal, and the number of blocks
equals the number of communicating classes. Each of the diagonal
block is a rank one matrix (namely eni

vni
).

2. It is easy to construct examples where At by itself does not converge
to anything. For instance, let

A =

[
0 1
1 0

]
.

Then A2 = I, and as a result A2k = I and A2k+1 = A. So At does not
have a limit as t→∞. On the other hand,

Ā2k =
1

2
(A+ I), Ā2k+1 =

k

2k + 1
(A+ I) +

1

2k + 1
A.

So the ergodic limit exists and equals

Ā =
1

2
(A+ I) =

[
0.5 0.5
0.5 0.5

]
=

[
1
1

]
[0.5 0.5].

This is consistent with (5.25), since A is irreducible (s = 1) and its
unique stationary distribution is [0.5 0.5].
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Lemma 5.11 Suppose A ∈ Rn×n+ is irreducible and stochastic, and let v ∈
Sn denote its stationary distribution. Then the ergodic limit Ā exists and
equals env.

Proof. Let p denote the period of the matrixA. Then we know from Theorem
4.24 that A has exactly p eigenvalues on the unit circle, namely

λ0 = 1, λk = exp(iwπk/p), k = 1, . . . , p− 1,

and the remaining n−p eigenvalues of A all have magnitude strictly less than
one. Let v0 = v,v1, . . . ,vp denote row eigenvectors of A corresponding to
the eigenvalues λ0, λ1, . . . , λp, and choose other row vectors vp+1, . . . ,vn in
such a way that

V AV −1 =
p n− p

p
n− p

[
Λ 0
0 S

]
, (5.27)

where Λ = Diag{λ0, . . . , λp−1}, and ρ(S) < 1. Now note that λ1, . . . , λp are
all roots of one, and therefore λpk − 1 = 0 for k = 1, . . . , p − 1. Moreover,
since

λp − 1 = (λ− 1)

(
p−1∑
i=0

λi

)
,

it follows that
p−1∑
i=0

λik = 0, k = 1, . . . , p− 1.

So for every integer l, we have that

(l+1)p−1∑
t=lp

Λt =
1 p− 1

1
p− 1

[
l 0
0 0

]
.

Moreover, since ρ(S) < 1, it follows that St → 0 as t→∞. So

ĀT =
1

T

T−1∑
t=0

At = V −1Z̄TV +O(1/T ),

where

Z̄T =

1 p− 1 n− p
1

p− 1
n− p

 1 0 0
0 0 0
0 0 0

 .

So the ergodic limit exists and equals w1v, where w1 is the first column of
V −1. Hence the proof is complete once it is shown that w1 = en. For this
purpose, note that since A is stochastic, its rows all add up to one; that is,
Aen = en. Now if we let U denote the matrix on the right side of (5.27),
define W = V −1, and rewrite (5.27) as AW = WU , then the first column
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of AW = WU says that Aw1 = w1. Since λ0 = 1 is a simple eigenvalue
of A, it follows that w1 = αen for some proportionality constant α. To
determine this constant, observe that VW = In implies that vw1 = 1. But
since ven = 1 (because v ∈ Sn), the constant α equals one, and w1 = eb1.
2

Corollary 5.12 Suppose A ∈ Rn×n+ is primitive and stochastic, and let v ∈
Sn denote its stationary distribution. Then

At → env as t→∞. (5.28)

Proof. Since A is primitive, it is irreducible and also aperiodic. So from
Theorem 4.21, we know that all eigenvalues of A have magnitude less than
one except for λ0 = 1. So we can choose

V =

[
v
V2

]
,W = V −1 = [en|W2]

such that

V AV −1 =
1 n− 1

1
n− 1

[
1 0
0 S

]
=: U, say,

where ρ(S) < 1. So

At = V −1U tV = [en|W2]

[
1 0
0 St

] [
v
V2

]
→ env as t→∞,

after noting that St → 0 as t→∞ because ρ(S) < 1. 2

Proof. (of Theorem 5.10): Suppose A is in the canonical form (5.5) and
(5.6). Then

At =
E I

E
I

[
P t 0
R(t) Qt

]
,

where R(t) can be computed recursively from partitioning At = AAt−1, as
follows:

R(1) = R,R(t) = RP t−1 +QR(t−1), for t ≥ 2. (5.29)

So the ergodic average ĀT is given by

ĀT =
1

T

T−1∑
t=0

At =
E I

E
I

[
P̄T 0
R̄T Q̄T

]
,

where P̄T , R̄T , Q̄T are defined in the obvious fashion. The ergodic limit of
each matrix is now analyzed separately.

First, since we have from (5.6) that

P = Block Diag {P1, . . . , Ps},
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it is clear that

P̄T = Block Diag {(P1)T , . . . , (Ps)T }.
Next, observe that each Pi is irreducible. So it follows from Lemma 5.7 that
each Pi has an ergodic limit, which equals eni

vi. So the ergodic limit of P
is given by (5.25).

Next, note that ρ(Q) < 1 from Statement 6 of Theorem 5.6. So Qt → 0
as t→∞, whence Q̄ = 0.

Now it remains only to compute R̄. Since we take A0 = In, and the lower
triangular block of In is 0, we can take R(0) = 0. With this convention, the
formula (5.29) is consistent even for t = 1. So

R̄T =
1

T

T−1∑
t=0

R(t)

=
1

T

T−1∑
t=1

R(t) since R(0) = 0

=
1

T

T−1∑
t=1

{RP t−1 +QR(t−1)}

=
1

T
R

T−2∑
t=0

P t +
1

T
Q

T−2∑
t=0

R(t)

=
T − 1

T
RP̄T−1 +

T − 1

T
QR̄T−1.

So R̄T satisfies this time-varying recursive equation. However, its limit be-
haviour is easy to analyze. As T → ∞, the constant (T − 1)/T → 1,
the matrix P̄T−1 approaches the ergodic limit P̄ , and both R̄T and R̄T−1

approach a constant matrix R̄. Thus taking the limit as T → ∞ in the
preceding equation shows that R̄ satisfies

R̄ = RP̄ +QR̄.

Note that ρ(Q) < 1 so that I − Q is nonsingular. So the solution of the
above equation for R̄ is given by (5.26). 2

Suppose A is a stochastic matrix and π is a stationary distribution of A.
We refer to (π, A) as a Markovian pair.

Definition 5.13 Suppose (π, A) is a Markovian pair. Then (π, A) is said
to be ergodic if

cĀ = π whenever c ∈ Sn and c� π. (5.30)

The motivation for the above definition has already been given at the
beginning of the preceding subsection. Note that (5.30) can be expressed
equivalently as

lim
T→∞

1

T

T−1∑
t=0

cAt = π ∀c ∈ Sn such that c� π. (5.31)
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Theorem 5.14 Suppose (π, A) is a Markovian pair, and let C1, . . . , Cs de-
note the communicating classes of the matrix A. Then (π, A) is ergodic if
and only if π is concentrated on exactly one of the communicating classes.

Proof. From Theorem 5.6 and (5.7) we know that π must have the form

π = [λ1v1 . . . λsvs 0], where [λ1 . . . λs] ∈ Ss.
The theorem says that the pair (π, A) is ergodic if and only if all the λi’s
are zero except for one.

“If”: Suppose only one of the λi’s is nonzero and the rest are zero.
Renumber the communicating classes such that λ1 = 1 and λi = 0 for i ≥ 2.
Thus

π = [v1 0 . . .0 0] = [v1 0],

where we have aggregated all the zero vectors into one. Suppose now c ∈ Sn
is arbitrary except that c � π. Then c is also concentrated only on the
class C1. Thus c has the form

c = [c1 0],

where c1 ∈ Sn1
and n1 is the number of states in the communicating class

C1. Now, from (5.24) and (5.25), we get

cĀ = [c1en1
v1 0] = [v1 0] = π,

since c1en1
= 1 by virtue of the fact that c1 ∈ Sn1

.
“Only If”: Suppose π has the form (5.7) and that at least two of the λi’s

are nonzero. Renumber the communcating classes such that λ1 6= 0. Then
π has the form

π = [λ1v1 π2 0],

where π2 6= 0 because it contains the nonzero subvector λ2v2. Now choose

c = [v1 0 0].

Then c� π. However

cĀ = [v1 0 0] 6= π.

Hence it is not true that cĀ = π whenever c� π. 2

5.3.3 A General Convergence Result

In this section we state and prove a convergence result that is in complete
contrast to Theorem 5.14 in that the present result requires no special hy-
potheses at all. We first state and prove the theorem, and then demonstrate
that the theorem contains “less than meets the eye.”

Theorem 5.15 Suppose A ∈ [0, 1]n×n is stochastic and that φ,ψ ∈ Sn.
Then

H(φA‖ψA) ≤ H(φ‖ψ), (5.32)

provided φ� ψ so that H(φ‖ψ) is finite.
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Theorem 5.16 Suppose A ∈ [0, 1]n×n is stochastic and let π ∈ Sn be a
stationary distribution of A. Let φ ∈ Sn be arbitrary. If φ � π, then the
sequence {H(φAt‖π)}t≥0 is nonincreasing and converges as t→∞.

Proof. (of Theorem 5.15) We apply the log sum inequality from Lemma 3.25.
Fix an index j ∈ {1, . . . , n}, and apply (3.35) with

ai ← φiaij , bi ← ψiaij .

If ψ � φ, then bi = 0 ⇒ ai = 0, so we can apply (3.35). This leads to
n∑
i=1

φiaij log
φi
ψi
≥

n∑
i=1

φiaij log

(∑n
i=1 φiaij∑n
i=1 ψiaij

)
, ∀j.

Hence we can sum both sides with respect to j, and the inequality still holds.
Now the left side becomes

n∑
j=1

n∑
i=1

φiaij log
φi
ψi

=

n∑
i=1

φi

 n∑
j=1

aij

 log
φi
ψi

=

n∑
i=1

φi log
φi
ψi

= H(φ‖ψ),

since
∑n
j=1 aij = 1 for all i. The right side becomes

n∑
j=1

n∑
i=1

φiaij log

(∑n
i=1 φiaij∑n
i=1 ψiaij

)

=

n∑
j=1

(φA)j log
(φA)j
(ψA)j

= H(φA‖ψA).

This establishes the desired inequality. 2

Proof. (of Theorem 5.16) Apply (5.32) with ψ = π and note that πA = π.
So in this case (5.32) implies that

H(φ‖π) ≥ H(φA‖π).

We can apply this inequality recursively to see that

H(φAt‖π) ≥ H(φAt+1‖π), ∀t.
Since the quantityH(φAt‖π) is bounded below by zero, the sequence {H(φAt‖π)}
converges to some limit as t→∞. 2

At first glance Theorem 5.16 appears to be counter-intuitive. It states
that, with no assumptions whatsoever, the t step distribution φAt gets ever
closer to every stationary distribution π of A. (Note that there is no as-
sumption in Theorem 5.16 that the stationary distribution is unique.) How
can this conclusion be reconciled with Theorem 5.14?

The explanation lies in what Theorem 5.16 does not say. While Theorem
5.16 assures us that the divergence H(φAt‖π) converges monotonically to
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some limit, there is no guarantee that the limit is zero. This is the extra
property that is guaranteed by Theorem 5.14. This is illustrated through an
example.

Example 5.5 Suppose

A =

 0 1 0
1 0 0
0 0 1

 ,π1 =

 0.25
0.25
0.5

t ,π2 =

 0.4
0.4
0.2

t ,φ =

 0.3
0.5
0.2

t .
Then both π1 and π2 are stationary distributions of A, and moreover φ� πi
for i = 1, 2. Because of the nature of A, we have

φAt = φ if t is even,φAt = [0.5 0.3 0.2] if t is odd.

As a result

H(φAt‖π1) = 0.3 log 1.2 + 0.5 log 2 + 0.2 log 0.4 ∀t,

H(φAt‖π2) = 0.3 log 0.75 + 0.5 log 1.25 ∀t.

Thus, as t varies, the divergence H(φAt‖πi) remains constant at a nonzero
value for each value of i.
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Chapter Six

Markov Processes: Mixing and Estimation

In this chapter, we study the problem of estimating various quantities on the
basis of observations. In Section 6.2 we state a fundamental bound, known
as the Hoeffding inequality, that gives a precise quantitative estimate of the
rate at which estimates based on observations (known as “empirical esti-
mates”) converge to their true values. Hoeffding’s inequality in its original
form applies to the case where successive observations of a random variable
are independent. Clearly, if we observe the successive states of a Markov
chain, the observations will not be independent. Thus we need to be able
to adjust the Hoeffding and other such inequalities to the case of dependent
observations. This is achieved by introducing the notions of α-mixing and
β-mixing, which quantify the extent to which two random variables are de-
pendent. Using these ideas, we can address questions such as the following:
Suppose we observe a sample path of a Markov chain whose state transition
matrix is unknown. Can we estimate the unknown state transition matrix
in terms of the observed sequence of states? If so, at what “rate” does the
estimated state transition matrix converge to the true but unknown state
transition matrix? We conclude the chapter by defining the “divergence
rate” between two Markov chains evolving over a common state space, and
then giving an explicit formula for this divergence rate.

6.1 MIXING COEFFICIENTS AND ASSOCIATED INEQUAL-

ITIES

6.1.1 Mixing Coefficients Between Random Variables

“Mixing” is a way of quantifying the idea that two random variables are
“nearly independent.” Suppose X ,Y are random variables assuming values
in finite sets A := {1, . . . , n} and B := {1, . . . ,m} respectively.1 Let φ ∈ Snm
denote their joint distribution, and let Pφ denote their joint probability
measure. Recall from Section 2.2 that the “marginal” distributions of X

1In reality, the two random variables can assume values in any finite sets {a1, . . . , am}
and {b1, . . . , bm} respectively. In other words, the range of the two random variables need
not be numbers, but can be any arbitrary labels. However, identifying ai with i and bj
with j simplifies the notation considerably.
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and Y respectively corresponding to φ are defined by

(φX )i :=

m∑
j=1

φij , (φY)j =

n∑
i=1

φij .

Thus φX ∈ Sn,φY ∈ Sm. Recall from Chapter 2 that the random variables
X and Y are said to be independent if

φij = (φX )i · (φY)j , ∀i ∈ A, j ∈ B. (6.1)

The main difficulty with the above definition of independence is that it
is “binary” – either two random variables are independent or they are not.
There is nothing in between. And yet it would be desirable to have some
way of saying that that two random variables X and Y are “nearly indepen-
dent,” and making that statement precise by quantifying just far (or near)
X and Y are to being independent. In this section, we introduce two distinct
coefficients, called the α-mixing and the β-mixing coefficients respectively,
that serve this purpose. There are several other types of mixing coefficients
that are used in advanced theories of stochastic processes. But these two
notions are good enough for the elementary discussions in this book.

Suppose X and Y are random variables assuming values in A = {1, . . . , n}
and B = {1, . . . ,m} respectively, and let φ ∈ Snm denote their joint dis-
tribution. Suppose A ⊆ A, B ⊆ B. Then their cartesian product A × B is
defined in the familiar fashion as

A×B := {(i, j) : i ∈ A, j ∈ B}.
Thus A×B is a subset of A× B. Now suppose X and Y were independent
random variables. Then their joint distribution φ factors nicely as in (6.1).
As a consequence, we have that

Pφ(A×B) =
∑

(i,j)∈(A×B)

φij

=
∑
i∈A

∑
j∈B

φij

=
∑
i∈A

∑
j∈B

(φX )i · (φY)j

=

(∑
i∈A

(φX )i

)
·

∑
j∈B

(φY)j


=PφX (A) · PφY (B).

Therefore, if X and Y are not independent, then the difference between
P (A × B) and PφX (A) · PφY (B) provides a quantitative estimate of the
“nonindependence” of X and Y. This is the motivation for the definitions
of the α-mixing and β-mixing coefficients.

Definition 6.1 Suppose X and Y are random variables assuming values in
A = {1, . . . , n} and B = {1, . . . ,m} respectively, and let φ ∈ Snm denote
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their joint distribution. Then the α-mixing coefficient between X and Y
is denoted by α(X ,Y) and is defined as

α(X ,Y) := max
A⊆A,B⊆B

|Pφ(A×B)− PφX (A) · PφY (B)|. (6.2)

Definition 6.2 Suppose X and Y are random variables assuming values
in A = {1, . . . , n} and B = {1, . . . ,m} respectively. Let φ denote their
joint distribution, and let φX ,φy denote the marginal distributions on A,B
respectively. Then the β-mixing coefficient between X and Y is denoted by
β(X ,Y) and is defined by

β(X ,Y) := ρ(φ,φX × φY).

The β-mixing coefficient has a very intuitive interpretation. Suppose two
random variables X ,Y have the joint probability measure PX × PY . Then
they would have the same marginal distributions as under P , but would be
independent. Thus the total variation metric ρ(P, PX × PY) quantifies the
extent to which the two random variables fail to be independent.

To study further the properties of the two mixing coefficients, let us define
the quantity

δij := φij − (φX )i · (φY)j , ∀i, j. (6.3)

Since φX ,φy are the marginal distributions of φ, it is clear that

n∑
i=1

δij = 0 ∀j,
m∑
j=1

δij = 0 ∀i. (6.4)

Let us extend the definition of δij in (6.3) to sets by defining

δ(A,B) :=
∑
i∈A

∑
j∈B

δij , ∀A ⊆ A, B ⊆ B. (6.5)

In particular, if A = {i}, B = {j}, then δ(A,B) = δij . So the notation is
consistent with (6.3). With this definition, it is clear that

Pφ(A×B)− PφX (A) · PφY (B) = δ(A,B).

Therefore it follows directly from Definition 6.1 that

α(X ,Y) = max
A⊆A,B⊆B

δ(A,B). (6.6)

On the other hand, it readily follows from Theorem 2.8 that

β(X ,Y) =
1

2

n∑
i=1

m∑
j=1

|δij | (6.7)

=

n∑
i=1

m∑
j=1

max{δij , 0}, (6.8)

Thus it is quite straight-forward to compute β(X ,Y). In contrast, in order
to compute α(X ,Y), in general we have no option but to examine all 2n
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subsets of A and all 2m subsets of B.2 As shown in the next example, it is
not possible in general to simplify the expression for the α-mixing coefficient.

Example 6.1 The purpose of this example is to show that it is not possible
to replace the right side of (6.2) by the simpler expression

max
i∈A,j∈B

|φij − (φX )i · (φY)j |.

This is shown through a numerical example. Let n = m = 4, and suppose
the joint distribution of X ,Y is as shown in the table below.

X \ Y 1 2 3 4 pX
1 0.055 0.110 0.060 0.025 0.250
2 0.055 0.050 0.060 0.035 0.200
3 0.035 0.100 0.160 0.105 0.400
4 0.005 0.040 0.070 0.035 0.150

pY 0.150 0.300 0.350 0.200 1.000
Joint Distribution of X and Y

Now the distribution of the product φX × φY is shown below.

(φX )i · (φY)j 1 2 3 4
1 0.0375 0.0750 0.0875 0.0500
2 0.0300 0.0600 0.0700 0.0400
3 0.0600 0.1200 0.1400 0.0800
4 0.0225 0.0450 0.0525 0.0300

Distribution of the φX × φY
Next, we display the values of the quantity δij for all i, j.

δij 1 2 3 4
1 0.0175 0.0350 -0.0275 -0.0250
2 0.0250 -0.0100 -0.0100 -0.0050
3 -0.0250 -0.0200 0.0200 0.0250
4 -0.0175 -0.0050 0.0175 0.0050

Values of δij

The largest entry by absolute value in the δ matrix is 0.0350. And yet, if
we choose A = B = {3, 4}, then

δ(A,B) =
∑
i∈A

∑
j∈B

δij = 0.0675 > max
i∈A,j∈B

δij .

Now we have defined two distinct mixing coefficients. Hence it is natural
to ask how they are related.

Theorem 6.3 Let X ,Y,φ be as before. Then

β(X ,Y) ≥ 2α(X ,Y), or α(X ,Y) ≤ 0.5β(X ,Y). (6.9)

2Actually, one can exclude the cases A = ∅, A = A, B = ∅, B = B. Also, if we examine
A,B, we need not examine Ac, Bc where Ac denotes the complement of A. However, the
point still remains valid: It is necessary to examine O(2n+m) choices of A and B.
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Proof. Recall the definition of the quantity δ(A,B) from (6.5). If Ac denotes
the complement of A, then it is easy to see that

δ(A,B) = −δ(Ac, B) = −δ(A,Bc) = δ(Ac, Bc).

By definition, α(X ,Y) is the maximum value of |δ(A,B)| as A varies over
all subsets of A and B varies over all subsets of B. In view of (6.4), there
exist sets A ⊆ A, B ⊆ B such that δ(A,B) = δ(Ac, Bc) = α(X ,Y), that is,∑

i∈A

∑
j∈B

δij =
∑
i∈Ac

∑
j∈Bc

δij = α(X ,Y).

Since δij can be either positive or negative, it follows that∑
i∈A

∑
j∈B

max{δij , 0} ≥
∑
i∈A

∑
j∈B

δij = α(X ,Y).

Similarly, ∑
i∈Ac

∑
j∈Bc

max{δij , 0} ≥
∑
i∈Ac

∑
j∈Bc

δij = α(X ,Y).

Finally

β(X ,Y) = ρ(P, PX × PY)

=

n∑
i=1

m∑
j=1

max{δij , 0}

≥
∑
i∈A

∑
j∈B

max{δij , 0}+
∑
i∈Ac

∑
j∈Bc

max{δij , 0}

= 2α(X ,Y).

This is the desired result. 2

Example 6.2 Consider again the probability distribution φ of Example
6.1. Then it can be verified through enumerating all possible subsets A ⊆
A, B ⊆ B that α(X ,Y) = 0.0675. Now, from (6.8) it follows that

β(X ,Y) =

4∑
i=1

4∑
j=1

max{δij , 0} = 0.14.

Hence 0.5β(X ,Y) = 0.07 is a very tight upper bound for α(X ,Y). The
advantage of β(X ,Y) over α(X ,Y) is that β(X ,Y) can be computed in
O(nm) operations, whereas in general computing α(X ,Y) exactly requires
O(2n+m) operations.

6.1.2 Inequalities Associated with Mixing Coefficients

Suppose X ,Y are random variables assuming values in the sets A = {1, . . . , n},
B = {1, . . . ,m} respectively. Let φ denote their joint distribution and let
Pφ denote their joint probability measure. Suppose f is a function of the



text September 25, 2011

142 CHAPTER 6

random variable X and g is a function of the random variable Y. Then the
product f(X )g(Y) depends on both X and Y. Suppose we wish to compute
the expected value E[fg, Pφ]. If X and Y were independent, then we know
from Theorem 2.12 that the expected value of fg would be just the product
of the expected values of f and g respectively. Thus

E[fg, PφX × PφY ] = E[f, PφX ] · E[g, PφY ].

Now suppose that X and Y are “nearly independent.” Then we may hope
that the expected value E[fg, Pφ] would be “close” to E[f, PφX ] ·E[g, PφY ].
Theorem 6.4 below gives an upper bound of the approximation error, that is,
the difference between the two quantities E[fg, Pφ] and E[f, PφX ] ·E[g, PφY ],
in terms of the α-mixing coefficient α(X ,Y). Next, suppose we have a func-
tion h(X ,Y) that may not be of the product form f(X )g(Y). Theorem
6.6 below estimates the difference between the expected values E[h, Pφ] and
E[h, PφX × PφY ] in terms of the β-mixing coefficient β(X ,Y).

Theorem 6.4 Suppose X ,Y are random variables assuming values in A =
{1, . . . , n} and B = {1, . . . ,m} respectively, and let Pφ denote their joint
probability measure. Let PφX , PφY denote the marginal measures of Pφ. Then

|E[fg, Pφ]− E[f, PφX ] · E[g, PφY ]| ≤ 4f̄ ḡα(X ,Y), (6.10)

where

f̄ = max
i
|fi|, ḡ = max

j
|gj |.

The proof of the theorem is based on a preliminary lemma.

Lemma 6.5 Let X ,Y, Pφ be as in Theorem 6.4, and suppose η : A →
{−1, 1}, ξ : B→ {−1, 1}. Then

|E[ηξ, Pφ]− E[η, PφX ] · E[ξ, PφY ]| ≤ 4α(X ,Y). (6.11)

Remark: It is obvious that (6.11) is a special case of (6.10) because
η̄ = ξ̄ = 1.

Proof. of Lemma 6.5: Define sets A+, A− ⊆ A and B+, B− ⊆ B as follows:

A+ = {i : ηi = 1}, A− = {i : ηi = −1},

B+ = {j : ξj = 1}, B− = {j : ξj = −1}.

Then A+, A− partition A while B+, B− partition B. As a result, the four
product sets A+×B+, A+×B−, A−×B+, A−×B− partition A×B. Moreover,
ηiξj = 1 whenever ij ∈ A+×B+ or ij ∈ A−×B−, while ηiξj = −1 whenever
ij ∈ A+ ×B− or ij ∈ A− ×B+. Hence

E[ηξ, Pφ] = Pφ(A+ ×B+) + Pφ(A− ×B−)− Pφ(A+ ×B+)− Pφ(A− ×B+).

In the same way, we have

E[η, PφX ] = PφX (A+)− PφX (A−), E[ξ, PφY ] = PφY (B+)− PφY (B−).
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Hence

E[η, PφX ] · E[ξ, PφY ] =PφX (A+) · PφY (B+) + PφX (A−) · PφY (B−)

−PφX (A+) · PφY (B−)− PφX (A−) · PφY (B+).

So, if we define

ε = E[ηξ, Pφ]− E[η, PφX ] · E[ξ, PφY ],

then

ε= [P (A+ ×B+)− PφX (A+) · PφY (B+)]

+ [P (A− ×B−)− PφX (A−) · PφY (B−)

+ [PφX (A+) · PφY (B−)− P (A+ ×B+]

+ [PφX (A−) · PφY (B+)− P (A− ×B+)].

Now note that each of the four quantities on the right side is bounded above
α(X ,Y) and below by −α(X ,Y). Hence

−4α(X ,Y) ≤ ε ≤ 4α(X ,Y),

or

|ε| ≤ 4α(X ,Y).

This is the desired inequality. 2

Proof. of Theorem 6.4: Define a function gX : A→ R as follows:

(gX )i :=

∑m
j=1 gjφij

(φX )i
=

∑m
j=1 gjφij∑m
j=1 φij

. (6.12)

We recognize from Definition 2.18 that gX is just the conditional expectation
of g(Y), viewed as a function of both X ,Y, with respect to X ; compare with
(2.33). Then it follows from Theorem 2.20 that

E[fg, Pφ] = E[fgX , PφX ]. (6.13)

Since E[g, PφY ] is just a constant, it follows from the above that

E[fg, Pφ]− E[f, PφX ] · E[g, PφY ] =E[fgX , PφX ]− E[f, PφX ] · E[g, PφY ]

=E[f(gX − E[g, PφY ]), PφX ].

Hence, if we define

γ := E[fg, Pφ]− E[f, PφX ] · E[g, PφY ],

then it follows that

γ = E[f(gX − E[g, PφY ]), PφX ] ≤ f̄E[|gX − E[g, PφY ]|, PφX ]. (6.14)

Now define a function η : A→ {−1, 1} by

ηi := sign{(gX )i − E[g, PφY ])}, i = 1, . . . , n, (6.15)

where

sign(x) :=

{
+1, if x ≥ 0,
−1, if x < 0.
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Then it is easy to see that

|gX − E[g, PφY ]| = η · (gX − E[g, PφY ]),

whence (6.14) becomes

γ ≤ f̄E[η(gX − E[g, PφY ]), PφX ]. (6.16)

The right side of this equation can be manipulated further using Theorem
2.20. This theorem implies that

E[ηgX , PφX ] = E[ηg, Pφ].

Substituting this into (6.16) shows that

γ ≤ f̄{E[ηg, Pφ]− E[η, PφX ] · E[g, PφY ]} ≤ f̄ ζ, (6.17)

where

ζ := E[ηg, Pφ]− E[η, PφX ] · E[g, PφY ].

Now ζ looks exactly like γ, except that the real-valued function f has been
replaced by the bipolar-valued function η of X .

To proceed further, we repeat the process, this time taking conditional
expectations with respect to Y. This leads to

ζ =E[ηg, Pφ]− E[η, PφX ] · E[g, PφY ]

=E[ηYg, PφY ]− E[η, PφX ] · E[g, PφY ]

=E[g · (ηY − E[η, PφX ]), PφY ].

Now in analogy with (6.15), let us define the function ξ : B→ {−1, 1} by

ξj := sign{(ηY)j − E[η, PφX ]}, ∀j,
and observe that

|(ηY)j − E[η, PφX ]| = ξj · {(ηY)j − E[η, PφX ]} ∀j.
Then

ζ =E[g · (ηY − E[η, PφX ]), PφY ]

≤ ḡE[|ηY − E[η, PφX ]|, PφY ]

= ḡE[ξ(ηY − E[η, PφX ]), PφY ]

= ḡ{E[ξηY , PφY ]− E[ξ, PφY ] · E[η, PφX ]}
= ḡ{E[ξη, Pφ]− E[ξ, PφY ] · E[η, PφX ]}.

Substituting this bound into (6.17) shows that

γ ≤ f̄ ḡ{E[ξη, Pφ]− E[ξ, PφY ] · E[η, PφX ]},
where η, ξ are now bipolar-valued functions. Now we can invoke Lemma 6.5,
specifically (6.11), to conclude that

γ ≤ 4f̄ ḡα(X ,Y).

Similar reasoning shows that

γ ≥ −4f̄ ḡα(X ,Y).

Finally these two inequalities together show that

|γ| ≤ 4f̄ ḡα(X ,Y).

This is the desired conclusion. 2
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Theorem 6.6 Suppose X ,Y are random variables assuming values in A =
{1, . . . , n} and B = {1, . . . ,m} respectively, and let Pφ denote their joint
probability measure. Let PφX , PφY denote the marginal measures of Pφ. Sup-
pose h : A× B→ [a, b]. Then

|E[h, Pφ]− E[h, PφX × PφY ]| ≤ (b− a)β(X ,Y). (6.18)

Proof. Let us scale the function h so that it assumes values in the unit
interval, by defining

h′ij =
hij − a
b− a

, ∀i, j.

Then a routine calculation shows that

E[h′, Pφ]− E[h′, PφX × PφY ] =
E[h, Pφ]− E[h, PφX × PφY ]

b− a
.

Now, since h′ : A× B→ [0, 1], it follows from Lemma 2.10 that

|E[h′, Pφ]− E[h′, PφX × PφY ]| ≤ ρ(P, PφX × PφY ) = β(X ,Y),

which in turn implies (6.18). 2

6.2 MIXING COEFFICIENTS OF A MARKOV PROCESS

6.3 ESTIMATING MEANS FROM SAMPLE PATHS: HOEFFD-

ING’S INEQUALITY

Suppose we are given a coin with two sides which we denote by heads (H)
and tails (T ). We wish to know what the probability is of the coin turning
up heads. If we knew the detailed mass distribution of the coin, perhaps
we might be able to compute this probability starting from first principles.
But it would appear to be more natural to toss a number of times and
observe how many times heads appears. Suppose we toss the coin 100 times
and heads appears 62 times. Then the ratio 62/100 = 0.62 is called the
empirical probability of heads, and should not be confused with the true
but unknown probability of heads, call it p(H). Let p̂m(H) denote the
empirical probability of heads after m coin tosses, where the hat above the
p serves to remind us that p̂m(H) is only an approximation to p(H). Now
p̂m(H) is itself a random variable assuming values in the interval [0, 1]. If we
were to toss the coin another 100 times, there is no reason to suppose that
we would once again get 62 heads. An old theorem in probability theory
tells us that p̂m(H) approaches p(H) ‘almost surely’ as m→∞. In a badly
written book on probability, the probability of heads p(H) is even ‘defined’
as the limit of p̂m(H) as m → ∞. However what concerns us at present is
not the asymptotic behavior of p̂m(H), but rather its finite time behavior.
Hoeffding’s inequality is a famous theorem that allows us to deduce how
close p̂m(H) is to p(H) after a finite number m of trials.
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Theorem 6.7 (Hoeffding’s Inequality) Suppose Y1, . . . ,Ym are indepen-
dent random variables, where Yi assumes values in the bounded interval
[a1, bi]. Then for each real number ε, we have

Pr{
m∑
i=1

[Yi − E(Yi)] ≥ ε} ≤ exp

[
−2ε2/

m∑
i=1

(bi − ai)2

]
, (6.19)

where E(Yi) denotes the expected value of Yi.

The proof of Hoeffding’s inequality uses the following auxiliary lemma.

Lemma 6.8 Suppose X is a zero-mean random variable assuming values in
the interval [a, b]. Then for any s > 0, we have

E[exp(sX )] ≤ exp(s2(b− a)2/8).

Proof. (of Lemma 6.8): Since the exponential is a convex function, the
value of esx is bounded by the corresponding convex combination of its
extreme values; that is,

exp(sx) ≤ x− a
b− a

esb +
b− x
b− a

esa, ∀x ∈ [a, b].

Now take the expectation of both sides, and use the fact that E(X ) = 0.
This gives

E[exp(sX )] ≤ b

b− a
esa − a

b− a
esb

= (1− p+ pes(b−a))e−ps(b−a)

=: exp(φ(u)),

where p := −a/(b − a), u := s(b − a), and φ(u) := −pu + ln(1 − p + peu).
Clearly φ(u) = 0. Moreover, a routine calculation shows that

φ′(u) = −p+
p

p+ (1− p)e−u
,

whence φ′(u) = 0 as well. Moreover,

φ′′(u) =
p(1− p)e−u

(p+ (1− p)e−u)2
≤ 0.25.

Hence by Taylor’s theorem, there exists a θ ∈ [0, u] such that

φ(u) =
φ′′(θ)u2

2
≤ u2

8
=
s2(b− a)2

8
.

This completes the proof. 2

Proof. (of Theorem 6.7): For any nonnegative random variable, we have
from Corollary 2.26 that

Pr{X ≥ ε} ≤ e−sεE[exp(sX )].
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Now apply this inequality to the random variable

Zm :=

m∑
i=1

(Yi − E(Yi)),

which has zero mean since the Yi’s are independent. Then

Pr{Zm ≥ ε}≤ e−sε E

[
exp

(
s

m∑
i=1

(Yi − E(Yi))

)]

= e−sε
m∏
i=1

E[exp(s(Yi − E(Yi)))] by independence

≤ e−sε
m∏
i=1

exp[s2(bi − ai)2/8] by Lemma 6.8

= exp

[
−sε+ s2

m∑
i=1

(bi − ai)2

8

]

= exp

[
−2ε2∑m

i=1(bi − ai)2

]
, (6.20)

where the last step follows by choosing

s =
4ε∑m

i=1(bi − ai)2
.

This completes the proof. 2

A useful (and widely used) ‘corollary’ of Hoeffding’s inequality is obtained
when we take repeated and independent measurements of the same random
variable. Because of its importance, we state the ‘corollary’ as a theorem.

Theorem 6.9 (Hoeffding’s Inequality for i.i.d. processes) Suppose Y
is a random variable assuming values in a bounded interval [a, b], and that
y1, . . . , ym are independent realizations of Y. Then for each ε > 0, we have

Pr

{
1

m

m∑
i=1

yi − E(Y) ≥ ε

}
≤ exp[−2mε2/(b− a)2], (6.21)

Pr

{
1

m

m∑
i=1

yi − E(Y) ≤ −ε

}
≤ exp[−2mε2/(b− a)2], (6.22)

Pr

{∣∣∣∣∣ 1

m

m∑
i=1

yi − E(Y)

∣∣∣∣∣ ≥ ε
}
≤ 2 exp[−2mε2/(b− a)2], (6.23)

Proof. To prove (6.21), apply (6.19) with ε replaced by mε, and ai = a, bi = b
for all i. To prove (6.22), apply (6.21) with Y replaced by −Y. Finally (6.23)
is a direct consequence of (6.21) and (6.22). 2
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Theorem 6.9 has a natural interpretation in terms of estimating the mean
or expected value of a random variable on the basis of successive independent
measurements. Suppose Y is the random variable whose mean we wish to
estimate, and for this purpose we have generated m independent samples
y1, . . . , ym of Y. The quantity

Êm(Y) :=
1

m

m∑
i=1

yi

is called the empirical mean of Y, as it is just the average of the m ob-
servations of Y. Now, inequalities (6.21) through (6.23) quantify the rate
at which the empirical mean converges to the true mean E(Y), as the num-
ber of samples m approaches infinity. The bound (6.23) states that, after
we have drawn m independent samples and computed the empirical mean
Êm(Y) as above, we can say with confidence 1− 2 exp[−2mε2/(b− a)2] that
the empirical mean is within ε of the true mean E(Y). The inequalities (6.2)
and (6.22) give ‘one-sided’ bounds on the likelihood that Êm(Y) ≥ E(Y) + ε
and Êm(Y) ≤ E(Y)− ε respectively. It is noteworthy that the right sides of
all three inequalities approach zero as m → ∞, but will never exactly equal
zero.

Hoeffding’s inequality was proved in 1963; see [56]. Since then various
researchers have attempted to improve the bound, but could not succeed in
doing so. And it is no wonder. In 1990, Massart [81] proved that Hoeffding’s
inequality is, in a very precise sense, the ‘best possible’ inequality.

Note that Hoeffding’s inequality is stated here for real-valued random
variables. So how can it be applied to random variables that assume values
in some discrete set that has no obvious interpretation as a subset of the
real numbers (e.g. the set of nucleotides)? The trick is to associate a binary-
valued random variable, assuming the (real) values 0 and 1, with the random
variable assuming values in an abstract set. To illustrate, let us return to
the problem of estimating the probability of a coin turning up heads. Let
us define a random variable Y such that Y = 1 if the coin toss turns up
heads, and Y = 0 if the coin toss turns up tails. Then it is clear that
Pr{Y = 1} = pH , the probability of heads. Moreover, E(Y) also equals
p(H). Hence the fraction of heads that turn up during a coin toss experiment,
which we have called p̂m(H) earlier, is the empirical mean of Y. Therefore
we can apply Hoeffding’s inequality with b = 1, a = 0 and assert that

Pr{|p̂m(H)− P (H)| ≥ ε} ≤ 2 exp(−2mε2).

Suppose that a random variable X assumes not just two but some finite
number n of values, which need not be real numbers. Specifically, suppose
X assumes values in A = {a1, . . . , an}. Suppose we generate m independent
realizations of X , denoted by x1, . . . , xm. Then, for each index i, we can
define an associated binary-valued random variable Yi as follows: Yi = 1
if X = ai, and Yi = 0 otherwise. With this association, it is clear that
the expected value of Yi is precisely Pr{X = ai} =: pi. Now, using the
realizations x1, . . . , xm, let us define n different empirical probabilities as
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follows:

p̂m(i) :=
1

m

m∑
j=1

I{xj=ai},

where I denotes the indicator function. Thus p̂m(i) is precisely the fraction
of times that the outcome ai appears amongst the m trials. Now we can
apply Hoeffding’s inequality to each of the n binary-valued random variables
Y1, . . . ,Yn and assert that

Pr{|p̂m(i)− pi| ≥ ε} ≤ 2 exp(−2mε2), i = 1, . . . , n.

These n separate bounds can be combined into the single, and very useful,
bound

Pr{|p̂m(i)− pi| ≤ ε ∀i} ≥ 1− 2n exp(−2mε2). (6.24)

Since n, the cardinality of the set A, appears explicitly on the right side of
the above equation, this approach is not useful for infinite sets, and alternate
approaches need to be devised. However, for random variables X assuming
values in a finite set of cardinality n, (6.24) states that, after m independent
trials, we can state with confidence 1−2n exp(−2mε2) that every one of the
n estimates p̂m(i) is within ε of its true value.

6.4 ESTIMATING THE STATE TRANSITION MATRIX
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Chapter Seven

Introduction to Large Deviation Theory

7.1 PROBLEM FORMULATION

In this chapter, we take some baby steps in a very important part of probabil-
ity theory, known as large deviation theory.1 We begin by describing briefly
the motivation for the problem under study. Suppose A = {a1, . . . , an} is
a finite set. Let M(A) denote the set of all probability distributions on
the set A. Clearly one can identify M(A) with the n-simplex Sn. Suppose
µ ∈ M(A) is a fixed but possibly unknown probability distribution, and X
is a random variable assuming values in A with the distribution µ. In order
to estimate µ, we generate independent samples x1, . . . , xl, . . ., where each
xi belongs to A, is distributed according to µ, and is independent of xj for
j 6= i. The symbol xl1 := x1 . . . xl ∈ Al denotes the multisample that repre-
sents the outcome of the first l experiments. Based on this multisample, we
can construct an empirical distribution µ̂(xl1) as follows:

(µ̂(xl1))i :=
1

l

l∑
j=1

I{xj=ai}, (7.1)

where I denotes the indicator function. Thus

I{xj=ai} =

{
1 if xj = ai,
0 if xj 6= ai,

In words, (7.1) simply states that µ̂i(x) equals the fraction of the samples
x1, . . . , xl that equal the symbol ai. Since every sample xi has to equal one
of the ai’s, it is easy to see that µ̂(xl1) is also a probability distribution
on A. Moreover µ̂(xl1) is a ‘random’ element of M(A) since it is based on
the random multisample x. Thus we can think of {µ̂(xl1)} as a stochastic
process that assumes values in M(A) and ask: As l→∞, does this process
converge to the true but possibly unknown measure µ that is generating the
samples, and if so, at what rate?

To address this question, the first thing we do is to convert the question
from one of studying a stochastic process into one of studying a sequence of
real numbers. Suppose Γ ⊆ M(A) is some set of probability distributions.
Then Pr{µ̂(xl1) ∈ Γ}l≥1 is a sequence of real numbers. So it makes sense to
study the behavior of this sequence as l→∞. What is the interpretation of
‘Pr’ in this context? Clearly the empirical distribution µ̂(xl1) depends only
on the first l samples xl1. So Pr{µ̂(xl1) ∈ Γ} = P lµ{µ̂(xl1) ∈ Γ}.

1I firmly resisted the temptation to say ‘some small steps in large deviation theory’.
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Suppose now that µ 6∈ Γ̄; thus the true measure µ that is generating
the random samples does not belong to the closure of the set Γ. Since Γ
is a subset of Rn, a finite-dimensional space, all topologies are equivalent;
however, to be definite, we can use the total variation metric to define what
is meant by the closure of a subset of M(A). Now, we believe that as we
draw more and more samples, the empirical measure µ̂(xl1) will converge to
the true measure µ (in some vague sense not yet made precise). Hence, we
believe that if µ 6∈ Γ̄, then the sequence of real numbers Pr{µ̂(xl1) ∈ Γ} will
converge to zero. Large deviation theory is concerned with the rate at which
this sequence converges to zero, and how the rate depends on the set Γ and
the true distribution µ.

Specifically, suppose this sequence converges to zero at an exponential
rate; that is

Pr{µ̂(xl1) ∈ Γ} ∼ c1 exp(−lc2).

Then the constant c2 is the rate of convergence (which will in general depend
on both Γ and µ). How can we ‘get at’ this rate? We can compute the
quantity

1

l
log Pr{µ̂(xl1) ∈ Γ} ∼ log c1

l
− c2,

and observe that as l → ∞, the negative of this quantity approaches c2.
Motivated by this observation, we define something called the ‘rate function’.
Since we will modify the definition almost at once, let us call this a ‘trial
definition’.

Let us call a function I : M(A) → R+ a ‘rate function’ if it has the
following properties: (i) Whenever Γ ⊆M(A) is an open set, we have

− inf
ν∈Γ

I(ν) ≤ lim inf
l→∞

1

l
log Pr{µ̂(xl1) ∈ Γ}. (7.2)

(ii) Whenever Γ ⊆M(A) is a closed set, we have

lim sup
l→∞

1

l
log Pr{µ̂(xl1) ∈ Γ} ≤ − inf

ν∈Γ
I(ν). (7.3)

However, the above definition leaves a few issues unresolved. First, there
are no specifications about the nature of the function I, so it could be quite
erratic. Second, there is no requirement that the rate function be unique.
Third, there are two separate conditions, one about what happens when Γ
is an open set and another about what happens when Γ is a closed set, but
nothing about what happens for ‘in-between’ sets Γ.

To overcome these issues, we introduce the notion of a lower semi-continuous
function, and then that of a lower semi-continuous relaxation. Given a num-
ber ε > 0, let us define B(ν, ε) to be the open ball of radius centered at ν.
Thus

B(ν, ε) := {φ ∈ Sn : ρ(ν,φ) < ε}.
Similarly, we define

B̄(ν, ε) := {φ ∈ Sn : ρ(ν,φ) ≤ ε}.
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A function f :M(A)→ R is said to be lower semi-continuous if

νi → ν∗ ⇒ f(ν∗) ≤ lim inf
i

f(νi).

Contrast this with the definition of continuity, which is

νi → ν∗ ⇒ f(ν∗) = lim
i
f(νi).

Now, given any function I : M(A) → R+, we define its lower semi-
continuous relaxation I∗ by

I∗(ν) := lim
ε→0

inf
φ∈B(ν,ε)

I(φ).

It is left as a problem to verify that I∗(·) is indeed lower semi-continuous.
Now suppose that a rate function I(·) satisfies (7.2) and (7.3). Then so

does its lower semi-continuous relaxation I∗(·). Moreover, for every ν ∈
M(A), we can write

−I∗(ν) = lim
ε→0

lim inf
l→∞

1

l
Pr{µ̂(xl1) ∈ B(ν, ε)}

= lim
ε→0

lim sup
l→∞

1

l
Pr{µ̂(xl1) ∈ B̄(ν, ε)}.

This shows that if the rate function is lower semi-continuous, then it is
unique. Putting it another way, it is conceivable that two distinct func-
tions can satisfy (7.2) and (7.3), but if so, they will both have exactly the
same lower semi-continuous relaxation. Finally, if the rate function I(·) is
lower semi-continuous (we drop the subscript for convenience), then the two
equations (7.2) and (7.3) can be combined into the single equation

− inf
ν∈Γo

I(ν)≤ lim inf
l→∞

1

l
Pr{µ̂(xl1) ∈ Γ}

≤ lim sup
l→∞

1

l
Pr{µ̂(xl1) ∈ Γ} ≤ − inf

ν∈Γ̄
I(ν), (7.4)

where Γo denotes the interior of the set Γ. All of these statements are not
easy for a beginner to see, so the problems at the end of the section give a
step by step guide to proving these assertions.

Now we are ready to state the definition of the rate function as it is
normally given in the literature on large deviation theory.

Definition 7.1 Let the symbols µ, µ̂(xl1) be as above. Then a function I :
M(A) → R+ is said to be a (the) rate function of the stochastic process
{µ̂(xl1)} if

1. I is lower semi-continuous.

2. For every set Γ ⊆M(A), the relationships in (7.4) hold.

In such a case the process {µ̂(xl1)} is said to satisfy the large deviation
property (LDP) with rate function I(·).
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In the above definition, the stochastic process under study is {µ̂(xl1)},
which assumes values in the compact set Sn. We can think of a more general
situation (not encountered in this book) where we study a stochastic process
{Xl} that assumes values in Rn. See for example [35, 48] for statements of
the large deviation property in the general case. In such a case the rate
function I(·) would have to be defined over all of Rn, wherever the random
variables Xl have their range. The rate function I(·) is said to be a good
rate function if the so-called ‘level sets’

Lα := {x ∈ Rn : I(x) ≤ α}
are compact for all α. However, we need not worry about ‘good’ rate func-
tions in the present context since the domain of the rate function is anyhow
a compact set; so the above condition is automatically satisfied.

Note that the assumption that I is lower semi-continuous makes the rate
function unique if it exists. Suppose that the set Γ does not have any isolated
points, i.e. that Γ ⊆ Γo. Suppose also that the function I(·) is continuous,
and not merely lower semi-continuous (and observe in passing that the func-
tion ν 7→ H(ν‖µ) is indeed continuous). Then the two extreme infima in
(7.4) coincide. As a result the liminf and limsup are equal, which means
that both equal the limit of the sequence. This means that

lim
l→∞

1

l
log Pr{µ̂(xl1) ∈ Γ} = − inf

ν∈Γ
I(ν). (7.5)

One of the attractions of the large deviation property is this precise estimate
of the rate at which Pr{µ̂(xl1) ∈ Γ} approaches zero. Let us define α to be
the infimum on the right side of (7.5). Then (7.5) can be rewritten as

1

l
log Pr{µ̂(xl1) ∈ Γ} → −α as l→∞.

This means that, very roughly speaking,

Pr{µ̂(xl1) ∈ Γ} ∼ c1(l) exp(c2(l)),

where c1(l) is subexponential in the sense that (log c1(l))/l approaches zero
as l→∞, while c2 → −α as l→∞.

In the next section, it is shown that for the specific problem discussed here
(namely, i.i.d. processes assuming values in a finite set A with distribution µ),
the rate function is actually I(ν) = H(ν‖µ). But in anticipation of that, let
us discuss the implications of the definition. Equation (7.5) means that the
rate at which Pr{µ̂(xl1) ∈ Γ} approaches zero depends only on the infimum
value of the rate function I(·) over Γ. To understand the implications of this,
consider the diagram below, which shows a ‘large’ set Γ1, and a much smaller
set Γ2 shown in the figure. Suppose the rate function I(·) is continuous and
assumes its minimum over Γ1 at exactly one choice of ν∗, indicated by the
red dot in the figure. Moreover, assume that I(ν∗) > 0; this is the case if
the true probability distribution µ does not belong to Γ̄, because in this case
H(ν∗‖µ) > 0. Now, since ν∗ ∈ Γ2, it is clear that

inf
ν∈Γ1

I(ν) = inf
ν∈Γ2

I(ν).
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Figure 7.1 Implications of (7.1)

Moreover, if we let Γ1 \ Γ2 denote the complement of Γ2 in Γ1, that is,

Γ1 \ Γ2 = {ν : ν ∈ Γ1,ν 6∈ Γ2},

then the continuity of the rate function implies that

inf
ν∈Γ1\Γ2

> inf
ν∈Γ1

I(ν). (7.6)

Now it is clear that, for every l, we have

Pr{µ̂(xl1) ∈ Γ1} = Pr{µ̂(xl1) ∈ Γ2}+ Pr{µ̂(xl1) ∈ Γ1 \ Γ2}.

Therefore (7.6) means that the second quantity on the right side approaches
zero at a faster exponential rate compared to the first quantity. So we can use
this fact to deduce what precisely happens as l→∞. Since Pr{µ̂(xl1) ∈ Γ1}
approaches zero at an exponential rate, we can think of µ̂(xl1) ∈ Γ1 as a
‘rare’ event, which becomes more and more rare as l → ∞. However, if we
now condition on this rare event occuring, and ask where precisely within
the large set Γ1 the empirical distribution µ̂(xl1) is likely to lie, we see from
the above discussion that

Pr{µ̂(xl1) ∈ Γ2|µ̂(xl1) ∈ Γ1} =
Pr{µ̂(xl1) ∈ Γ2}
Pr{µ̂(xl1) ∈ Γ1}

→ 1 as l→∞.

Since the above argument can be repeated for every set Γ2 such that (7.6)
is true, we see that the conditional distribution of µ̂(xl1), conditioned on
the event that µ̂(xl1) ∈ Γ1, becomes more and more peaked around ν∗ as
l → ∞. The above argument does not really depend on the fact that the
rate function I(·) assumes its minimum value at exactly one point in the set
Γ1. If the minimum of the rate function occurs at finitely many points in
Γ1, then as l → ∞, the conditional distribution above becomes more and
more peaked around these minima.
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7.2 LARGE DEVIATION PROPERTY FOR I.I.D. SAMPLES:

SANOV’S THEOREM

In this section we derive the exact rate function for the process of empirical
measures {µ̂(xl1)} defined in the preceding section, in the important case
where the samples x1, x2, . . . are generated independently using a common
distribution µ. Specifically, it is shown that the rate function is I(ν) =
H(ν‖µ), where µ is the actual distribution generating the samples. This
is known as Sanov’s theorem (but it must be pointed out that the original
Sanov’s theorem is not limited to the case of finite alphabets). Along the
way, we also introduce a very important approach known as ‘the method of
types’. This method makes the proofs very transparent and simple, and can
also be extended to the case of non-i.i.d. (or dependent) processes.

Let us begin by restating the problem under study. Suppose A = {a1, . . . , an}
is a finite set. Suppose µ ∈ M(A) is a fixed but possibly unknown proba-
bility distribution, and X is a random variable assuming values in A with
the distribution µ. In order to estimate µ, we define an i.i.d. sequence {Xt}
where each Xt has the distribution µ, and let x = x1,x2, . . . denote a sample
path (or realization) of this i.i.d. process. Based on the first l samples of this
realization, we can construct an empirical distribution µ̂(xl1) as follows:

(µ̂(xl1))i :=
1

l

l∑
j=1

I{xj=ai}. (7.7)

The objective is to make precise estimates the probability P lµ{µ̂(xl1) ∈ Γ}
where Γ ⊆M(A).

For this purpose, we introduce the ‘method of types’. For the moment
let us fix the integer l denoting the length of the multisample. Then it is
easy to see that the empirical distribution µ̂(xl1) can take only a finite set of
values. For one thing, it is clear from (7.7) that every element of µ̂(xl1) is a
rational number with denominator equal to l. Let E(l, n) denote the set of all
possible empirical distributions that can result from a multisample of length
l.2 We will denote elements of E(l, n) by symbols such as ν,φ etc. Suppose
xl1,y

l
1 ∈ Al are two multisamples. We define these two multisamples to be

equivalent if they generate the same empirical estimate, i.e., if µ̂(xl1) =
µ̂(yl1). It is easy to see that this is indeed an equivalence relation. For
each distribution ν ∈ E(l, n), the set of all multisamples xl1 ∈ A such that
µ̂(xl1) = ν is called the type class of ν, and is denoted by T (ν, l).

Example 7.1 Suppose the alphabet A has cardinality 2. For simplicity
we can write A = {1, 2}. Suppose l = 5. Then there are only six possible
empirical distributions, namely

E(5, 2) = {[0/5 5/5], [1/5 4/5], [2/5 3/5], [3/5 2/5], [4/5 1/5], [5/5 0/5]}.

2It is clear that the possible empirical distributions depend only on n, the cardinality
of the alphabet A, and not on the nature of the elements of A.
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Next, suppose ν = [2/5 3/5]. Then the type class T (ν, 5) consists of all
elements of A5 that contain precisely two 1’s and three 2’s. These can be
written out explicitly, as

T ([2/5 3/5], 5) =
{ [11222], [12122], [12212], [12221], [21122],

[21212], [21221], [22112], [22121], [22211] }.
Note that it is necessary to identify the type class not only with the empirical
distribution ν but also with the length l of the multisample. For instance,
if we keep the same ν but change l to 10, then T (ν, 10) would consist of all
elements of A10 that contain precisely four 1’s and six 2’s.

The ‘method of types’ consists of addressing (in no particular order) the
following questions:

• What is the cardinality of E(l, n)? In other words, how many distinct
empirical distributions can be generated as xl1 varies over Al? As we
shall see shortly, an upper bound will do.

• What is the (log) likelihood of each multisample in T (ν, l), and how is
it related to ν?

• For each empirical distribution ν ∈ E(l, n), what is the cardinality of
the associated type class T (ν, l)? We require both upper as well as
lower bounds on this cardinality.

Let us address these questions in this order (though, as stated above, we
could address them in any order we choose to).

Lemma 7.2 We have that

|E(l, n)| =
(
l + n− 1
n− 1

)
=

(l + n− 1)!

l!(n− 1)!
. (7.8)

Proof. The proof is by induction on n. If n = 2, then it is easy to see that
E(l, 2) consists of all distributions of the form [k/l (l−k)/l] as k varies from
0 to l. Thus |E(l, 2)| = l + 1 for all l, and (7.8) holds for n = 2, for all l.

To proceed by induction, suppose (7.8) holds up to n − 1, for all l, and
suppose |A| = n. Suppose ν ∈ E(l, n). Thus each component of lν is an
integer, and together they must add up to l. Let k denote the first component
of lν, and note that k can have the values 0, 1, . . . , l. If k = l then the next
n− 1 components of lν must all equal zero. Hence there is only one vector
ν ∈ E(l, n) with the first component equal to 1. For each k = 0, . . . , l − 1,
the next n − 1 components of lν must all be integers and add up to l − k.
Thus the next n − 1 components of lν can have |E(l − k, n − 1)| possible
values. Thus we have established the following recursive relationship:

|E(l, n)| = 1 +

l−1∑
k=0

|E(l − k, n− 1)| = 1 +

l∑
k=1

|E(k, n− 1)|,

after changing the dummy variable of summation. Therefore we need to
solve the above recursion with the starting condition |E(l, 2)| = l + 1.
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Now let us recall the following property of binomial coefficients:(
m
n

)
=

(
m− 1
n

)
+

(
m− 1
n− 1

)
.

This property can be verified by multiplying both sides by n!(m − n)! and
collecting terms. The above equation can be rewritten as(

m− 1
n− 1

)
=

(
m
n

)
−
(
m− 1
n

)
.

Substituting this relationship into the recursive formula for |E(l, n)|, and
using the inductive hypothesis gives

|E(l, n)|= 1 +

l∑
k=1

(
k + n− 2
n− 2

)

= 1 +

l∑
k=1

[(
k + n− 1
n− 1

)
−
(
k + n− 2
n− 1

)]
.

Note that when k = 1, we have that(
k + n− 2
n− 1

)
= 1.

which cancels the very first term of 1. So this is a telescoping sum, whereby
the negative terms and positive terms cancel out, leaving only the very last
positive term; that is,

|E(l, n)| =
(
l + n− 1
n− 1

)
.

This completes the proof by induction. 2

Lemma 7.3 Suppose ν ∈ E(l, n), and suppose that the multisample xl1 ∈ Al
belongs to the corresponding type class T (ν, l). Then

logP lµ{x} = lJ(ν,µ), (7.9)

where J(·, ·) is the loss function defined in (3.30).

Proof. Since ν ∈ E(l, n), every component of lν is an integer. Let us define
li = lνi for each i. Then the multisample xl1 contains precisely li occurrences
of the symbol ai, for each i. Since the samples are independent of each
other, the order in which the various symbols occur in xl1 does not affect its
likelihood. So it follows that

P lµ{x} =

l∏
i=1

µlii ,

whence

logP lµ{x} =

n∑
i=1

li logµi = l

n∑
i=1

νi logµi = lJ(ν,µ).
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2

Now we come to the last of the questions raised above, namely: What is
the cardinality of the type class T (ν, l)? Using the same symbols li = lνi,
we see that |T (ν, l)| is the number of ways of choosing l symbols from A in
such a way that the symbol ai occurs precisely li times. This number equals

|T (ν, l)| = l!∏n
i=1 l1!

.

So we derive upper and lower bounds for |T (ν, l)|. As a part of doing this,
we also derive another result that may be of independent interest.

Lemma 7.4 Suppose ν,φ ∈ E(l, n). Then

P lν(T (φ, l)) ≤ P lν(T (ν, l)). (7.10)

Remark: The lemma asserts that if we examine all the type classes,
then the measure of each type class is maximum under the corresponding
distribution.

Proof. Since ν,φ ∈ E(l, n), let us define li = lνi as above, and ki = lφi for
all i. Then it follows that

P lν(T (φ, l)) = |T (φ, l)|
n∏
i=1

νkii =
l!∏n

i=1 ki!

n∏
i=1

νkii =
l!

ll

n∏
i=1

lkii
ki!
,

where we take advantage of the fact that the ki’s add up to l. Now the term
l!/ll is just some integer constant that is independent of both ν,φ and can
thus be ignored in future calculations. Thus

logP lν(T (φ, l)) = const.+

n∑
i=1

[ki log li − log ki!].

If we note that log(ki!) =
∑ki
j=1 log s, we can rewrite the above as

logP lν(T (φ, l)) = const.+

n∑
i=1

ki∑
j=1

[log li − log j] = const.+

n∑
i=1

ki∑
j=1

log
li
j
.

Let us define

c(k1, . . . , kn) :=

n∑
i=1

ki∑
j=1

log
li
j
.

The claim is that above quantity is maximized when ki = li for all i.
To prove this, let us note first that

c(l1, . . . , ln) =

n∑
i=1

li∑
j=1

log
li
j
.

To show that this is the maximum value for the function c, suppose we choose
ki = li + 1 and k1′ = li′ − 1 for some indices i, i′. To make the notation less
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messy, let us rearrange the indices such that k1 = l1 + 1, k2 = l2 − 1 and
ki = li for i ≥ 3. Then it is easy to see that

c(l1 + 1, l2 − 1, l3, . . . , ln) = c(l1, . . . , ln) + log
l1

l1 + 1
< c(l1, . . . , ln).

Thus increasing any one of the indices by 1 from li, and decreasing another
one to ensure that the ki’s still add up to l, can only decrease the function
c. 2

Lemma 7.5 Let H(·) denote the entropy of a distribution, as before. Then

[|E(l, n)|]−1 exp[lH(ν)] ≤ |T (ν, l)| ≤ exp[lH(ν)], ∀ν ∈ E(l, n). (7.11)

Proof. Fix ν ∈ E(l, n), and let xl1 ∈ T (ν, l). Then xl1 contains precisely
li = lνi occurrences of the symbol ai. Therefore

P lν({x}) =

n∏
i=1

νlii , ∀x ∈ T (ν, l),

logP lν({x})) =

n∑
i=1

li log νi = l

n∑
i=1

νi log νi = −lH(ν), ∀x ∈ T (ν, l),

P lν({x})) = exp[−lH(ν)], ∀x ∈ T (ν, l),

P lν(T (ν, l)) = |T (ν, l)| exp[−lH(ν)]. (7.12)

Since P lν is a probability measure on Al and T (ν, l) ⊆ Al, it follows that

1 ≥ P lν(T (ν, l)) ≥ |T (ν, l)| exp[−lH(ν)],

which is the right inequality in (7.11).
To prove the left inequality in (7.11), observe that the various type classes

T (φ, l),φ ∈ E(l, n) partition the sample space Al. Therefore it follows from
Lemma 7.5 that

1 = P lν(Al) =
∑

φ∈E(l,n)

P lν(T (φ, l))

≤ |E(l, n)|P lν(T (ν, l))

= |E(l, n)||T (ν, l)| exp[−lH(ν)],

where in the last step we make use of (7.12). This leads to the left inequality
in (7.11). 2

Theorem 7.6 (Sanov’s Theorem for a Finite Alphabet) The stochas-
tic process {µ̂(xl1)} defined in (7.7) satisfies the large deviation property with
the rate function

I(ν) = H(ν‖µ). (7.13)
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Proof. To show that the function I(·) defined above is indeed the rate func-
tion, we apply Definition 7.1. It is clear that the function I(·) is not only
lower semi-continuous but is in fact continuous. So it remains only to verify
the two inequalities in (7.4).

Suppose ν ∈ E(l, n), and let us ask: What is the probability that the
empirical distribution µ̂(xl1) equals ν? Clearly the answer is

Pr{µ̂(xl1) = ν} = P lµ(T (ν, l)) = |T (ν, l)|P lµ({xl1}) for any one xl1 ∈ T (ν, l).

Now if we use (7.9) and the right inequality in (7.11), we can conclude that

Pr{µ̂(xl1) = ν} ≤ exp[−lH(ν) + J(ν‖µ)] = exp[−lH(ν‖µ)]. (7.14)

Similarly, by using (7.9) and the left inequality in (7.11), we can conclude
that

Pr{µ̂(xl1) = ν} ≥ [|E(l, n)|]−1 exp[−lH(ν‖µ)]. (7.15)

Now let Γ ⊆M(A) be any set of probability distributions on A. Then

Pr{µ̂(xl1) ∈ Γ}=
∑

ν∈E(l,n)∩Γ

Pr{µ̂(xl1) = ν}

≤ |E(l, n) ∩ Γ| sup
ν∈E(l,n)∩Γ

Pr{µ̂(xl1) = ν}

≤ |E(l, n)| sup
ν∈E(l,n)∩Γ

exp[−lH(ν‖µ)].

Hence

1

l
log Pr{µ̂(xl1) ∈ Γ} ≤ 1

l
log |E(l, n)|+ sup

ν∈Γ
−H(ν‖µ). (7.16)

Now we can make a crude estimate of |E(l, n)| using (7.8). It is clear that,
if l ≥ n, then l + n− 1 ≤ 2l, so that

|E(l, n)| ≤ 2n−1

(n− 1)!
ln−1, ∀l ≥ n.

This is not a particularly ‘clever’ estimate, but as we shall see below, the
constants in front will not matter anyhow when we take the limit as l→∞.
Since |E(l, n)| is polynomial in l, the first term on the right side of (7.16)
approaches zero as l→∞. Therefore

lim sup
l→∞

1

l
log Pr{µ̂(xl1) ∈ Γ} ≤ sup

ν∈Γ
−H(ν‖µ) = − inf

ν∈Γ
H(ν‖µ).

This establishes the right inequality in (7.4).
To establish the left inequality in (7.4), we begin by showing that ∪lE(l, n)

is dense inM(A); that is, for every φ ∈M(A) and every ε > 0, there exists
an integer l and a distribution ν ∈ E(l, n) such that ρ(ν,φ) ≤ ε. In words,
this says that every distribution in M(A) can be approximated arbitrarily
closely by an empirical distribution in E(l, n) for sufficiently large l. To
establish this fact, given ε and φ, choose an integer l such that n/l ≤ ε,
or equivalently l ≥ n/ε. Then for every index i = 1, . . . , n, there exists an
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integer qi such that |φi − qi/l| ≤ 1/l. Since
∑
i φi = 1, we can also ensure

that
∑
i qi = l, if necessary by increasing or decreasing some of the qi by one

as needed. This ensures that there exists a distribution ν = [q1 . . . qn]/l ∈
E(l, n) such that |φi − νi| ≤ 2/l for all i. For this choice of ν, it follows that

ρ(ν,φ) =
1

2

n∑
i=1

|νi − φi| ≤ n/l ≤ ε.

Now suppose ν is an interior point of Γ. Then there is an open ball B(ν)
in M(A) that contains ν. Since ∪lE(l, n) is dense in M(A), there exist a
sequence of integers lk and corresponding elements νlk ∈ E(lk, n) ∩ Γ such
that lk →∞ and νlk → ν. Hence

Pr{µ̂(xlk1 ) ∈ Γ} ≥ Pr{µ̂(xlk1 ) = νlk} ≥ [|E(lk, n)|]−1 exp[−lkH(νlk‖µ)],

where the last step follows from (7.15). Therefore

1

lk
log Pr{µ̂(xlk1 ) ∈ Γ} ≥ − 1

lk
log |E(lk, n)| −H(νlk‖µ)

≥ −H(νlk‖µ) + o(1/lk)

→−H(ν‖µ) as k →∞.
Hence it follows that

lim inf
l→∞

1

l
log Pr{ν(xl1) ∈ Γ} ≥ −H(ν‖µ), ∀ν ∈ Γo.

Since the above inequality holds for every ν ∈ Γo, we can conclude that

lim inf
l→∞

1

l
log Pr{ν(xl1) ∈ Γ} ≥ sup

ν∈Γo

−H(ν‖µ) = − inf
ν∈Γo

H(ν‖µ).

This is the left inequality in (7.4). Since both of the relationships in (7.4)
hold with I(ν) = H(ν‖µ), it follows that H(ν‖µ) is the rate function. 2

7.3 LARGE DEVIATION PROPERTY FOR MARKOV CHAINS

In this section we extend the results of the previous section from i.i.d. pro-
cesses to Markov chains. Along the way we introduce an alternate description
of Markov chains in terms of ‘consistent’ distributions, and also introduce a
very useful notion known variously as the Kullback-Leibler divergence rate
between two processes, or the differential relative entropy between two con-
sistent distributions.

7.3.1 Consistent Distributions: An Alternate Description of Markov
Chains

Suppose {Xt} is a stationary Markov process assuming values in A. Until
now we have been describing such a Markov chain is in terms of two entities:
(i) The stationary distribution π ∈M(A), where

πi := Pr{Xt = i}, i ∈ A.
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(ii) The state transition matrix A ∈ [0, 1]n×n, where

aij := Pr{Xt+1 = j|Xt = i}, ∀i, j ∈ A.

Note that each row of A is a probability distribution and belongs to M(A),
since the i-th row of A is the conditional distribution of Xt+1 given that
Xt = i. Thus A is a stochastic matrix.

But there is an alternative description of a Markov chain that is more
convenient for present purposes, namely the vector of doublet frequencies.
To motivate this alternate description, we first introduce the notion of a
consistent distribution on Ak. Other authors also use the phrase ‘stationary’
distribution.

Suppose {Xt} is a stationary stochastic process (not necessarily Markov)
assuming values in a finite set A. To make notation more compact, define

X ts := XsXs+1 . . .Xt−1Xt.

Clearly this notation makes sense only when s ≤ t. For each integer k ≥ 1
and each i := (i1, . . . , ik) ∈ Ak, let us define the k-tuple frequencies

µi := Pr{X t+kt+1 = i1 . . . ik}.

This probability does not depend on t since the process is stationary. Now
note that, for each (k − 1)-tuple i ∈ Ak−1, the events

{X t+kt+1 = i1 . . . ik−11}, . . . , {X t+kt+1 = i1 . . . ik−1n}

are mutually disjoint, and together generate the event

{X t+k−1
t+1 = i}.

Thus

µi =
∑
j∈A

µij , ∀i ∈ Ak−1.

By entirely analogous reasoning, it also follows that

µi =
∑
j∈A

µji, ∀i ∈ Ak−1.

This motivates the next definition.

Definition 7.7 A distribution ν ∈ M(A2) is said to be consistent (or
stationary) if ∑

j∈A
νij =

∑
j∈A

νji, ∀i ∈ A. (7.17)

For k ≥ 3, a distribution ν ∈M(Ak) is said to be consistent (or stationary)
if ∑

j∈A
νij =

∑
j∈A

νji, ∀i ∈ Ak−1,



text September 25, 2011

164 CHAPTER 7

and in addition, the resulting distribution ν̄ on Ak−1 defined by

ν̄i :=
∑
j∈A

νij ∀i ∈ Ak−1 =
∑
j∈A

νji ∀i ∈ Ak−1

is consistent. Equivalently, a distribution ν ∈ M(Ak) is said to be consis-
tent (or stationary) if∑

j∈Al

νij =
∑
j∈Al

νji, ∀i ∈ Ak−l, ∀l ≤ k − 1. (7.18)

The set of all consistent distributions on Ak is denoted by Mc(Ak).

Now let us return to Markov chains. Suppose {Xt} is a stationary Markov
chain assuming values in the finite set A. Define the vector µ ∈M(A2) by

µij = Pr{XtXt+1 = ij}, ∀i, j ∈ A.

Then, as per the above discussion, µ ∈ Mc(A2). The vector µ is called the
vector of doublet frequencies. The claim is that the doublet frequency
vector µ captures all the relevant information about the Markov chain, and
does so in a more natural way. The stationary distribution of the Markov
chain is given by

µ̄i :=
∑
j∈A

µij =
∑
j∈A

µji,

while the state transition matrix A is given by

aij =
µij
µ̄i
.

Dividing by µ̄i can be justified by observing that if µ̄i = 0 for some index
i, then the corresponding element i can simply be dropped from the set A.
With these definitions, it readily follows that µ̄ is a row eigenvector of A,
because

(µ̄A)j =

n∑
i=1

µ̄iaij =

n∑
i=1

µij = µ̄j .

Note that the above reasoning breaks down if µ ∈ Sn2 but µ 6∈ Mc(A2).
More generally, suppose {Xt} is an s-step Markov chain, so that

E{Xt|Xt−1 . . .X0} = E{Xt|Xt−1 . . .Xt−s} ∀t.

Then the process is completely characterized by its (s+ 1)-tuple frequencies

µi := Pr{X t+st = i}, ∀i ∈ As+1.

The probability distribution µ is consistent and thus belongs to Mc(As+1).
Now an s-step Markov chain assuming values in A can also be viewed as a
conventional (one-step) Markov chain over the state space As. Moreover, if
the current state is ij where i ∈ A, j ∈ As−1, then a transition is possible
only to a state of the form jk, k ∈ A. Thus, even though the state transition
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matrix has dimension ns×ns, each row of the transition matrix can have at
most n nonzero elements. The entry in row ij and column jk equals

Pr{Xt = k|X t−1
t−s = ij} =

µijk
µ̄ij

,

where as before we define

µ̄l :=
∑
i∈A

µil =
∑
i∈A

µli, ∀l ∈ As.

Next, we introduce two important notions called differential entropy, and
differential relative entropy (which can also be referred to as differential
Kullback-Leibler divergence).

Suppose ν,µ ∈Mc(Ak) are consistent distributions on Ak for some inte-
ger k ≥ 2. We define µ̄ ∈Mc(Ak−1) by

µ̄i :=
∑
j∈A

µij =
∑
j∈A

µji, ∀i ∈ Ak−1.

The overbar serves to remind us that µ̄ is “reduced by one dimension” from
µ. Because µ is a consistent distribution, it does not matter whether the
reduction is on the first component or the last. The symbol ν̄ is defined
similarly. With this notation we can now define differential entropy etc.

Definition 7.8 Suppose ν,µ ∈Mc(Ak) for some integer k ≥ 2. Then

D(µ) := H(µ)−H(µ̄) (7.19)

is called the differential entropy of µ, while

D(ν‖µ) := H(ν‖µ)−H(ν̄‖µ̄) (7.20)

is called the differential relative entropy between ν and µ, and also the
differential Kullback-Leibler divergence between ν and µ.

We can compare and contrast the above definition with Definition 3.7 of
entropy and Definition 3.18 of relative entropy. Note that µ̄, ν̄ are marginal
distributions of µ,ν respectively on Ak−1. Thus it readily follows that both
D(·) and D(·‖·) are nonnegative-valued. Note that we use the symbol H for
the (relative) entropy and D for the differential (relative) entropy.

7.3.2 Kullback-Leibler Divergence Rate Between Markov Chains

Suppose {Xt}t≥0, {Yt}t≥0 are two stationary stochastic processes (not neces-
sarily Markov) on a common finite alphabet A. In the present context, this
means simply that each process is a sequence of random variables assuming
values in A, indexed by the variable t which we can think of as ‘time’. Let
P̃ , Q̃ denote the ‘laws’ of the stochastic processes {Xt} and {Yt} respectively.
We have studiously ‘avoided the infinite’ in this book, but in essence we can
think of P̃ , Q̃ as probability measures on the countably infinite cartesian
product

∏∞
i=1 A. As we shall see below, actually we will have to deal only

with joint distributions of finitely many random variables, but it is helpful
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to have symbols (even if they are not properly defined) to denote the laws

of the two stochastic processes. For each integer l, let φ(l) denote the joint
distribution of X l1 = (X1, . . . ,Xl) under the law P̃ , and similarly let θ(l) de-

note the joint distribution of Y l1 under the law P̃ . Note that both φ(l),θ(l)

are distributions on the finite set Al.

Definition 7.9 The Kullback-Leibler divergence rate between the two
laws P̃ , Q̃ is defined as the limit, if it exists, as follows:

R(Q̃‖P̃ ) := lim
l→∞

1

l
H(θ(l)‖φ(l)), (7.21)

Note that the above definition is quite general and does not require either
process to be Markovian. Of course, in general, the limit can also fail to
exist. However, it is shown in this subsection that, if both the processes
{Xt}, {Yt} are Markov, then not only does the limit exist, but it is easy to
compute in closed form.

Theorem 7.10 Suppose {Xt} is a Markov process with stationary distribu-
tion π ∈ Sn and state transition matrix A ∈ [0, 1]n×n, or (π,A)-Markov for
short. Similarly, suppose {Yt} is (γ, B)-Markov. Then

R(Q̃‖P̃ ) =
∑
i∈A

γi
∑
j∈A

bij log(bij/aij), (7.22)

=
∑
i∈A

γiH(bi‖ai). (7.23)

where ai,bi denote the i-row of A,B respectively. An equivalent expression
is

R(Q̃‖P̃ ) = D(ν‖µ) = H(ν‖µ)−H(ν̄‖µ̄), (7.24)

where ν = [γibij ],µ = [πiaij ] ∈Mc(A2) are the doublet frequency vectors of
the two Markov processes.

To prove Theorem 7.10, we recall the “chain rule” of relative entropy; see
Theorem 3.23.3

Lemma 7.11 Suppose U = {u1, . . . , ur},V = {v1, . . . , vs} are finite sets,
and that θ,φ are probability distributions on the product U× V. Then

H(θ‖φ) = H(θU‖φU) +
∑
i∈U

(θU)iH(θV|i‖φV|i). (7.25)

Here φU,θU are marginal distributions on U while φV|i,θV|i are conditional
distributions on V conditioned on the event i. Thus

(φU)i =

s∑
j=1

φij , (φV|i)j =
φij∑s

j′=1 φij′
,

and θU,θV|i are defined analogously.
The next result is stated separately because it does not require the two

processes to be Markov, and is thus of independent interest.

3Note that the notation has been changed slightly since the symbol A has a very specific
meaning throughout this chapter.
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Lemma 7.12 Given probability laws P̃ , Q̃ on A∞, as before let φ(l),θ(l)

denote the joint distributions of the first l coordinates under the two laws,
respectively. Now define

αl :=
1

l
H(θ(l)‖φ(l))

βl :=H(θ(l+1)‖φ(l+1))−H(θ(l)‖φ(l))

= D(θ(l+1)‖φ(l+1)), l ≥ 1. (7.26)

Then the following statements are equivalent:

1. The Kullback-Leibler divergence rate R(Q̃‖P̃ ) is well-defined.

2. The sequence {αl} converges as l→∞.

3. The sequence {βl} converges in the Césaro sense as l→∞.

Therefore the Kullback-Leibler divergence rate R(Q̃‖P̃ ), if it exists, is the
Césaro limit of the sequence {βl}.

Remark: Recall that a sequence of real numbers {zl} is said to converge
in the sense of Césaro if the sequence of averages {yl} converges, where

yl =
1

l

l∑
i=1

zi.

For instance, the sequence {zl = (−1)l} does not converge in the conventional
sense because it keeps oscillating between 1 and −1. However, it converges
in sense of Césaro to 0. Césaro converges is a weaker property than standard
convergence because if zl → z∗, then yl → z∗ as l → ∞. However, as the
above example illustrates, it is possible for yl to approach a limit even when
zl fails to do so.

Proof. It is a direct consequence of (7.25) that

lαl = H(θ(l)‖φ(l)) =H(θ(1)‖φ(1)) +

l−1∑
i=1

H(θ(l+1)‖φ(l+1))

=

l−1∑
i=1

βi +H(θ(1)‖φ(1)).

Therefore

αl =
l − 1

l

1

l − 1

l−1∑
i=1

βi +
H(θ(1)‖φ(1))

l
.

Since H(θ(1)‖φ(1)) is just some constant, the second term on the right side
approaches zero as l → ∞. Since (l − 1)/ → 1 as l → ∞, the first term
approaches the Césaro limit of βl if any. Hence αl has a limit if and only if
βl has a Césaro limit. 2
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Proof. of Theorem 7.10: The proof of (7.22) consists of showing that the
sequence {βl} defined in (7.26) converges in just one step. Suppose l ≥ 2,
and apply the definition (7.26) for βl. This gives

βl =
∑
i∈Al

(θ)iH(θA|i‖φA|i).

Let us expand these conditional probabilities, keeping in mind that the two
processes are Markov. Suppose i = i1 . . . il, j ∈ A. Then

(θA|i)j = Pr{Xl+1 = j|X l1 = i1 . . . il}
= Pr{Xl+1 = j|Xl = il} by the Markov property

= bilj .

Similarly

(φA|i)j = ailj .

Therefore

βl =
∑
i∈Al

(θ)i
∑
j∈A

bilj log
bilj
ailj

.

Next, let us partition i ∈ Al as i = i1il where i1 ∈ Al−1, il ∈ A. Then the
above expression becomes

βl =
∑

i1∈Al−1

∑
il∈A

(θ)i1il
∑
j∈A

bilj log
bilj
ailj

=
∑
il∈A

 ∑
i1∈Al−1

(θ)i1il

∑
j∈A

bilj log
bilj
ailj

=
∑
il∈A

γil
∑
j∈A

bilj log
bilj
ailj

.

In the last step we use the obvious fact that∑
i1∈Al−1

(θ)i1il = γil , ∀il ∈ A.

Since βl is given by the above formula for every l ≥ 2, the sequence {βl}
converges in two steps. Replacing the dummy index of summation il by i
leads to (7.22). The equivalence of (7.22) and (7.23) is obvious.

Finally, to show that these formulae are both equivalent to (7.24), observe
that

γi = ν̄i, bij =
νij
ν̄i
, πi = µ̄i, aij =

µij
µ̄i
.
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Therefore it follows from (7.22) that

R(Q̃‖P̃ ) =
∑
i∈A

ν̄i
∑
j∈A

νij
ν̄i

log
νij/ν̄i
µij/µ̄i

=
∑
i∈A

∑
j∈A

νij log
νij/ν̄i
µij/µ̄i

=
∑
i∈A

∑
j∈A

νij log
νij
µij
−
∑
i∈A

∑
j∈A

νij

 log
ν̄i
µ̄i

=H(ν‖µ)−H(ν̄‖µ̄)

because ∑
j∈A

νij = ν̄i.

2

To complete the discussion, suppose the laws P̃ , Q̃ correspond to s-step
Markov chains, and observe in passing that an s-step Markov chain is also an
s′-step Markov chain whenever s′ > s. Thus if P̃ , Q̃ correspond to multi-step
Markov chains but possibly with different memory lengths, we can choose s
to be the larger of the memories of the two processes. In such a case, the
sequence {βl} converges after s steps. The proof is the same as that for
Theorem 7.10 with suitable modifications.

Theorem 7.13 Suppose P̃ , Q̃ correspond to s-step Markov chains, and let
µ,ν ∈ Mc(As+1) denote the corresponding (s + 1)-tuple frequency vectors
under the laws P̃ , Q̃ respectively. Then

βl = βs = D(ν‖µ), ∀l ≥ s.
Thus the sequence {βl} converges after s steps, and as a result

R(Q̃‖P̃ ) = D(ν‖µ) = H(ν‖µ)−H(ν̄‖µ̄). (7.27)

The proof is omitted and is left as an exercise.

7.3.3 The Rate Function for Doubleton Frequencies

Suppose {Xt} is a Markov process assuming values in a finite set A. Given an
observation xl1 = x1 . . . xl, we can form an empirical distribution φ(xl1) ∈ Sn
in analogy with (7.1); that is,

φj(x
l
1) :=

1

l

l∑
t=1

I{xt=j}, ∀j ∈ A. (7.28)

Thus φ is an approximation to the stationary distribution π of the Markov
chain.

As shown earlier, the Markov process {Xt} is completely characterized by
its vector of doublet frequencies µ ∈ Mc(A2). If {Xt} is a Markov chain,
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so is the stochastic process consisting of doublets {(Xt,Xt+1)}. So, given a
sample path xl1, we can estimate the vector of doublet frequencies using this
sample path. Since this point is germane to the subsequent discussion, it
is worth describing how precisely the doublet frequency vector is estimated.
Given the sample path xl1 = x1 . . . xl, we can define

θij(x
l
1) :=

1

l − 1

l−1∑
t=1

I{XtXt+1=ij}. (7.29)

This procedure produces a vector θ ∈ Sn2 which is a measure on A2, and can
be interpreted as an empirical estimate for µ, the true but unknown vector
of doublet frequencies. The difficulty however is that the distribution θ is
not consistent in general. If we define θ̄ ∈ Sn by

θ̄i :=
1

l − 1

l−1∑
t=1

I{Xt=i},

then it is certainly true that

θ̄i =

n∑
j=1

θij .

However, in general
n∑
j=1

θji 6= θ̄i.

Hence θ ∈ Sn2 is not a consistent distribution in general. Moreover, there is
no simple relationship between θ̄ ∈ Sn and φ ∈ Sn defined in (7.28).

On the other hand, if xl = x1 so that the sample path is a cycle, then
θ ∈ Mc(A2). This suggests that we should use only cyclic sample paths to
construct empirical estimates of doublet frequencies, or to carry the argu-
ment a bit farther, that we must create cycles, artificially if necessary, in the
sample path. Accordingly, given a sample path xl1 = x1 . . . xl, we construct
the empirical estimate ν = ν(xl1) as follows:

νij(x
l
1) :=

1

l

l∑
t=1

I{xtxt+1=ij}, ∀i, j ∈ A, (7.30)

where xl+1 is taken as x1. If we compare (7.30) with (7.29), we see that we
have in effect augmented the original sample path xl1 by adding a “ghost”
transition from xl back to x1 so as to create a cycle, and used this artificial
sample path of length l+ 1 to construct the empirical estimate. The advan-
tage of doing so is that the resulting vector ν is always consistent, unlike θ
in (7.29) which may not be consistent in general.

At this juncture it is worth pointing out that it is entirely up to us just
how we go about constructing the empirical estimate on the basis of a given
a sample path. Thus ν is as “valid” an estimate as θ. Moreover, if ν is a
better-behaved estimate than θ, then we should use it!

It should be intuitively obvious that ν(xl1) is consistent, but we show this
formally.
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Lemma 7.14 The measure ν(xl1) ∈ M(A2) defined in (7.30) is consistent
and thus belongs to Mc(A2).

Proof. Let us define

φi :=
∑
j∈A

νij , ∀i ∈ A. (7.31)

Then clearly φ ∈ Sn. Now it is claimed that∑
j∈A

νji = φi, ∀i ∈ A, (7.32)

thus showing that ν is consistent. To establish (7.32), observe from (7.31)
that φ is obtained by counting the number of times that i occurs as the first
symbol in x1x2, x2x3, . . . , xl−1xl, xlx1, and then dividing by l. Similarly the
quantity

∑
j∈A νji is obtained by counting the number of times that i occurs

as the second symbol in x1x2, x2x3, . . . , xl−1xl, xlx1, and then dividing by
l. Now, for 2 ≤ t ≤ l − 1, xt is the first symbol in xtxt+1, and the second
symbol in xt−1xt. Next, x1 is the first symbol in x1x2 and the second symbol
in the ghost transition xlx1. Similarly xl is the second symbol in xl−1xl and
the first symbol in the ghost transition xlx1. Thus ν is consistent. 2

To derive the rate function for this situation, we again use the method of
types. For a given integer l, the sample space of all possible sample paths
is clearly Al. With each sample path xl1 ∈ Al, we associate a corresponding
empirical distribution µ̂(xl1) defined as ν(xl1) of (7.30). We again define
xl1, y

l
1 ∈ Al to be equivalent if they lead to the same empirical distribution,

that is, if µ̂(xl1) = µ̂(yl1). Let us define E(l, n, 2) to be the subset ofMc(A2)
that can be generated as empirical measures from a sample path of length l
over an alphabet of size n. Note that earlier we had introduced the symbol
E(l, n) for the set of all empirical measures in Sn that can be generated from
a sample path of length l over an alphabet of size n. So it is clear that
E(l, n, 2) ⊆ E(l, n2). However, not every empirical measure in E(l, n2) will
be consistent. This is why we introduce a new symbol E(l, n, 2).

As before, for each ν ∈ E(l, n, 2), define

T (ν, l) := {xl1 ∈ Al : µ̂(xl1) = ν}.

Then T (ν, l) ⊆ Al is once again called the type class of ν. We will once
again address the following questions (in no particular order):

• What is the cardinality of E(l, n, 2)? In other words, how many distinct
consistent empirical measures µ̂(xl1) can be generated as xl1 varies over
Al?

• For a given ν ∈ E(l, n, 2), what is the cardinality of the associated type
class T (ν, l)?

• What is the (log) likelihood of each sample path in T (ν, l), and how
is it related to ν?
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We have seen in Section 7.2 that, if the process is i.i.d., and we estimate
one-dimensional marginal using (7.1), then every sample path in T (ν, l) has
exactly the same (log) likelihood. However, if the process is not i.i.d., then
this statement is no longer true: Different sample paths in T (ν, l) can have
different (log) likelihoods. Nevertheless, it is possible to adapt the arguments
from Section 7.2 to derive a rate function for the present situation.

We state at once the main result of this subsection. The proof is given in
stages.

Theorem 7.15 Suppose {Xt} is a stationary Markov chain assuming values
in a finite alphabet A. Let µ ∈Mc(A2) denote the vector of doublet frequen-
cies corresponding to this Markov chain, and let ν(xl1) ∈Mc(A2) denote the
empirical distribution constructed as in (7.30). Suppose µij > 0 ∀i, j ∈ A.
Then the Mc(A2)-valued process {ν(xl1)} satisfies the LDP with the rate
function

I(ν) := D(ν‖µ) = H(ν‖µ)−H(ν̄‖µ̄). (7.33)

The proof of the theorem is given through a couple of preliminary lemmas.
Each ν ∈ E(l, n, 2) is of the form νij = lij/l for some integer lij . Moreover,
the corresponding reduced distribution ν̄ over A is given by ν̄i = l̄i/l where

l̄i =

n∑
j=1

lij =

n∑
j=1

lji, ∀i.

Throughout the proof, l denotes the length of the sample path and lij , l̄i
denote these integers.

Lemma 7.16 With all notation as above, the following statements hold:

1. For each l, we have

|E(l, n, 2)| ≤ (l + 1)n
2

. (7.34)

2. The countable set ∪lE(l, n, 2) is dense in Mc(A2).

Proof. Suppose ν ∈ E(l, n, 2). Then each component νij has l + 1 possible
values, namely 0/l, 1/l, . . . , (l − 1)/l, l/l. Thus the maximum number of

possible vectors in E(l, n, 2) is (l + 1)n
2

. This proves (7.34) and establishes
the first claim.

Let Mc(A2)(l) denote the subset of Mc(A2) consisting of those distribu-
tions ν ∈ Mc(A2) where each entry is a rational number of the form lij/l.
Now it is obvious that the countable set ∪lMc(A2)(l) is dense in Mc(A2).
This is because every real number can be approximated arbitrarily closely
by a rational number. The proof of the second claim is complicated by the
fact that E(l, n, 2) is a strict subset ofMc(A2)(l). To see this, choose positive
integers l1, . . . , ln that add up to l, and let

νij =

{
li/l if i = j,
0 if i 6= j.
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Then ν ∈ Mc(A2)(l) as can be easily verified: It is consistent, and every
entry is a rational number with denominator l. However ν 6∈ E(l, n, 2),
because in any sample path xl1 that contains each of the n symbols of A,
there will be at least one pair ij where i 6= j. Hence ν(xl1) cannot have all
‘off-diagonal’ terms equal to zero. Nevertheless, the off-diagonal entries can
be made arbitrarily small by choosing l sufficiently large. Thus ∪lE(l, n, 2)
is dense in ∪lMc(A2)(l), which in turn is dense inMc(A2). This establishes
the second claim of the lemma. 2

The next lemma is much more crucial.

Lemma 7.17 Suppose ν ∈ E(l, n, 2). Then the cardinality of the type class
T (ν, l) is bounded by

(el)−2n2

exp[lD(ν)] ≤ |T (ν, l)| ≤ l exp[lD(ν)]. (7.35)

Proof. Suppose ν ∈ Sn2 is a distribution on A2, not necessarily consistent,
such that every component of lν is an integer for some integer l (or equiv-
alently, every entry in ν is of the form lij/l for some integers lij , l). Then
we can associate a directed graph with ν as follows: The graph has n nodes
labelled as 1 through n, an lνij edges from node i to node j. With this
definition, it is easy to see that

∑
j∈A lνji is the in-degree of node i, while∑

j∈A lνij is the out-degree of node i. Therefore the distribution ν is consis-

tent, and thus belongs to Mc(A2)(l), if and only if each node has the same
in-degree and out-degree. Further, ν belongs to E(l, n, 2), and not just to
Mc(A2)(l), if and only if (i) the graph is strongly connected, and (ii) each
node has the same in-degree and out-degree. This is why a measure ν with
νij = 0 for all i 6= j cannot belong to E(l, n, 2) – it satisfies the second crite-
rion but not the first. Therefore such a distribution can belong toMc(A2)(l)

but not to E(l, n, 2). If the graph is also connected in addition to having the
property that each node has the same in-degree and out-degree, then the
number of distinct sample paths that generate this empirical distribution ν
is equal to the number of distinct Eulerian circuits in the graph. Recall that,
in this connection, an Eulerian circuit is a loop that uses each edge exactly
once (and thus traverses each node at least once). Thus, by counting the
number of Eulerian circuits, we can compute the cardinality of the type class
|T (ν, l)|. This is what is done in [59]. 2

At last we come to the proof of the main theorem.

Proof. of Theorem 7.15: Suppose we have a sample path xl1. Let us com-
pute its likelihood in terms of the properties of the corresponding empirical
distribution ν(xl1). We have

Pr{X l1 = xl1} = Pr{X1 = x1} ·
l−1∏
t=1

Pr{Xt+1 = xt+1|Xt = xt}.
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Hence4

Pr{X l1 =xl1} = µ̄(x1) ·
l−1∏
t=1

µ(xtxt+1)

µ̄(xt)

= µ̄(x1) ·
l∏
t=1

µ(xtxt+1)

µ̄(xt)
· µ̄(xl)

µ(xlx1)

=
µ̄(x1)µ̄(xl)

µ(xlx1)
·
l∏
t=1

µ(xtxt+1)

µ̄(xt)
, (7.36)

where as before we take xl+1 = x1. Now, since µij > 0 for all i, j, there exist
constants c and c̄ such that

c ≤ µ̄iµ̄j
µij

≤ c̄, ∀i, j.

Of course these constants depend on µ, but the point is that they do not
depend on the empirical measure ν(xl1).

Next we examine the product term in (7.36). We have

log

[
l∏
t=1

µ(xtxt+1)

µ̄(xt)

]
=

l∑
t=1

[logµ(xtxt+1)− log µ̄(xt)].

When we do the above summation, we observe that the pair xtxt+1 occurs
exactly lij = l[ν(xl1)]ij times, while xt occurs exactly l̄i = l[ν̄(xl1)]i times.
Therefore

log

[
l∏
t=1

µ(xtxt+1)

µ̄(xt)

]
= l
∑
i∈A

∑
j∈A

νij logµij − l
∑
i∈A

ν̄i log µ̄i

=−l[J(ν,µ)− J(ν̄, µ̄)],

where we write ν and ν̄ for the more precise ν(xl1) and ν̄(xl1). Substituting
this into (7.36) shows that the likelihood of each sample path can be bounded
as follows:

log Pr{X l1 = xl1}+ l[J(ν,µ)− J(ν̄, µ̄)] ∈ [log c, log c̄]. (7.37)

In large deviation theory, the quantity of interest is the log of the likelihood
that a particular empirical estimate will occur, normalized by the length
of the observation. Accordingly, let us denote the empirical distribution
generated by a sample path as µ̂(xl1), and define

δ(l,ν) :=
1

l
log Pr{µ̂(xl1) = ν}.

Now we know from (7.37) that the log likelihood of each sample path within
the type class T (ν, l) looks like l[J(ν,µ)−J(ν̄, µ̄)], and we know from (7.35)

4In the interests of clarity, in the proof we write µ(xsxt) instead of µxsxt , and µ̄(xt)
instead of µ̄xt . However, we continue to use the subscript notation if the arguments are
simple indices such as i and j.
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that log |T (ν)| looks like lD(ν). Combining these two facts leads to

δ(l,ν)≤D(ν)− J(ν,µ) + J(ν̄, µ̄) + o(1/l)

=H(ν)−H(ν̄)− J(ν,µ) + J(ν̄, µ̄) + o(1/l)

=−H(ν‖µ) +H(ν̄‖µ̄) + o(1/l)

=−D(ν‖µ) + o(1/l). (7.38)

Similarly we get

δ(l,ν) ≥ −D(ν‖µ) + o(1/l). (7.39)

The remainder of the proof is entirely analogous to that of Theorem 7.6.
Let Γ ⊆Mc(A2) be any set of consistent distributions on A2. Then

Pr{µ̂(xl1) ∈ Γ}=
∑

ν∈E(l,n,2)∩Γ

Pr{µ̂(xl1) = ν}

≤ |E(l, n, 2) ∩ Γ| sup
ν∈E(l,n,2)∩Γ

Pr{µ̂(xl1) = ν}.

Hence

1

l
log Pr{µ̂(xl1) ∈ Γ} ≤ 1

l
log |E(l, n, 2)|+ sup

ν∈Γ
δ(l,ν).

Since |E(l, n, 2)| is polynomial in l, the first term approaches zero as l→∞.
Next, from (7.39) it follows that the second term approaches −D(ν‖µ) as
l→∞. Combining these two facts shows that

lim sup
l→∞

1

l
log Pr{µ̂(xl1) ∈ Γ} ≤ sup

ν∈Γ
−D(ν‖µ) = − inf

ν∈Γ
D(ν‖µ).

This establishes the right inequality in (7.4).
To establish the left inequality, suppose ν is an interior point of Γ. Then

there is an open ball B(ν) in Mc(A2) that contains ν. Since ∪lE(l, n, 2) is
dense in Mc(A2), there exist a sequence of integers lk and corresponding
elements νlk ∈ E(lk, n, 2) ∩ Γ such that lk →∞ and νlk → ν. Hence

Pr{µ̂(xlk1 ) ∈ Γ} ≥ Pr{µ̂(xlk1 ) = νlk},

1

lk
log Pr{µ̂(xlk1 ) ∈ Γ} ≥ δ(lk,νlk)

≥ −D(νlk‖µ) + o(1/lk)

→−D(ν‖µ) as k →∞.

Hence it follows that

lim inf
l→∞

1

l
log Pr{ν(xl1) ∈ Γ} ≥ −D(ν‖µ), ∀ν ∈ Γo.

Since the above inequality holds for every ν ∈ Γo, we can conclude that

lim inf
l→∞

1

l
log Pr{ν(xl1) ∈ Γ} ≥ sup

ν∈Γo

−D(ν‖µ) = − inf
ν∈Γo

D(ν‖µ).
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This establishes that the relationships in (7.4) hold with I(ν) = D(ν‖µ),
thus showing that D(ν‖µ) is the rate function. 2

In conclusion, it may be remarked that when the samples {xt} come from
an i.i.d. process, we have exact formulae for both the size of each type class,
and the likelihood of each sample within a type class. In the case where
the samples come from a Markov process, we have only bounds. However,
the ‘correction terms’ in these bounds approach zero as the number of sam-
ples approaches infinity, thus allowing us to deduce the rate function for
doubleton frequencies in a straight-forward fashion.

7.3.4 The Rate Function for Singleton Frequencies

In this subsection, we first introduce a very important technique known as
the ‘contraction principle’, which permits us to derive rate functions for
functions of the empirically estimated frequencies. Using the contraction
principle, we then derive the rate function for singleton frequencies of a
Markov chain. The contraction principle directly leads to a very appealing
formula. By applying duality theory, we then derive another formula that is
equivalent to this one.

Theorem 7.18 (The Contraction Principle) Suppose the stochastic pro-
cess {µ̂(xl1)} assuming values in Sm satisfies the large deviation property with
the rate function I(·) : Sm → R+. Suppose that f : Sm → Sk is continuous.
Then the stochastic process {f [µ̂(xl1)]} satisfies the large deviation property
with the rate function J(·) : Sk → R+ defined by

J(θ) := inf
ν∈f−1(θ)

I(ν), ∀θ ∈ Sk. (7.40)

Remarks:

1. The rate function for the new stochastic process {f [µ̂(xl1)]} has a very
intuitive interpretation. The rate function of θ ∈ Sk is the ‘slow-
est’ value amongst the original rate function I(ν) as ν varies over all
preimages of θ, that is, over all ν ∈ Sm that map into θ.

2. In the general case, where the stochastic process {Xl} assumes values
in Rm, and f : Rm → Rk, it is necessary to add the assumption that
the original rate function I(·) is ‘good’, that is, all level sets of I(·) are
compact. See for example [35], p. 126, Theorem 4.2.1. However, in the
restricted situation being studied here, where the rate function has a
compact set as its domain, we need not worry about this additional
condition.

Proof. The proof consists of two steps. First, it is shown that the function
J(·) is lower semi-continuous. Second, instead of establishing the two re-
lationships in (7.4), we instead establish (7.2) and (7.3). As pointed out
earlier, for lower semi-continuous functions, (7.4) is equivalent to (7.2) and
(7.3).
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To show that the function J(·) is lower semi-continuous, we begin by
observing that, since the original rate function I(·) is lower semi-continuous
and the set Sm is compact, the infimum in (7.40) is actually a minimum.5

Thus for each θ ∈ Sk, there exists a ν ∈ Sm such that f(ν) = θ and
J(θ) = I(ν). Now suppose {θi} is a sequence in Sk that converges to
θ∗ ∈ Sk. The objective is to show that

J(θ∗) ≤ lim inf
i→∞

I(θi). (7.41)

Towards this end, let us choose, for each index i, a νi ∈ Sm such that
f(νi) = θi and I(νi) = J(θi). Now, since Sm is compact6 it follows that
{νi} contains a convergent subsequence. Let us renumber this subsequence
again as {νi}, and let ν∗ ∈ Sm denote its limit. Now, since f is a continuous
map, it follows that

f(ν∗) = lim
i→∞

f(νi) = lim
i→∞

θi = θ∗.

Hence ν∗ ∈ f−1(θ∗). The definition of J(·) plus the lower semi-continuity
of I(·) together imply that

J(θ∗) = inf
ν∈f−1(θ∗)

I(ν) ≤ I(ν∗) ≤ lim inf
i→∞

I(νi) = lim inf
i→∞

J(θi).

Hence (7.41) is established and J(·) is shown to be lower semi-continuous.
Next, suppose Ω ⊆ Sk is an open set. Since the map f is continuous, the

preimage f−1(Ω) is also open. Therefore

Pr{f(µ̂l) ∈ Ω} = Pr{µ̂l ∈ f−1(Ω)}.
As a consequence,

lim inf
l→∞

1

l
log Pr{f(µ̂l) ∈ Ω}= lim inf

l→∞

1

l
log Pr{µ̂l ∈ f−1(Ω)}

≥− inf
ν∈f−1(Ω)

I(ν)

=− inf
θ∈Ω

J(θ).

This establishes that (7.2) holds with I replaced by J and Γ replaced by Ω.
The proof of (7.3) is entirely similar and follows upon noting that if Ω ⊆ Sk
is a closed set, then so is f−1(Ω). 2

To apply the contraction principle to derive the rate function for singleton
frequencies, let us define a map f :Mc(A2)→ Sn by

[f(ν)]i :=
∑
j∈A

νij =
∑
j∈A

νji.

Thus f maps a consistent distribution ν on A2 onto its one-dimensional
marginal ν̄. Moreover, if we construct ν(xl1) for a sample xl1 using the

5In the case of a general stochastic process assuming values in Rm, we invoke the
‘goodness’ of I(·).

6In the general case, since the original rate function I(·) is a ‘good’ rate function . . .
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formula (7.30), then the corresponding f [ν(xl1)] is the usual empirical distri-
bution of singleton frequencies. Thus if f [ν(xl1)] = φ(xl1), then

[φ(xl1)]i =
1

l

l∑
t=1

I{xt=i},

which is the same as (7.28). Now, by invoking the contraction principle, we
can readily conclude the following:

Theorem 7.19 The Sn-valued process φ(xl1) satisfies the LDP with the rate
function

J(φ) := inf
ν∈Mc(A2)

D(ν‖µ) s.t. ν̄ = φ. (7.42)

Recall that

D(ν‖µ) = H(ν‖µ)−H(ν̄‖µ̄).

Hence we can also write

J(φ) =

[
inf

ν∈Mc(A2)
H(ν‖µ) s.t. ν̄ = φ

]
−H(φ‖µ̄). (7.43)

The problem of minimizing H(ν‖µ) where ν,µ ∈Mc(A2) subject to the
constraint that ν̄ = φ is a special case of the following more general problem:
Suppose A,B are finite sets (not necessarily of the same size), and µ is a
distribution on A × B. Suppose φ,ψ are distributions on A,B respectively.
Then the problem is: Minimize the relative entropy H(ν‖µ) subject to the
constraints νA = φ and νB = ψ.

In the somewhat uninteresting case where µ is itself a product measure
of the form µA × µB, the solution is easy: ν = φ × ψ. But in general no
closed-form solution is available.

Theorem 7.19 gives the rate function as the infimum of a convex minimiza-
tion problem. The reformulation (7.43) makes it obvious that the objective
function is convex in ν since −H(φ‖µ̄) is just an additive constant. Now
by using duality theory, we obtain an alternate formula for the rate function
for singleton frequencies.

Theorem 7.20 Suppose φ ∈ Sn and µ ∈Mc(A2). Then{
inf

ν∈Mc(A2)
H(ν‖µ) s.t. ν̄ = φ

}
=

{
H(φ‖µ̄) + sup

u>0

n∑
i=1

φi log
ui

(uA)i

}
,

(7.44)
where as before aij = µij/µ̄i is the state transition matrix of the Markov
chain associated with the doublet frequency vector µ. Therefore an alternate
formula for the rate function J(·) is

J(φ) = sup
u>0

n∑
i=1

φi log
ui

(uA)i
. (7.45)
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Proof. Since H(ν‖µ) is a convex function of ν and the constraint ν̄ = φ is
linear, it follows that the value of this infimum is the same as the supremum
of the dual problem; in other words, there is no duality gap.

To formulate the dual problem, we study the following more general prob-
lem, and persist with it as long as we can. The problem is:

inf
ν∈Snm

n∑
i=1

m∑
j=1

νij log
νij
µij

s.t.

m∑
j=1

νij = φi ∀i, and

n∑
i=1

νij = ψj , ∀j. (7.46)

Right at the very end we will put n = m and φ = ψ, which will incidentally
automatically ensure that ν ∈Mc(A2).

The Lagrangian of the above constrained problem is

L(ν,α,β) =

n∑
i=1

m∑
j=1

νij log
νij
µij

+

n∑
i=1

φi − m∑
j=1

νij

αi +

m∑
j=1

[
ψj −

n∑
i=1

νij

]
βj ,

where α,β are the vectors of Lagrange multipliers. Then

∂L

∂νij
= log

νij
µij

+ 1− αi − βj .

Thus, at the optimum, we have

log
ν∗ij
µij

= αi + βj − 1,

or

ν∗ij = µij exp(αi + βj − 1).

Thus

L∗(α,β) := inf
ν
L(ν,α,β)

=

n∑
i=1

m∑
j=1

ν∗ij(αi + βj − 1) +

n∑
i=1

φi − m∑
j=1

ν∗ij

αi +

m∑
j=1

[
ψj −

n∑
i=1

ν∗ij

]
βj ,

= −
n∑
i=1

m∑
j=1

ν∗ij +

n∑
i=1

φiαi +

m∑
j=1

ψjβj

= −
n∑
i=1

m∑
j=1

µije
αi+βj−1 +

n∑
i=1

φiαi +

m∑
j=1

ψjβj .

By duality theory, the infimum in (7.46) is the unconstrained supremum of
L∗(α,β) with respect to α,β.

Next, let us reparametrize the problem. We have

L∗(α,β) = −
n∑
i=1

m∑
j=1

µije
αi+βj−1 +

n∑
i=1

φiαi +

m∑
j=1

ψjβj .
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Now define

exp(αi) =: vi, αi = log vi, exp(βj − 1) =: wj , βj = logwj + 1,

and observe that since α,β are unconstrained, the corresponding vectors
v,w are constrained to be strictly positive; that is, v > 0,w > 0. In a bit of
sloppy notation, we continue to refer to the resulting function as L∗(v,w).
Now

L∗(v,w) = −
n∑
i=1

m∑
j=1

µijviwj +

n∑
i=1

φi log vi +

m∑
j=1

ψj logwj +

m∑
=1

ψj .

Next, observe that

sup
v>0,w>0

L∗(v,w) = sup
v>0

sup
w>0

L∗(v,w).

So let us fix v > 0 and define

L∗∗(v) := sup
w>0

L∗(v,w).

To compute L∗∗(v), note that

∂L

∂wj
= −

n∑
i=1

µijvi +
ψj
wj
.

Hence at the optimum we have

w∗j =
ψj∑n

i=1 µijvi
.

Thus

L∗∗(v) =L∗(v,w∗)

=−
m∑
j=1

ψj +

n∑
i=1

φi log vi +

m∑
j=1

ψj log
ψj∑m

i=1 viµij
+

m∑
j=1

ψj .

Now observe that the first and last terms on the right side cancel out. At
last let us use the facts that n = m and φ = ψ. Thus, after making these
substitutions, and interchanging the indices i and j in the last summation,
we get

L∗∗(v) =

n∑
i=1

φi log
φivi∑m
j=1 vjµji

.

Let us now make one last change of variables by defining

vi = ui/µ̄i, ui = viµ̄i, ∀i.

With this change of variables, u is also constrained to be a strictly positive
vector. Also

vjµji = vj
µji
µ̄j

= ujaji,
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where aij are the elements of the state transition matrix of the Markov chain.
Next,

n∑
j=1

vjµji =

n∑
j=1

ujaji = (uA)i, ∀i.

And finally, retaining the same symbol L∗∗, we get

L∗∗(u) =

n∑
i=1

φi

[
log(φi/µ̄i) + log

ui
(uA)i

]

=H(φ‖µ̄) +

n∑
i=1

φi log
ui

(uA)i
.

Therefore the solution to the original minimization problem is

H(φ‖µ̄) + inf
u>0

n∑
i=1

φi log
ui

(uA)i
.

This proves (7.44). 2

7.3.5 Multi-Step Markov Chains

The results in the two previous subsections dealt with conventional one-step
Markov chains. However, the methods can be extended readily to multi-step
processes, and that is done in the present subsection.

Let us begin by reprising earlier discussions. Suppose {Xt} is an s-step
Markov process, so that

E{Xt|Xt−1 . . .X0} = E{Xt|Xt−1 . . .Xt−s} ∀t.

Then the process is completely characterized by the (s+ 1)-tuple frequency
vector

µi := Pr{X t+st = i}, ∀i ∈ As+1.

Note that the frequency vector µ is consistent and thus belongs toMc(As+1).
Since an s-step Markov process over A can be viewed as a conventional (one-
step) Markov process over the state space As, we can identify the stationary
distribution

µ̄i :=
∑
j∈A

µij =
∑
j∈A

µji, ∀i ∈ As,

while the transition probabilities are given by

Pr{Xt = j|X t−1
t−s = i} =

µij

µi
.

Suppose xl1 is a sample path of length l of an s-step Markov chain. To
construct a consistent empirical measure on the basis of this sample path, we
define the augmented sample path x̃l1 := x1 . . . xlx1 . . . xs = xl1 · xs1 ∈ Al+s.
Here the symbol · denotes the concatenation of two strings. The above
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augmentation is the s-step generalization of adding a single ghost transition
from xl to x1 in the case of one-step Markov chains. In this case we are
adding s ghost transitions. Then we define

νi :=
1

l

l∑
t=1

I{xt+s
t =i}, ∀i ∈ As+1. (7.47)

Compare (7.47) to (7.30). Then the resulting empirical measure ν(xl1) be-
longs to Mc(As+1). For this empirical measure we can state the following
result.

Theorem 7.21 Suppose {Xt} is a stationary s-step Markov assuming val-
ues in the finite set A, with the (s+1)-tuple frequency vector µ ∈Mc(As+1).
Define ν(xl1) ∈ Mc(As+1) as in (7.47). Then the Mc(As+1)-valued process
{ν(xl1)} satisfies the LDP with the rate function

I(ν) := D(ν‖µ) = H(ν‖µ)−H(ν̄‖µ̄). (7.48)

Proof. Since the proof of Theorem 7.21 closely parallels that of Theorem
7.19, we only sketch it. In analogy with earlier notation, let E(l, n, s + 1)
denote the set of empirical measures in Mc(As+1) that can possibly arise
from a sample path of length l. The set T (ν) denotes the type class of ν,
that is, the set of sample paths xl1 ∈ Al that lead to the empirical measure
ν ∈ E(l, n, s+ 1). With this notation we can mimic all the steps involved in
Proving Theorem 7.19. First of all, it is easy to see that

|E(l, n, s+ 1)| ≤ (l + 1)s+1. (7.49)

Compare with (7.34). Second, the countable set ∪lEl,s is dense inMc(As+1).
Next, we can estimate the cardinality of the type class T (ν) by constructing
a graph with ns nodes, where each node represents a string in As. Suppose
ν ∈ E(l, n, s+ 1), and for each string j ∈ As+1, let lj denote the integer lνj.
Now since the process under study is an s-step Markov process, a transition
is possible only from a state ij, i ∈ A, j ∈ As−1 to another state jk, k ∈ A.
So in the directed graph, we draw lijk directed edges from the node ij to
the node jk. Note that, even though there are ns nodes in the graph, each
node can have outgoing edges to at most n other nodes. Since the empirical
measure ν is consistent, as before each node has the same in-degree and out-
degree. Moreover, the number of Eulerian circuits is the number of distinct
sample paths that leads to the empirical measure ν. So we can compute the
size of the type class T (ν, s) by counting the number of Eulerian circuits in
this graph. This problem is also studied in [59]. The bounds corresponding
to (7.35) are

(el)−2ns+1

elD(ν) ≤ |T (ν)| ≤ (l − 1)elD(ν). (7.50)

Finally, we need to estimate the log likelihood of each sample path within
the type class T (ν). We can simply mimic the arguments leading to (7.36)
to get

Pr{X l1 = xl1} = µ̄(xs1) ·
l∏

t=l−s

µ̄(xt+s−1
t )

µ(xt+st )
·
l∏
t=1

µ(xt+st )

µ̄(xt+s−1
t )

.
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Thus (7.37) holds with

c, c̄ = min,max

l∏
t=l−s

µ̄(xt+s−1
t )

µ(xt+st )
.

This in turn permits us to prove analogs of (7.38) and (7.39). The last part
of the proof of Theorem 7.19 goes through unchanged. 2

Theorem 7.21 presents the rate function for (s + 1)-tuple frequencies of
an s-step Markov chain. Using the contraction principle, it is possible to
obtain the rate function for the frequencies of k-tuples where 1 ≤ k ≤ s. For
this purpose, we introduce a new symbol. Suppose ν ∈Mc(As+1) and that
1 ≤ r ≤ s. Then Br(ν) ∈Mc(As+1−r) is defined by

[Br(ν)]i :=
∑
j∈Ar

νij =
∑
j∈Ar

νji ∀i ∈ As+1−r.

Thus B1(ν) = ν̄ as defined earlier, and Br(ν) is just ν “barred” r times.
Because ν is consistent, it does not matter whether the summation is on the
first component or the last component.

Now suppose we are given a sample path xl1 and we construct the empirical
measure ν(xl1) as in (7.47). Then it is clear that

[Br(ν)]i =
1

l

l∑
t=1

I{xt+s−r
t =i}, ∀i ∈ As+1−r. (7.51)

Theorem 7.22 Suppose {Xt} is a stationary s-step Markov assuming val-
ues in the finite set A, with the (s+1)-tuple frequency vector µ ∈Mc(As+1).
Define ν(xl1) ∈ Mc(As+1) as in (7.47), and define the Mc(Ak)-valued pro-
cess {Bs+1−k(ν(xl1)} as in (7.51) with r = s + 1 − k. Then this process
satisfies the LDP with the rate function

I(φ) := inf D(ν‖µ) s.t. B(s+1−k)(ν) = φ

= inf H(ν‖µ)−H(ν̄‖µ̄)

s.t. B(s+1−k)(ν) = φ. (7.52)

Corollary 7.23 Let {Xt} be as in Theorem 7.22 and define

aij :=
µij

µ̄i
= Pr{Xt = j|X t−1

t−s = i}, ∀i ∈ As, j ∈ A.

Then the s-tuple empirical frequency vector {ν̄(xl1)} satisfies the LDP with
the rate function

I(φ) := sup
u∈Rs,u>0

∑
i∈As−1

∑
j∈A

φi log
uij∑

k∈A ukiaij
. (7.53)

The proofs are omitted as they are entirely analogous to those of the
corresponding theorems in Section 7.3.4.
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7.3.6 Rate Functions for Time-Reversed Markov Chains

Suppose {Xt}∞t=−∞ is a Markov chain assuming values in A. Then {X−t}∞t=−∞
is the corresponding time-reversed Markov chain. If the original chain has
the stationary distribution π, then so does the time-reversed Markov chain.
If the original Markov chain has the state transition matrix A = [aij ], then

the time-reversed Markov chain has the state transition matrix A(r) = [a
(r)
ij ]

where

a
(r)
ij =

πiaij
πj

. (7.54)

But there is a much simpler way to think of a time-reversed Markov chain.
Given a k-tuple i = i1 . . . ik ∈ Ak, let i(r) denote ikik−1 . . . i2i1. Thus i(r)

is just i written backwards. Recall that an s-step Markov chain is com-
pletely characterized by the vector of frequencies of (s + 1)-tuples, call it
µ ∈Mc(As+1). Then the time-reversed Markov chain has the (s+ 1)-tuple
frequency vector defined by

[µ(r)]i = µ
(r)
i , ∀iAs+1. (7.55)

In particular, if a conventional (one-step) Markov chain has the doublet
frequency vector µij , i, j ∈ A, then its time-reversed version has the doublet
frequency vector µji. Therefore a one-step Markov chain is reversible (equal
to its time-reversed version) if and only if

µij = µji, ∀i, j ∈ A.
With the above observation we can readily derive various rate functions

of time-reversed Markov chains in terms of the corresponding rate functions
of the original chain.

Theorem 7.24 Suppose {Xt}∞t=−∞ is a stationary s-step Markov assum-
ing values in the finite set A, with the (s + 1)-tuple frequency vector µ ∈
Mc(As+1). Let Ik(·) denote the rate function defined over Mc(Ak) for em-
pirical frequencies of k-tuples defined in accordance with (7.51). Then for
the time-reversed Markov process, the empirical frequencies of k-tuples sat-

isfy the LDP with the rate function I
(r)
k :Mc(Ak)→ R+ defined by

I
(r)
k (φ) := Ik(φ(r)), ∀φ ∈Mc(Ak). (7.56)

Corollary 7.25 Suppose {Xt} is a (one-step) Markov chain. Then the
empirical frequencies of singletons of both the “forward” and time-reversed
Markov chain have exactly the same rate function.

The proof of Theorem 7.24 is quite easy and makes use of two facts. First,
if µ ∈Mc(As+1), then ∑

j∈A
µij =

∑
j∈A

µji, ∀i ∈ As.

In other words, whether we project a consistent distribution on the first
component or the last, we get exactly the same answer. Second, given any
two distributions ν,µ on Ak, the relative entropy H(ν‖µ) is invariant under
every permutation of the indices.
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Chapter Eight

BLAST Theory

BLAST (Basic Local Alignment Search Tool) is a widely used statistical
method for finding similarities between sequences of symbols from finite
alphabets. While the theory is completely general, the most widely used ap-
plications are to comparing sequences of nucelotides and sequences of amino
acids. Though the letter B in BLAST stands for ‘basic,’ in fact the theory
itself is anything but basic. The objective of this chapter therefore is to
present an accessible treatment of the theory.

The theory of BLAST was developed through a series of papers co-authored
by Samuel Karlin; see [68, 65, 66, 67, 33, 34]. The notation and problem
formulations across these papers are not always consistent, making it very
difficult for the non-expert reader to navigate through these papers. It is
hoped that the present chapter will assist somewhat in this process. The
treatment here follows [33, 34]. The reader is cautioned that there are sev-
eral modifications of the theory presented here; these modifications do not
always have a theoretical justification. In the interests of brevity and clarity,
we treat here only the most ‘basic’ version of BLAST theory.

The chapter is organized as follows. In Section 8.1, we discuss the problem
of optimal gapped alignment between two sequences. Though an ‘exact’
solution to this problem can be found using dynamic programming, it turns
out that an approximate solution is often good enough in many situations.
This was one of the motivations for the development of BLAST theory. In
Section 8.2, we present the problem that BLAST theory addresses, state the
main results without proof, and show how these main results can be applied
in practice. In Section 8.3, we present the proofs of all the main results.
A reader who is not interested in knowing how the theorems that underlie
BLAST are proved can skip this section.

8.1 THE GAPPED SEQUENCE ALIGNMENT PROBLEM

8.1.1 Problem Formulation

Suppose we are given two strings x = x1 . . . xk and y = y1 . . . yl over a
common finite alphabet N . Often, though not always, it is the case that
one of the strings is much shorter than the other, say k � l. In such a
case, determining whether x is a perfect substring of y is computationally
straight-forward. Indeed, text editors address precisely this problem. Thus it
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is easy to determine whether or not there exists an index j such that yj+i =
xi for i = 1, . . . , k. The problem remains tractable even if we introduce
some ‘wild card’ entries. Thus, a text editor that searches for the string
x1 . . . xs ∗ xs+1 . . . xk within y looks for indices j1 and j2 ≥ j1 such that

yj1+i = xi for i = 1, . . . , s, and yj2+i = xi for i = s+ 1, . . . , k.

The string x can in fact be divided into any finite number of segments and the
wild cards introduced in-between, and the problem remains tractable. The
tractability arises from two factors: First, the locations within the string x
where one or more wild card entries are to be introduced are specified ahead
of time. Second, we insist on a perfect match between the symbols of the two
strings. If we were to change either of these requirements then the problem
becomes more difficult.

Now we state the so-called ‘optimal gapped alignment’ problem. Suppose
x = x1 . . . xk is a string over some finite alphabet N and y = y1 . . . yl is a
string over another finite alphabet M, which may or may not be the same
as N . The problem is to determine an optimal ‘gapped’ alignment between
the two strings. Before stating the problem formally, we motivate it through
a simple example. Suppose N = M = {A,C,G, T}, the set of nucleotides,
and let

x = ACACTGT,y = TAGACGGAGCTTCAC.

Then these two strings can be imperfectly aligned as shown below, with the
dash indicating a ‘gap’:

A C − − A C − T G T
T A G A C G G A G C T − T A A C

By judiciously introducing gaps into the two sequences, we are able to achieve
‘perfect’ matches between those symbols within each string that do not lie
opposite a gap, with just one mismatch. To measure the quality of the
gapped alignment, we introduce a ‘scoring’ function S : N ×M → R that
assigns a real number score S(i, j) to each pair (i, j) ∈ N ×M. We can also
think of S(i, j) as representing the ‘similarity’ between the symbols i and j
instead of ‘score’. Thus in the case whereM = N meaning that both strings
x and y are over the same alphabet, we would expect S(i, j) to be large and
positive whenever i = j, and to be much smaller and possibly negative if
i 6= j. Note that it is not assumed that the matrix S(i, j) is symmetric.
We also need to define ‘gap scores’ S(i,−) and S(−, j). Note that in this
problem it makes no sense to put one gap opposite another. We can avoid
the situation by defining S(−,−) = −∞. In this way, the scoring function
S can be extended to (N ∪ {−})× (M∪ {−}).

At this point we need to distinguish between ‘global’ alignment and ‘local’
alignment. In global alignment, we would insist that the end points of the
two strings must match, after being augmented by gaps if necessary. Thus,
in the example above, we would be forced to place gaps above TAG to the
left of the x string, and above CAC to the right of the x string. This makes



text September 25, 2011

BLAST THEORY 187

no sense if, as is often the case in practice, one of the strings is significantly
longer than the other. In such a case one would study local alignment, where
the scoring function is counted only between the end points of the shorter
string. In either case, the total score of a gapped alignment is the sum of the
individual pairwise scores S(i, j), S(i,−) or S(−, j) as we traverse from one
end to the other. The optimal gapped alignment problem is to determine
the alignment that results in the highest score.

8.1.2 Solution Via Dynamic Programming

The problem of optimal gapped alignment can be solved using dynamic
programming. The principle of optimality, which we have encountered in
Section 8.2, applies here too: If any alignment is optimal, then any sub-
set thereof must also be optimal for the appropriate substrings. Otherwise
we could take out that particular part of the alignment, replace it with a
better alignment, and improve the overall score. Clearly this property is a
consequence of the additive nature of the total score.

Using the principle of optimality, we can give a simple recursive scheme for
solving the problem of optimal gapped alignment. Let x,y be the two strings
to be aligned (not necessarily over the same alphabet), using the scoring
function S : N ×M → R. For simplicity let us suppose that S(−, j) =
S(i,−) = −γ. Let x have length k and let y have length l. Suppose we
begin aligning from the ends of the two strings, and let P ∗(i, j) denote the
highest possible score that can be achieved by optimally aligning from the
end of x until position i, and from the end of y until position j. Think of
P ∗(i, j) as the optimal payoff until positions i, j. Now the optimal payoff
function satisfies the following recursion:

P ∗(i, j) = max

 P ∗(i, j + 1)− γ
P ∗(i+ 1, j)− γ
P ∗(i+ 1, j + 1) + S(xi, yj)

(8.1)

This is because, at position i, j there are only three things we can do:

1. We can introduce a gap above the symbol yj .

2. We can introduce a gap below the symbol xi.

3. We can match xi against yj .

Let us suppose that we have aligned the two sequences optimally before i, j.
In the first alternative, the resulting score would be P ∗(i, j+ 1)−γ, because
P ∗(i, j+1) is the optimal score of aligning xi, . . . , xk against yj+1, . . . , yl, and
−γ is the additional score due to introducing a gap above yj . Similarly, in
the second alternative, the resulting score would be P ∗(i+ 1, j)−γ. Finally,
in the third alternative the resulting score would be P ∗(i+1, j+1)+S(xi, yj).
Now the principle of optimality tells us that the best thing to do would be
to maximize amongst these three alternatives. It is of course possible that
there is a ‘tie’ between two alternatives, in which case we arbitrarily choose
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one of them; this does not affect the discussion to follow. To apply the above
formula, we begin at the ends of the two strings x and y with the optimal
score P ∗(k.l) = 0, and work backwards.

Example 8.1 The application of (8.1) is illustrated through a ‘toy’ ex-
ample. It must be emphasized that in reality the smallest values of l, k for
which we would wish to carry out optimal gapped alignment would be of the
order of a few hundred.

Suppose the scoring function is given by

S =

A C G T
A
C
G
T


10 −3 −2 1
−2 8 1 −2
−3 1 9 −3

0 −3 −2 6

 , γ = 1.

Suppose the two strings to be aligned are

x = CACGAAT,y = AGTTCAA.

Then we can construct the table of optimal payoff functions as follows:

C A C G A A T
A 32 ← 33 ↖ 22* ↖ 24 ↑ 17 ↖ 11 ↖ 0 ↑ −7 ↑
G 26 ↖ 24 ↑ 23 ↑ 25 ↖ 15 ↑ 7 ↑ 1 ↑ −6 ↑
T 24* ↑ 25* ↑ 24 ↑ 18 ↑ 16 ↑ 8 ↑ 2* ↖ −5 ↑
T 25 ← 26 ↖ 25 ↑ 19 ↑ 17 ↑ 9 ↑ 3↖ −4 ↑
C 24* ↖ 25 ← 26 ↖ 20 ↖ 18 ↑ 10 ↑ −1 ↑ −3 ↑
A 15 ← 16* ← 17 ← 18 ← 19 ↖ 11 ↖ 0* ↑ −2 ↑
A 4← 5↖ 6← 7← 8∗ ← 9↖ 1 ↖ −1 ↑

−7← −6← −5← −4← −3← −2← −1← 0

In constructing this table, we need to keep track of the optimal choice that
we made at each square of the matrix. Thus a left arrow ← indicates that
the optimal choice was to insert a gap above yj , while a vertical arrow ↑
indicates that the optimal choice was to insert a gap below xi. The diagonal
arrow ↖ indicates that the optimal choice was to match xi against yj . A
red color for the number indicates a ‘tie.’

The above procedure gives the optimal gapped alignment of the two se-
quences, namely

C A − − − C G A A T
− A G T T C − A A − , P ∗ = 32.

However, the same matrix can also be used to determine the optimal gapped
alignment from the ends of the two strings to any pair of intermediate points,
as shown below.

− − G A A T
T T C A A − , P ∗ = 18.

C G − − − A A T
A G T T C A A − , P ∗ = 22.
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The solution using dynamic programming was first introduced into the
biology community by Needleman and Wunsch [82] to solve problems of
optimal global alignment of two strings. It is possible to make simple mod-
ifications to the algorithm to solve the problem of optimal local alignment.
This was done by Smith and Waterman; see [101].

From the above discussion, it is easy to see that the complexity of opti-
mal gapped alignment using the above procedure O(kl), where k, l are the
lengths of x,y respectively. If both strings are of comparable length, then
the complexity is quadratic in the length. There are several improvements
available that trade off storage for time or vice versa, but these need not
concern us here. It is also possible to modify (8.1) to incorporate more so-
phisticated scoring functions. For example, one can have different penalties
for gap creation versus gap extension; it is believed by biologists that the
gap extension penalty should be much smaller than the gap creation penalty.
Similarly, it possible to make the scoring function depend not only on the two
symbols being matched, but also on their positions within the two strings.
The modifications required are relatively straight-forward, and the reader is
referred to [54] for more detailed discussion.

8.2 BLAST THEORY: STATEMENTS OF MAIN RESULTS

8.2.1 Problem Formulations

The fundamental objective of BLAST theory is to align sequences as well
as possible, and then make a determination as to the level of statistical sig-
nificance of the alignment. Thus one computes a ‘maximal segmental score’
of the alignment between the two sequences, and tests to see whether the
maximal segmental score could have been obtained purely as a matter of
chance. If the match is better than could be explained by chance, then one
would be able to conclude that the two sequences do indeed show some sim-
ilarity. Thus, in order to apply the theory, one needs to be able to compute
two things: The expected maximal segmental score for sequences of a given
length, and the ‘tail probability distribution’ of the likelihood that the max-
imal segmental score will exceed this expected value. In the remainder of
the chapter, we derive answers to these and other related questions.

The fundamental theories of BLAST are developed in a series of papers
written by Samuel Karlin along with several coauthors [68, 65, 66, 67, 33,
34]. We note here that neither the problem formulation nor the notation
is constant across these papers. Thus we begin by surveying the various
problem formulations.

Suppose A and B are finite sets, and that X ,Y are random variables
assuming values in A and B respectively, with probability distributions φ
and ψ respectively. We can also consider the ‘product’ random variable
Z = (X ,Y) that assumes values in the product set A × B and has the
product distribution µ := φ×ψ. Note that the marginal distributions of µ
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are given by µA = φ and µB = ψ.
Now suppose we draw i.i.d. samples of X and Y of length l according

to their respective laws; call the sample paths x1, . . . , xl and y1, . . . , yl re-
spectively. As discussed in Section 8.1, let us define a scoring function
F : A × B → R. Then we can define the cumulative score of the sample
paths as

l∑
i=1

F (xi, yi).

However, this cumulative score is not of interest to us. Rather, we are
interested in the ‘maximal segmental score.’ This can be defined in one of
two ways. If we insist that the starting points of the two segments must
coincide, then we examine the quantity

Rl := max
L≥0,0≤i≤l−L

L∑
k=1

F (xi+k, yi+k). (8.2)

The quantity Rl examines all subsequences of length L within the two sam-
ple paths, and then computes only the segmental score over this segment of
length L; then the maximum of all these segmental scores over all possible
segment length L becomes Rl. If we don’t insist that the starting points of
the two segments must coincide, or in other words, if we allow the two seg-
ments to be shifted with respect to each other, then we look at the quantity

Ml := max
L≥0,0≤i,j≤l−L

L∑
k=1

F (xi+k, yj+k). (8.3)

To repeat, the main difference between the quantities Rl and Ml is that in
defining Rl, we insist that the starting points of the two segments being
aligned must coincide, whereas in defining Ml, we permit the starting points
of the two segments to be shifted with respect to each other. The reader
is cautioned that in [65, 67], the quantity Rl is referred to as Ml; thus the
notation changes from [65, 67] to [33, 34].

When we examine the issue of maximal scores, we can ask four distinct
questions:

1. Given sample paths of length l, what is the expected value of Ml or
Rl?

2. Let Ll denote the length of a maximal scoring segment. What is the
expected value of Ll? That is, how long is a maximally scoring segment
on average, from a sample path of length l?

3. What is the empirical distribution of the symbols xi+k, yj+k in a max-
imally scoring segment?

4. What is the tail probability distribution of the quantities Ml and Rl
beyond their expected values? In other words, suppose Ml exceeds its
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expected value by some ε. Can we compute the likelihood that this has
happened purely due to chance? This would give us the significance
of the high-scoring segment.

In the sequel, we will answer all of these questions.

8.2.2 The Moment Generating Function

Suppose X = {x1, . . . , xn} is a subset of the real numbers R (and not an
abstract set of labels, as in other places in this book). Suppose X is a
random variable assuming values in the set X with the distribution µ. Thus
µi denotes Pr{X = xi} for all i. It can be assumed without loss of generality
that µi > 0 for all i, because if µi = 0 for some i, then the corresponding
element xi can simply be deleted from the set X. For each positive integer
k, the quantity

Mk(X ) :=

n∑
i=1

xki µi = E[X k,µ]

is called the k-th moment of the random variable X . In particular, the
quantity M1(X ) is just the mean of the random variable X , while M2(X )−
[M1(X )]2 is the variance of X . Note that, since X is a finite set, all of the
summations above are also finite; as a result, Mk(X ) is well-defined for every
integer k ≥ 1. Next, the function

mgf(λ;X ) := E[exp(λX ),µ] =

n∑
i=1

µi exp(λxi)

is called the moment-generating function (mgf) of the random variable
X . Note that[

dkmgf(λ;X )

dλk

]
λ=0

=

[
n∑
i=1

µix
k
i exp(λxi)

]
λ=0

=

n∑
i=1

µix
k
i = Mk(X )

for every integer k ≥ 1. This explains the nomenclature. Note that mgf(0;X ) =
1 for every random variable X .

Next we define the so-called logarithmic moment generating function
Λ(λ;X ) by

Λ(λ;X ) := log mgf(λ;X ) = logE[exp(λX ),µ].

Since the function log is concave, it follows from Jensen’s inequality that

logE[exp(λX ),µ] ≥ E[log exp(λX ),µ] = λM1(X ), ∀λ.

A very useful property of the mgf and its logarithm are brought out next.

Lemma 8.1 For a fixed nontrivial random variable X , both mgf(λ; x) and
Λ(λ;X ) are strictly convex functions of λ.
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Here by a ‘nontrivial’ random variable, we mean a random variable that
assumes at least two distinct values. (Otherwise the ‘random varible’ would
be just a constant!)

Proof. For a fixed random variable X , we have

mgf(λ;X ) =

n∑
i=1

µi exp(λxi)

is a linear combination of strictly convex functions λ 7→ exp(λxi). Hence
mgf(λ;X ) is also a strictly convex function of λ. To show that Λ(λ;X ) is
also strictly convex in λ, let us, for the purposes of this proof alone, use η to
denote the moment generating function and η′ to denote dη/dλ. Then we
have

Λ = log η,Λ′ =
η′

η
,Λ′′ =

ηη′′ − (η′)2

η2
.

Hence the strict convexity of Λ follows if it can be established that

ηη′′ > (η′)2 ∀λ.

For this purpose, note that

η =

n∑
i=1

µi exp(λxi), η
′ =

n∑
i=1

µixi exp(λxi)η
′′ =

n∑
i=1

µix
2
i exp(λxi).

So the inequality that we desire to establish can be written as

(E[X eλX ,µ])2 < E[eλX ,µ] · E[X 2eλX ,µ].

Now we make use of Schwarz’ inequality, which says in this setting that

(E[fg,µ])2 ≤ E[f2,µ] · E[g2,µ],

with equality if and only if f and g are multiples of each other. Apply
Schwarz’ inequality with the choices

f = exp(λX/2), g = X exp(λX/2),

and observe that if X is a nontrivial random variable, then f and g are not
multiples of each other. The desired inequality follows. 2

Now we state a very useful fact about the moment generating function.

Lemma 8.2 Suppose X is a random variable assuming values in a finite set
X = {x1, . . . , xn} ⊆ R, with the probability distribution µ, where µi > 0 for
all i. Suppose in addition that

(i) X contains both positive and negative numbers. In other words, there
exist indices i and j such that xi > 0 and xj < 0 (and by assumption
µi, µj > 0).

(ii) E[X ,µ] 6= 0.
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Under these conditions, there exists a unique λ∗ 6= 0 such that mgf(λ∗;X ) =
1 or equivalently Λ(λ∗;X ) = 0. Moreover, λ∗ has sign opposite to that of
E[X ,µ].

Proof. Note that mgf(0;X ) always equals 1. Now

mgf ′(0;X ) =

[
dµ(λ;X )

dλ

]
λ=0

= E[X , P ] 6= 0

by assumption. We have already seen from Lemma 8.1 that the mgf is a
strictly convex function. Finally, it follows from Condition (i) again that

µ(λ;X )→∞ as λ→ ±∞.

This is because at least one of the xi is positive and at least one is negative.
From this information we conclude that the equation µ(λ;X ) = 1 has pre-
cisely two solutions, one of which is λ = 0, and the other one, denoted by
λ∗, has sign opposite to that of E[X , P ]. 2

Note that if the set X consists of only nonnegative or only nonpositive
numbers, then the above lemma is false. In particular, if xi ≥ 0 for all i,
then µ(λ;X )→ 0 as λ→ −∞, and the only solution of µ(λ;X ) = 1 is λ = 0.
The situation when every element of X is nonpositive is similar.

The vector θ defined by

θi = exp(λ∗xi)µi

belongs to Sn because clearly θi > 0 for all i, and in addition,

n∑
i=1

θi = mgf(λ∗;X ) = 1.

The distribution θ is referred to as the conjugate distribution of µ with
respect to the random variable X . Note that θ depends on both the distri-
bution µ and the corresponding values of the random variable X .

8.2.3 Statement of Main Results

In this subsection, we state the main results of BLAST theory. Specifically,
we answer the four questions raised earlier. Recall that we are given a
probability distribution µ = φ×ψ on the product set A× B and a scoring
function F : A × B → R. So we can think of F as a real-valued random
variable that assumes the value F (xi, yj) with probability µij = φiψj . To
simplify notation, let us denote F (xi, yj) by Fij .

In order to state these results, we introduce one ‘standing assumption’.

E[F,µ] < 0, and ∃i, j s.t. F (xi, yj) > 0. (8.4)

Thus the standing assumption states that there is at least one pair (xi, yj)
for which the score Fij is positive, but the expected value of the score over
all pairs is negative. With this standing assumption, it follows from Lemma
8.2 that there exists a unique number λ∗ > 0 such that E[exp(λ∗F,µ] = 1.
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As before, let θ denote the conjugate distribution of µ with respect to F ,
that is

θij = exp(λ∗Fij)µij , ∀i, j. (8.5)

The results are stated next. Note that all results are asymptotic; that is,
they apply as l→∞. In the theorem, the notation al ∼ bl as l→∞ means
that the ratio al/bl → 1 as l→∞.

Theorem 8.3 Let all symbols be as defined above. Then

1. Rl ∼ (ln l)/λ∗ as l→∞.

2. Let θ denote the conjugate distribution of µ, as defined in (8.5). Then
the length of a maximal scoring segment Ll is asymptotically equal to
l/H(θ‖µ).

3. On any maximal scoring segment, the empirical distribution of (X ,Y)
is asymptotically equal to θ.

Now we come to the quantity Ml, the maximum segmental score when we
don’t insist that the starting points of the two segments must match.

Theorem 8.4 Let all symbols be as defined above. Suppose in addition that
the two sets A,B are the same, that the marginal distributions φ,ψ are
the same, and that the scoring function F is symmetric in the sense that
F (xi, yj) = F (yj , xi). Then

1. Ml ∼ (2 ln l)/λ∗ as l→∞.

2. Let θ denote the conjugate distribution of µ, as defined in (8.5). Then
the length of a maximal scoring segment Ll is asymptotically equal to
2l/H(θ‖µ).

3. On any maximal scoring segment, the empirical distribution of (X ,Y)
is asymptotically equal to θ.

Whereas it is possible to analyze the asymptotic behavior of Rl with-
out making any additional assumptions about the two sets A,B, the two
marginal distributions, or the scoring function, we are obliged to make some
assumptions in order to get nice statements about Ml. Actually, any reader
who takes the trouble to go through the detailed proofs in the next section
will see that these assumptions are strictly speaking not necessary for the
bulk of the analysis. They are made only to enable us to give ‘closed-form’
formulas, but if one is willing to forgo these, there is no need to make these
additional assumptions.

Taken together, these theorems establish the following facts:

• On a sample of length l, the expected maximal segmental score if
we allow different starting points for the two segments is twice the
expected maximal segmental score if we insist that the starting points
must match.
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• The expected length of a maximal scoring segment is asymptotically
twice as long in the case of Ml compared to Rl

• In either case, the empirical distribution of the symbols (xi, yj) on a
maximal scoring segment is given by the conjugate distribution θ.

In order to state the next theorem, we need to introduce the notion of a
‘lattice’ random variable. We say that a random variable assuming values
in a finite (or even a countably infinite) subset S of the real numbers R is a
‘lattice’ random variable if S is contained in an arithmetic progression. In
other words, a random variable is a lattice random variable if all its possible
values are of the form a+md for real numbers a, d and integers m. In this
case, the set {a + kd, k = 0,±1,±2, ...} is the associated lattice. In the
present instance, the random variable of interest is F (X ,Y), the score as
X ,Y vary over their respective sets. We shall first state the theorems and
then discuss their implications.

Theorem 8.5 Suppose the score F (X ,Y) is not a lattice random variable.
Then there exists a constant K∗, which can be estimated and in some cases
computed explicitly, such that for all x > 0, the following inequality holds:

lim
l→∞

Pr{Rl −
log l

λ∗
≤ x} = exp(−K∗ exp(−λ∗x)). (8.6)

In case the score F (X ,Y) is a lattice random variable, the following state-
ment is true:

lim
l→∞

Pr{Rl −
log l

λ∗
≤ xl} · exp(K∗ exp(−λ∗xl)) = 1 (8.7)

whenever {xl} is a bounded sequence such that xl − log l/λ∗ belongs to the
lattice for each value of l.

Theorem 8.6 Suppose the score F (X ,Y) is not a lattice random variable.
Then there exists a constant K∗, which can be estimated and in some cases
computed explicitly, such that for all x > 0, the following inequality holds:

lim
l→∞

Pr{Ml −
2 log l

λ∗
≤ x} = exp(−K∗ exp(−l∗x)). (8.8)

In case the score F (X ,Y) is a lattice random variable, the following state-
ment is true:

lim
l→∞

Pr{Ml −
2 log l

λ∗
≤ xl} · exp(K∗ exp(−λ∗xl)) = 1 (8.9)

whenever {xl} is a bounded sequence such that xl − log l/λ∗ belongs to the
lattice for each value of l.

Note that (8.6) is the same as (8.7), just written differently. Thus the
difference is that if F (X , Y ) is a non-lattice variable, then we have a tail
probability estimate for every value of x, whereas if F (X ,Y) is a lattice
random variable, we have a tail probability estimate only for some values of
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x. Similar remarks apply to (8.8) and (8.9). This topic is discussed further
in the next few paragraphs.

Equation (8.6) gives an extremely precise estimate of the rate at which
the tail probability that Rl exceeds its expected value log l/λ∗ by an amount
x decays as x increases. The distribution on the right side of (8.6) is called a
Gumbel distribution (of Type I). Note that as x→∞, the exponential
term exp(−l∗x) approaches zero, as result of which the right side of (8.6)
approaches one. More precisely, suppose x is sufficiently large that

K∗ exp(−l∗x)� 1, or equivalently x� logK∗

λ∗
.

Then, using the approximation exp(−α) ≈ 1 − α when α is small, we can
rewrite (8.6) as

lim
l→∞

Pr{Rl −
log l

λ∗
> x} ≈ K∗ exp(−l∗x) whenever x� logK∗

λ∗
. (8.10)

Thus, while the formula (8.6) is extremely precise, in practice the tail prob-
ability decays exponentially with respect to x. Similar remarks apply to the
tail estimate of Ml as well.

Note that all of the above equations from (8.6) through (8.9) give esti-
mates of the absolute excess of the score from a maximal segment beyond its
expected value. However, it is obvious that if we replace the scoring function
F by some multiple cF , then we still have the same problem, and the max-
imal segments would still be the same. However, the expected value of the
maximal segmental score would be scaled by the same factor c, and λ∗ gets
replaced by λ∗/c. Thus, in order to make the estimates more meaningful
and ‘scale-free’, we should perhaps look at the excess as a fraction of the
expected value, and not as an absolute excess. Accordingly, suppose

x = α
log l

λ∗
.

Then, after some routine algebra, the counterpart of (8.6) is

lim
l→∞

Pr{Rl −
log l

λ∗
≤ α log l

λ∗
} = exp(−K∗l−α). (8.11)

Moreover, if

l� 1

α
log

1

K∗
,

then

Pr{Rl −
log l

λ∗
> α

log l

λ∗
} ≈ K∗l−α.

Similar modifications of (8.7) through (8.9) are routine and are left to the
reader.

Now let us discuss the implications of the lattice vs. non-lattice variable.
This discussion unfortunately borders on the pedantic, and the reader would
miss very little by assuming that the relationship (8.10) always holds. How-
ever, since we have attempted to make mathematically precise statements
in this text, we discuss this issue.
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Quite often one would assign integer values to the scoring function; in
other words, F (xi, yj) is always assigned an integer value, as in Example
8.1 for instance. This would make F (X ,Y) a lattice random variable with
the spacing d equal to one. More generally, suppose all entries of F (X ,Y)
are specified to k significant decimal places. Then clearly every element of
F (X ,Y) is of the form kij · 10−k for suitable integers kij , which would again
make F (X ,Y) a lattice random variable with the spacing d = 10−k. The
only way to assure that F (X ,Y) is a non-lattice random variable is to specify
the values of F to infinite precision, which makes no sense in practice. In
this case, one cannot use the exact formulas (8.6) and (8.8). However, given
any x, it is clear that we can always find a bounded sequence {xn} such that
xn−d ≤ x ≤ xn (where d is the lattice spacing) and xn+log l/λ∗ is a lattice
point. Note that

Pr{Rl −
log l

λ∗
> xl − d} ≤ Pr{Rl −

log l

λ∗
> x} ≤ Pr{Rl −

log l

λ∗
> xn}.

Moreover, the two extreme probabilities do indeed satisfy the Gumbel type of
tail probability estimate of the form (8.6). Hence, for all practical purposes,
we need not worry about the distinction between lattice and non-lattice
random variables.

8.2.4 Application of Main Results

A very nice discussion of the application of the above theorems to detect-
ing similarity of sequences can be found in [3]. There are two distinct ways
in which the theorems can be used. First, suppose the scoring function F
is specified, and we are given two sample paths xl1, y

l
1 of known statistics.

Suppose we compute the maximal segmental score Ml. Now we wish to
know whether the two sample paths are similar or not. If Ml significantly
exceeds the expected score 2 log l/λ∗ by some quantity x, then we can com-
pute the likelihood that this has happened purely by chance, by using the
tail probability estimates in Theorem 8.6. This would allow us to say, with
appropriate confidence, whether or not the segmental score Ml connotes
sequence similarity.

The second application is to ‘reverse engineer’ the scoring function F
itself. In a given problem, suppose we do not know what the ‘right’ scoring
function is, but we do have at hand several pairs of similar sequences. So the
problem then becomes one of choosing a scoring function F in such a way
that these known answers are ‘automatically’ generated by the theory. In
this context, Theorems 8.3 and 8.4 are useful. These theorems tell us that,
on maximal scoring segments, the empirical distribution looks like θ. So we
can proceed as follows: Suppose we are given several pairs of high-scoring
segments. By definition, the two segments are of equal length. So we can
just concatenate the various segments to generate one really huge segment
of the form (xl1, y

l
1). And then:

• Construct the probability distribution φ as the empirical distribution
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of the symbols in A amongst xl1. Similarly, construct the probabil-
ity distribution ψ as the empirical distribution of the symbols in B
amongst yl1.

• Similarly, compute the probability distribution θ on A×B as the joint
empirical distribution of the pair (ai, bj) on the sequence (xl1, y

l
1).

• Using µ = φ×ψ and θ as defined above, define the scoring function

Fij :=
1

c
log

θij
µij

=
1

c
log

θij
φi · ψj

. (8.12)

Here c is any constant that we choose. As discussed earlier, if we scale
the scoring function uniformly by any constant, the problem remains
unchanged.

It might be mentioned that the above approach to constructing scoring func-
tions has been used extensively in the computational biology community.

8.3 BLAST THEORY: PROOFS OF MAIN RESULTS

In this section, we present the proofs of Theorems 8.3 and 8.4. Those who
wish only to use BLAST theory can perhaps skip reading this section, but
those who aspire to understand the basis of BLAST theory and to generalize
it to other contexts may perhaps benefit from reading this section. Unfor-
tunately the proofs of Theorems 8.5 and 8.6 are beyond the scope of the
book. The interested reader is referred to [31] for the proof of Theorem 8.5
and [34] for the proof of Theorem 8.6. Even the proofs of Theorems 8.3 and
8.4 are quite complicated, as can be seen from the contents of this section.
However, on the basis of these proofs, it may perhaps be possible to relax
some of the assumptions underlying these two theorems, such as that the
two sample paths xl1 an yl1 come from i.i.d. processes, and instead replace
them by, say, sample paths of Markov processes.

The principal source for this section is the seminal paper by Dembo, Karlin
and Zeitouni [33]. To assist the reader in following this paper, throughout
this section we mention the corresponding theorem or lemma number from
[33], and also highlight departures from their notation if any.

Let us recall the framework of the problem under study. We are given sets
A,B and probability distributions φ on A and ψ on B; for convenience let
µ := φ × ψ denote the corresponding product distribution on A × B. We
define the quantities

Rl := max
L≥0,0≤i≤l−L

L∑
k=1

F (xi+k, yi+k).

and

Ml := max
L≥0,0≤i,j≤l−L

L∑
k=1

F (xi+k, yj+k).
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The objective is to answer the following questions:

1. Given sample paths of length l, what is the expected value of Ml or
Rl?

2. Let Ll denote the length of a maximal scoring segment. What is the
expected value of Ll? That is, how long is a maximally scoring segment
on average, from a sample path of length l?

3. What is the empirical distribution of the symbols xi+k, yj+k in a max-
imally scoring segment?

Answering the last question raised earlier, namely to describe the tail proba-
bility distribution of the maximal segmental score beyond its expected value,
is beyond the scope of this book. The interested reader is referred to the
papers by Dembo and Karlin [31, 32, 67].

Given the set C = A×B, letM(C) denote the set of all probability distri-
butions on this set. Thus M(C) can be identified with the nm-dimensional
simplex Snm. If ν ∈M(C), we use the symbols νA,νB to denote its marginal
distributions on A,B respectively.

To state and prove the theorems, we introduce a great deal of preliminary
notation. First, for any ν ∈M(C), we define

H∗(ν‖µ) := max{0.5H(ν‖µ), H(νA‖µA), H(νB‖µB)}.
It is clear that H∗(ν‖µ) > 0 unless ν = µ. Next, for any given set U ⊆
M(C), define

J(ν) :=
E[F,ν]

H∗(ν‖µ)
, J(U) := sup

ν∈U
max{J(ν), 0}.

Now by the standing hypothesis we have that E[F,µ] < 0. Hence, as ν →
µ, the quantity E[F,ν] approaches some negative number, while H∗(ν‖µ)
approaches zero. As a result J(ν) → −∞ as ν → µ. If the set J does not
contain any ν such that J(ν) > 0, then by definition J(U) is taken to equal
zero.

The third piece of notation we need is the following: Suppose we are
given the sample paths xl1, y

l
1, and that L ≥ 0, i, j ≤ l − L. Then we define

µ̂(i, j, L) to be the pairwise empirical distribution on C defined by the sample
(xi+Li+1 , y

i+L
i+1 ). Similarly, given the sample path we define µ̂(i, ·, L) to be the

empirical distribution on A defined by the sample xi+Li+1 , and analogously
we define µ̂(·, j, L) to be the empirical distribution on B defined by the
sample yi+Li+1 . Since the set C has nm elements and the sample path has
length L, it follows that the empirical distribution µ̂(i, j, L) belongs to the
set E(L, nm) defined in Chapter 7. In the same way, µ̂(i, ·, L) ∈ E(L, n) and
µ̂(·, j, L) ∈ E(L,m).

Given a set U ⊆M(C), define

MU
l := max{

L∑
k=1

F (xi+k, yi+k) : L ≥ 0, 0 ≤ i, j ≤ l − L, µ̂(i, j, L) ∈ U}.

(8.13)
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Thus MU
l is exactly the same as Ml, except that the maximum is taken only

over those segments of length L such that the corresponding pair empirical
distribution µ̂(i, j, L) belongs to U . Other segments where µ̂(i, j, L) does
not belong to U are not included in the computation of the maximum.

Now we state a ‘global’ theorem from which the desired results follow.

Theorem 8.7 With the notation as above, we have that

P lµ{lim sup
l→∞

MU
l

log l
≤ J(U)} → 0 as l→∞, (8.14)

P lµ{lim inf
l→∞

MU
l

log l
≥ J(Uo)} → 0 as l→∞, (8.15)

where Uo denotes the interior of the set U .

This theorem is a slightly weakened version of Theorem 3 of [33]. Their
theorem states the following:

Theorem 8.8 With the notation above, we have that

J(Uo) ≤ lim inf
l→∞

MU
l

log l
≤ lim sup

l→∞

MU
l

log l
≤ J(U), (8.16)

where both inequalities hold almost surely.

What Theorem 8.7 claims is called ‘convergence in probability’, and we can
prove this theorem using the methods we have developed thus far. It is good
enough to allow us to study the behavior of the BLAST algorithm. We have
no machinery to discuss ‘almost sure convergence’ as we have scrupulously
‘avoided the infinite’ in this book, so as to keep the exposition both rigorous
as well as not so advanced. For those with the appropriate background,
going from Theorem 8.7 to Theorem 8.8 is fairly straight-forward using the
Borel-Cantelli lemma.

The proof of Theorem 8.7 proceeds via a series of preliminary steps.
Throughout the sequel, the symbol λ∗ denotes the unique positive solution
to the equation E[exp(λ∗F ),µ] = 1, and θ denotes the conjugate distribu-
tion of µ as defined in (8.5). Also, to keep the notation simple, we will
simply use the symbol P to denote the probability measure P lµ.

Lemma 8.9 (Lemma 1 of [33]) Choose any λ0 ∈ (0, λ∗). Then, whenever

L ≥ − 5 log l

Λ(λ0)
=: L0(l),

we have that

P{ sup
L≥L0(l)

sup
0≤i,j≤L

L∑
k=1

F (xi+k, yi+k) ≥ 0} ≤ 1/l2.
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Remark: This lemma allows us to focus our attention to segments of
length L ≤ L0(l), because the likelihood of having a positive segmental
score on very long segments becomes vanishingly small as l→∞. Note that
moment generating function E[exp(λF ),µ] ∈ (0, 1) for 0 < λ < λ∗. Hence
the logarithmic moment generating function Λ(λ) < 0 for 0 < λ < λ∗, and
L0(l) > 0. Note that hereafter we suppress the dependence of L0 on l.

Proof. Since there are at most l3 possible choices of i, j, L, the conclusion
follows if it can be shown that

P{
L∑
k=1

F (xi+k, yi+k) ≥ 0} ≤ 1/l5 ∀L ≥ L0.

To establish this inequality, apply Markov’s inequality as in Corollary 2.26
with ε = 0. This leads to

P{
L∑
k=1

F (xi+k, yi+k) ≥ 0}≤E

[
exp

(
λ0

L∑
k=1

F (xi+k, yi+k)

)
,PLµ

]

≤E

[
L∏
k=1

exp(λ0F (xi+k, yi+k)),PLµ

]
= (E[exp(λ0F (x, y)), Pµ])

L

= (exp(Λ(λ0))L = exp(LΛ(λ0))

≤ exp(−5 log l) = 1/l5.

2

Lemma 8.10 (Lemma 2 of [33]) Let M̄U
l be the same as MU

l , except that
L ≤ L0(l). Suppose JU > 0. Then for all t > 1, we have that

P{M̄U
l ≥ tJU log l} ≤ (L0 + 1)nm

lt−1
.

Remark: This lemma is a counterpart to Lemma 8.9. In that lemma we
could say that the maximal segmental length on very long segment (defined
as L exceeding L0) will not even exceed zero, with high probability. In the
present lemma we examine the complementary situation where put an upper
bound of L0 on the length of the segments, and call the resulting maximal
segmental length as M̄U

l .

Proof. For each ν ∈ E(L, nm), let A(ν, L) denote the event

A(ν, L) := {∃i, j, 0 ≤ i, j ≤ l − L, µ̂(i, j, L) = ν}.
We recognize that A(ν, L) is the event that some segment of length L gener-
ates the empirical distribution ν. Now an upper bound for the likelihood of
the event A(ν, L) is readily available from the earlier discussion in Chapter
7, specifically from the method of types upper bound. If µ̂(i, j, L) = ν,
then definitely the marginals also match, so that µ̂A(i, j, L) = νA and
µ̂B(i, j, L) = νB. For any fixed i, j, we have the method of types bounds

P{µ̂(i, j, L) = ν} ≤ exp(−LH(ν‖µ)),
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P{µ̂A(i, j, L) = νA} ≤ exp(−LH(νA‖µA)),

P{µ̂B(i, j, L) = νB} ≤ exp(−LH(νB‖µB)).

Now there are l2 possible choices for the pair (i, j), and l choices for i and j
respectively. So we can write

P{A(ν, L)}≤min{l2 exp(−LH(ν‖µ)),

l exp(−LH(νA‖µA)), l exp(−LH(νB‖µB)), 1}.
The last term of 1 reflects the obvious fact that every probability is bounded
above by one. Now let us note that

l2 exp(−LH(ν‖µ)) = [l exp(−0.5H(ν‖µ))]2,

and use the inequality min{a2, 1} ≤ a for all a > 0. This leads to the final
estimate

P{A(ν, L)} ≤ l exp(−LH∗(ν‖µ)). (8.17)

We shall make use of this inequality many times in the remainder of the
proof. Returning to the above, we conclude that, as a consequence,

LH∗(ν‖µ) ≥ t log l ⇒ P{A(ν, L)} ≤ l−(t−1). (8.18)

Next, observe that along any segment of length L, we have
L∑
k=1

F (xi+k, yi+k) = LE[F, µ̂(i, j, L)].

So the event {M̄U
l ≥ tJU log l} is contained in the union of the events

µ̂(i, j, L) = ν ∈ U ∩ E(L, nm), LE[F,ν] ≥ tJ(ν) log l. (8.19)

But the latter inequality implies that

LH(ν‖µ) = L
E[F,ν]

J(ν)
≥ t log l.

In turn, from the definition of the function H∗, the above inequality implies
that

LH∗(ν‖µ) ≥ t log l.

So whenever the events in (8.19) hold, we can infer from (8.18) that

P{
L∑
k=1

F (xi+k, yi+k) ≥ tJU log l} ≤ l−(t−1) ∀ν ∈ U ∩ E(L, nm).

Since |E(L, nm)| ≤ (L+ 1)nm ≤ (L0 + 1)nm, the desired conclusion follows.
2

Lemma 8.11 (Lemma 3 of [33]) For any ν ∈ E(L, nm) and any l ≥ L, we
have

1− P{A(ν, L)}≤ 4(L+ 1)nm+1l−2
∗ exp(LH(νµ))

+ (L+ 1)nml−1
∗ exp(LH(νA‖µA))

+ (L+ 1)nml−1
∗ exp(LH(νB‖µB)), (8.20)

where l∗ = lbl/Lc is the largest integer multiple of L not exceeding l.
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Proof. Clearly, for a fixed ν, L, the quantity P{A(ν, l)} is a nondecreasing
function of l. So we can just replace l by l∗; that is, we can assume that
l = ML for some integer M .

Divide the sample path xl1 = xML
1 into M blocks of length L each, and

do the same for yl1. Given ν ∈ E(L, nm), let Nx denote the number of times
that the empirical distribution of a block of length L precisely equals νA. In
other words, let

Nx :=

M∑
i=1

I{µ̂((i−1)L+1,·,L)=νA}.

Define the integer Ny analogously. Let px denote the probability that the
empirical distribution of a block of length L is equal to νA. We can even
write down a formula for px, but it is not necessary. Now Nx is the sum of
M independent binary variables, each of which assumes a value of 1 with
the probability px. Hence Nx is a random variable assuming values in the
range {0, 1, . . . ,M} with a binomial distribution corresponding to px. Simi-
lar remarks apply to Ny and py.

Now let Bij be the event that, on the i-th X -block with empirical dis-
tribution νA and the j-th Y-block with empirical distribution νB, the joint
empirical distribution of (X ,Y) equals ν. Let p denote the probability that
the event Bij occurs. Thus

p = {µ̂(i, j, L) = ν|µ̂A = νA&µ̂B = νB}.
Let us define

W =

Nx∑
i=1

Ny∑
j=1

IBij .

Then the above definitions imply that

E[W |Nx, Ny] = pNxNy.

Also, the variance of W is bounded by

var[W |Nx, Ny] = NxNyvar[Bij |Nx, Ny] = NxNyp(1− p) ≤ pNxNy.
So by Chebycheff’s inequality, it follows that

P{W = 0|Nx, Ny} ≤
var[W |Nx, Ny]

(E[W |Nx, Ny])2
≤ 1

pNxNy
.

We can also write

P{W = 0} = E[P{W = 0|Nx ≥ 1&Ny ≥ 1}] + P{Nx = 0}+ P{Ny = 0}.
Now it is clear that

P{Nx = 0} = (1− px)M , P{Ny = 0} = (1− py)M .

As for the first term, we have

E[P{W = 0 | Nx ≥ 1&Ny ≥ 1}] ≤ E
[

1

pNxNy

∣∣∣∣Nx ≥ 1&Ny ≥ 1

]
=

1

p
E[1/Nx|Nx ≥ 1] · E[1/Ny|Ny ≥ 1],
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where we take advantage of the fact that Nx and Ny are independent random
variables. Now it can be readily verified from the binomial distribution of
Nx that

E[1/Nx|Nx ≥ 1] =

M∑
i=1

1

i

(
M
i

)
pix(1− px)M−i ≤ 2

Mpx
.

Similarly

E[1/Ny|Ny ≥ 1] ≤ 2

Mpy
.

This leads to

P{W = 0} ≤ 4

M2ppxpy
+ (1− px)M + (1− py)M .

A cruder estimate is

P{W = 0} ≤ 4

M2ppxpy
+

1

Mpx
+

1

Mpy
. (8.21)

Now observe from the method of types lower bounds that

ppxpy = P{µ̂(1, 1, L) = ν} ≥ (L+ 1)−nm exp(−LH(ν‖µ)), (8.22)

px = P{µ̂(1, ·, L) = νA} ≥ (L+ 1)−nm exp(−LH(νA‖µA)), (8.23)

py = P{µ̂(1, ·, L) = νB} ≥ (L+ 1)−nm exp(−LH(νB‖µB)). (8.24)

Now observe that the event {W > 0} implies the event {A(ν, L)}. Hence

P{A(ν, L)} ≥ P{W > 0} = 1− P{W = 0},
which in turn implies that

1− P{A(ν, L)} ≤ P{W = 0}.
The desired conclusion now follows from substituting the bounds from (8.22)
through (8.24) into (8.21). 2

Lemma 8.12 (Lemma 4 of [33]) Suppose JUo > 0. Then for each t < 1,
there exists an integer l0 = l0(t)1 such that

P{MU
l ≤ t log lJUo} ≤ 1

l(1−t)/2
, ∀l ≥ l0.

Proof. Suppose t < 1, and choose a number τ ∈ (t, (1+t)/2). Because τ > t,
it follows that

τ + t

2τ
= 0.5 + 0.5

t

τ
< 1.

Given the set U , choose ν̃ ∈ Uo such that

J(ν̃) >
τ + t

2τ
JUo .

1Not to be confused with L0
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Define

kl = dτ log l/H∗(ν̃‖µ)e,

and note that eventually kl eventually less than any constant multiple of
l, because kl ∼ const. · log l. Hence, for large enough l, we can always
choose ν̃l ∈ E(kl, nm) such that ρ(ν, ν̃l) ≤ nm/kl, where ρ denotes the
total variation metric. Now let c denote an upper bound for the function
F (x, y), x ∈ A, y ∈ B. Then

klE[F, ν̃l]≥ kl(E[F,ν]− cρ(ν, ν̃l))

≥ klE[F,ν]− cnm.

Note that cnm is just some constant independent of l. Hence it follows from
the definition of the constant kl that

klE[F, ν̃l]≥ klE[F,ν]− cnm

≥ τ log l
E[F,ν]

H∗(ν̃‖µ)
− cnm

= τ log lJ(ν̃)− cnm

≥ τ + t

2
log lJU∗o − cnm.

It is clear that ν̃l → ν̃ as l → ∞, and ν̃ ∈ Uo. Hence ν̃l ∈ Uo for all large
enough l. Moreover, since (τ + t)/2 > t, the constant term cnm can be
neglected in comparison with the log l term. Hence for large enough l it can
be said that

klE[F, ν̃l] > t log lJU∗o.

Since ν̃l ∈ E(kl, nm) for each l, this means that the event {MU
l ≤ t log lJU∗o}

is contained in the complement of the event {A(ν̃l, kl)}, i.e. that there exists
a sequence of length kl whose empirical distribution is ν̃l. Thus

P{MU
l ≤ t log lJU∗o} ≤ 1− P{A(ν̃l, kl)}. (8.25)

Now an upper bound for the right side is given by Lemma 8.11, specifically
(8.20). There are three terms in this bound, out of which one contains l−2

and thus decays faster than the other two terms which contain l−1. Next,
observe that, with l replaced by kl, we have

exp(klH
∗(ν‖µ)) ∼ exp(τ log l) = lτ .

Hence

1− P{A(ν̃l, kl)} ≤ const.l−(1−τ).

But since τ < (1 + t)/2, it follows that 1 − τ > (1 − t)/2. So we conclude
that

[1− P{A(ν̃l, kl)}]l(1−t)/2 → 0 as l→∞.

In view of the bound (8.25), this in turn implies that

P{MU
l ≤ t log lJU∗o}l(1−t)/2 → 0 as l→∞.
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This is the desired conclusion. 2

Now we are in a position to prove Theorem 8.7. What has been proven
thus far is that:

P{M̄U
l ≥ tJU log l} → 0 as l→∞, ∀t > 1,

P{MU
l ≤ t log lJUo} → 0 as l→∞, ∀t < 1.

Taken together, these two assertions are precisely the desired conclusions.



text September 25, 2011

Chapter Nine

Hidden Markov Processes

In this chapter, we study a special type of stochastic process that forms the
main focus of this book, called a ‘hidden’ Markov process (HMP).’ Some au-
thors also use the expression ‘hidden Markov model (HMM).’ In this book we
prefer to say ‘A process {Yt} is a hidden Markov process’ or ‘A process {Yt}
has a hidden Markov model.’ We use the two expressions interchangeably.

The chapter is organized as follows: In Section 9.1 we present three distinct
types of HMM’s, and show that they are all equivalent from the standpoint of
their expressive power or modelling ability. In Section 9.2 we study various
issues related to the computation of likelihoods in a HMM.

In the remainder of the book, the acronyms HMP for hidden Markov
process and HMM for hidden Markov model are used freely.

9.1 VARIOUS TYPES OF HIDDEN MARKOV MODELS AND

THEIR EQUIVALENCE

In this section we formulate three distinct types of hidden Markov models,
and then show that they are all equivalent from the standpoint of their
expressive power. This discussion becomes relevant because each of these
models appears in the literature. Hence it is important to realize that, while
these models may appear to be different, in fact each of the models can be
transformed to any of the other two.

9.1.1 Three Different-Looking Models

Definition 9.1 Suppose {Yt}∞t=1 is a stationary stochastic process assuming
values in a finite set M = {1, . . . ,m}.1 We say that {Yt} has a Type 1
hidden Markov model, or a HMM of the deterministic function of
a Markov chain type, if there exists a stationary Markov process {Xt}∞t=0

over a finite state space N = {1, . . . , n} and a function f : N→M such that
Yt = f(Xt).2

1As always, we really mean to say that Yt assumes values in a finite set {y1, . . . , ym}
consisting of just abstract labels. We write the set as {1, . . . ,m} in the interests of
simplifying the notation. However, these elements should be viewed as just labels and not
as integers.

2Here again, we really mean that Xt assumes values in a finite set {x1, . . . , xn}.
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From a historical perspective HMM’s of Type 1 are the earliest to be
introduced into the literature; see [20, 53]. Note that we must have n ≥ m
in order for the above definition to make sense. If n < m, then some elements
of the set M cannot be images of any element of N, and can therefore be
deleted from the output space. Observe also that the requirement that {Xt}
must have a finite state space is crucial. Carlyle [24] has shown that every
stochastic process {Yt} over a finite output space can be expressed in the
form {f(Xt)} where {Xt} is a Markov process whose state space is countably
infinite.

Definition 9.2 Suppose {Yt}∞t=1 is a stationary stochastic process assuming
values in a finite set M = {y1, . . . , ym}. We say that {Yt} has a hidden
Markov model of Type 2, or a HMM of the random function of
a Markov chain type, if there exist a finite integer n, a pair of matrices
A ∈ [0, 1]n×n, B ∈ [0, 1]n×m, and a probability distribution π ∈ Sn, such that
the following properties hold:

1. A and B are both stochastic matrices. Thus each row of A and each
row of B add up to one, or equivalently

Aen = en, Bem = en. (9.1)

2. π is a stationary distribution of A; that is, πA = π.

3. Suppose {Xt} is a homogeneous Markov chain on the state space N =
{1, . . . , n} with the initial distribution π and state transition matrix A.
Thus

Pr{X0 = i} = πi, and Pr{Xt+1 = j|Xt = i} = aij , ∀i, j, t. (9.2)

Suppose that, at each time instant t, the random variable Zt is selected
according to the rule

Pr{Zt = u|Xt = j} = bju, ∀j ∈ N, u ∈M, t ≥ 0. (9.3)

Then {Zt} has the same law as {Yt}.

Thus, in a Type 2 HMM, the current output Yt can be viewed as a ‘ran-
dom’ function of the current state Xt, according to the rule (9.3).3 The Type
2 HMM was apparently first introduced into the literature in [13]. Note that,
in contrast to a Type 1 HMM, the Type 2 HMM remains meaningful even
if m > n.

In the engineering world, the expressions HMP and HMM are invariably
reserved for a Type 2 HMP or HMM. According to [43], a Type 1 HMM is
referred to as a ‘Markov source’ in the world of communication theory.

3Note that the distinction between Zt and Yt is out of respect to the niceties of math-
ematical expression and is perhaps pedantic. We really cannot say ‘Yt is generated by
the rule (9.3).’ Instead we say ‘A random variable Zt selected according to the rule is
indistinguishable from Yt.’ Having said that, we will hereafter ignore the distinction.
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Definition 9.3 Suppose {Yt}∞t=1 is a stationary stochastic process assuming
values in a finite set M = {y1, . . . , ym}. We say that {Yt} is a hidden
Markov model of Type 3, or a HMM of the joint Markov process
type if there exist a finite set N = {1, . . . , n} and a stationary stochastic
process {Xt} assuming values in N such that the following properties hold:

1. The joint process {(Xt,Yt)} is Markov.

2. In addition

Pr{(Xt,Yt)|(Xt−1,Yt−1)} = Pr{(Xt,Yt)|Xt−1}. (9.4)

In other words

Pr{(Xt,Yt) = (j, u)|(Xt−1,Yt−1) = (i, v)}
= Pr{(Xt,Yt) = (j, u)|Xt−1 = i}, ∀i, j ∈ N, u, v ∈M. (9.5)

Note that in a Type 3 HMM, the associated process {Xt} is Markov by
itself. The distinction between a Type 2 HMM and a Type 3 HMM is brought
out clearly by comparing (9.3) and (9.4). In a Type 2 HMM, the current
output Yt is a ‘random function’ of the current state Xt, whereas in a Type
3 HMM, the current output Yt is a ‘random function’ of the previous state
Xt−1. Of course, in a Type 1 HMM, the current output Yt is a ‘deterministic
function’ of the current state Xt, in contrast with a Type 2 HMM where Yt
is a ‘random function’ of the current state Xt.

Whereas Type 1 and Type 2 HMM’s are historical and widely used in the
literature, the Type 3 HMM is somewhat nonstandard and appears to have
been introduced in [6]. But a Type 3 HMM has two significant advantages
over the other types of HMM’s. First, as shown in the next subsection, a
Type HMM in general requires a smaller state space compared to the other
two types of HMM’s. Second, when we study realization theory in Chapter
10, the proofs become very streamlined if we use a Type 3 HMM.

9.1.2 Equivalence Between the Three Models

The objective of this subsection is to show that in fact all three types of
HMM’s are the same in terms of their expressive power. However, when it
comes to the ‘economy’ of the model as measured by the size of the state
space of the associated Markov process, the Type 3 HMM is the most eco-
nomical whereas the Type 1 HMM is the least economical. A Type 2 HMM
lies in between.

Theorem 9.4 The following statements are equivalent:

(i) The process {Yt} has a Type 1 HMM (that is, a HMM of the ‘deter-
ministic function of a Markov chain’ type).

(ii) The process {Yt} has a Type 2 HMM (that is, a HMM of the ‘random
function of a Markov chain’ type).
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(iii) The process {Yt} has a Type 3 HMM (that is, a HMM of the ‘joint
Markov process’ type).

Proof. (i) ⇒ (ii) Clearly every deterministic function of a Markov chain
is also a ‘random’ function of the same Markov chain, with every element of
B equal to zero or one. Precisely, since both N and M are finite sets, the
function f simply induces a partition of the state space N into m subsets
N1, . . . ,Nm, where Nu := {i ∈ N : f(i) = u}. Thus two states in Nu are
indistinguishable through the measurement process {Yt}. Now set bju = 1
if j ∈ Nu and zero otherwise.

(ii) ⇒ (iii) If {Yt} is modelled as a Type 2 HMM with {Xt} as the
associated Markov chain, then the joint process {(Xt,Yt)} is Markov. Indeed,
if we define (Xt,Yt) ∈ N×M, then it readily follows from the HMM conditions
that

Pr{(Xt+1,Yt+1) = (j, u)|(Xt,Yt) = (i, v)} = aijbju,

and is therefore independent of v. Now define

M (u) := [aijbju] ∈ [0, 1]n×n.

Then the process {(Xt,Yt)} is Markov, and its state transition matrix is
given by  M (1) M (2) . . . M (m)

...
...

...
...

M (1) M (2) . . . M (m)

 .
Finally, note that the probability that (Xt+1,Yt+1) = (j, u) depends only
on Xt but not on Yt. Hence the joint process {(Xt,Yt)} satisfies all the
conditions required of the Type 3 HMM.

(iii) ⇒ (i) Suppose {Yt} has a Type 3 HMM, and suppose Xt is a
Markov process such that the joint process {(Xt,Yt)} is also Markov. Then
clearly Yt = f [(Xt,Yt)] for a suitable function f . Hence this is also a Type
1 HMM. 2

Up to now we have considered only the ‘expressive power’ of the vari-
ous HMM types. However, this is only part of the problem of stochastic
modelling. An equally, if not more, important issue is the ‘economy’ of the
representation, that is, the size of the state space of the associated Markov
chain. To study this issue, let us use the shorthand expression ‘{Yt} has a
Type 1 (or 2 or 3) HMM of size n’ if the Markov process {Xt} associated
with the HMM of the appropriate type evolves over a set N of cardinality n.
Then the next result is almost a direct consequence of the proof of Theorem
9.4, and shows that a Type 3 HMM is the most economical, while a Type 1
HMM is the least economical.

Corollary 9.5 Suppose {Yt}∞t=1 is a stationary stochastic process assuming
values in a finite set M = {y1, . . . , ym}.
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1. Suppose {Yt} has a Type 1 HMM of size n. Then it has a Type 2 HMM
of size n.

2. Suppose {Yt} has a Type 2 HMM of size n. Then it has a Type 3 HMM
of size n.

The next lemma discusses the extent to which the above statements can
be reversed.

Lemma 9.6 Suppose {Yt}∞t=1 is a stationary stochastic process assuming
values in a finite set M = {y1, . . . , ym}.

(i) Suppose a process {Yt} has a HMM of the random function of a Markov
chain type, and let {Xt} denote the associated Markov chain. Let A
and B denote respectively the state transition matrix and output matrix
of the HMM. Then Yt is a deterministic function of Xt if and only if
every element of the matrix B is either zero or one.

(ii) Suppose a process {Yt} has a HMM of the joint Markov process type,
and let {Xt} denote the associated Markov chain. Define

m
(u)
ij := Pr{Xt = i&Yt = u|Xt−1 = i}, ∀i, j ∈ N, u ∈M, (9.6)

M (u) := [m
(u)
ij , i, j ∈ N], ∀u ∈M, (9.7)

and

aij :=
∑
u∈M

m
(u)
ij , ∀i, j. (9.8)

Then Yt is a random function of Xt (and not just Xt−1) if and only if
the following consistency conditions hold: If aij 6= 0, then the ratio

m
(u)
ij

aij

is independent of i.

Proof. The first statement is obvious. Let us consider the second statement.
Suppose the process {Yt} has a joint Markov process type of HMM, and let
{(Xt,Yt)} be the associated Markov process. Define the matrices M (u) as
in (9.6). Then we already know that Yt is a random function of Xt−1. The
aim is to show that Yt is a random function of Xt (and not just Xt−1) if and
only if the stated condition holds.

‘Only if ’: By assumption, {Xt} is a Markov process. Moreover, we have
that

Pr{Xt = j|Xt−1 = i} =
∑
u∈M

Pr{(Xt,Yt) = (j, u)|Xt−1 = i} =
∑
u∈M

m
(u)
ij .

Therefore A is the state transition matrix of the Markov process {Xt}. Now
suppose that Yt is a random function of Xt, and not just Xt−1, and define

bju := Pr{Yt = u|Xt = j}, ∀u ∈M, j ∈ N.
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Then we must have m
(u)
ij = aijbju for all i, j, u. If aij = 0 for some i, j, then

perforce m
(u)
ij = 0 ∀u ∈M. Suppose aij 6= 0. Then it is clear that

bju =
m

(u)
ij

aij
∀i

and is therefore independent of i.
‘If ’: This consists of simply reversing the arguments. Suppose the ratio is

indeed independent of i, and define bju as above. Then clearly m
(u)
ij = aijbju

and as a result Yt is a random function of Xt. 2

As a simple example, suppose n = m = 2,

M (1) =

[
0.5 0.2
0.1 0.4

]
,M (2) =

[
0.2 0.1
0.1 0.4

]
, A =

[
0.7 0.3
0.2 0.8

]
.

Then

m
(1)
11

a11
= 5/7,

m
(1)
21

a21
= 1/2 6= 5/7.

Hence, while Yt is a random function of Xt−1, it is not a random function
of Xt.

9.2 COMPUTATION OF LIKELIHOODS

To place the contents of this section in perspective, let us observe that in
the HMM world (and it does not matter what the type of the HMM is), we
can identify three entities, namely: the model, the output sequence, and the
state sequence. Given any two of these entities, we can seek to determine
the third. So we can ask three distinct questions.

1. Given a HMM and a state sequence, what is the likelihood of observing
a particular output sequence?

2. Given a HMM and an observed output sequence, what is the most
likely state sequence?

3. Given observed output and state sequences, what is the most likely
HMM?

All three questions are addressed in this section. In Section 9.2.1 we answer
the first question. The second question is answered in Section 9.2.2. The
third question is addressed through ‘realization theory’ and turns out to be
by far the most difficult and deep question. It is addressed in several stages.
First, a standard method known as the Baum-Welch method is given in
Section 9.2.3. In the Baum-Welch method, it is assumed that the size n
of the state space of {Xt} is known beforehand, and the emphasis is only
on choosing the best possible parameter set for the HMM. Clearly there is
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some arbitrariness in this problem formulation. Ideally, the size n of the state
space of {Xt} should be determined by the data that we wish to model, and
not be fixed beforehand for our convenience. Chapters 9 and 9 address this
latter problem formulation. In Chapter 9 the so-called ‘partial realization
problem’ is studied, while the so-called ‘complete realization problem’ is
addressed in Chapter 9.

9.2.1 Computation of Likelihoods of Output Sequences

As is common in computer science, let us use the symbol M∗ to denote the
set of all finite strings over the set M. Thus M∗ consists of all strings of the
form u = u1 . . . ul, where each ui ∈ M and l is the length of the string. We
let |u| denote the length of the string. Now it is well known that the set
M∗ is countably infinite.4 The objective of this section is to derive a simple
formula for the likelihood of observing a string u ∈ M∗. In the literature,
this simple formula is referred to as the “forward-backward recursion.”

To facilitate the various problem statements and their solutions, a bit of
notation is introduced. Suppose we are given a stochastic process {Yt}.
In principle the process has a time index ranging from −∞ to ∞. In the
interests of brevity, we define

Y lk := (Yk,Yk+1, . . . ,Yl−1,Yl). (9.9)

In the above notation, it is supposed that k ≤ l. If k = l, then Y lk becomes
just Yk = Yl. The symbol is undefined if k > l. Similar notation is used
without comment for other stochastic processes (such as {Xt}).

Suppose that a process {Yt} has a Type 3 HMM. Thus there is an associ-
ated Markov process {Xt} such that the joint process {(Xt,Yt)} is Markov,
and in addition (9.4) holds. As in (9.6), let us define the n × n matrices
M (u) ∈ [0, 1]n×n by

m
(u)
ij := Pr{Xt = i&Yt = u|Xt−1 = i}, ∀i, j ∈ N, u ∈M.

and the stochastic matrix A ∈ [0, 1]n×n by

aij :=
∑
u∈M

m
(u)
ij , ∀i, j.

Then A is the state transition matrix of the Markov process {Xt}. If the
HMM is of Type 2 rather than Type 3, then as shown in the proof of Theorem
9.4, we have that

m
(u)
ij = aijbju.

To complete the specification of the Markov process {Xt}, we need to specify
the stationary distribution π, since in general the matrix A could have more
than one stationary distribution. Suppose π is also specified. Then the
dynamics of the two processes {Xt} and {Yt} are completely specified.

4If we permit strings of infinite length, then the resulting set is uncountably infinite.



text September 25, 2011

214 CHAPTER 9

Now suppose u ∈M∗ and that |u| = l. We wish to compute the likelihood

fu := Pr{(Yt,Yt+1, . . . ,Yt+l−1) = u}. (9.10)

Using the notation of (9.9), we can also write

fu := Pr{Yt+l−1
t = u}. (9.11)

In other words, we wish to compute the probability of observing the sequence
of outputs u = u1 . . . ul in exactly that order. Note that, since the process
{Yt} is stationary, the number fu as defined in (9.10) is independent of t,
the time at which the observations start. So we might as well take t = 1.
We refer to the quantity fu as the frequency of the string u.

To compute the frequency fu corresponding to a particular u ∈M∗, let us
observe that if i := (i0, i1, . . . , il) ∈ Nl+1 is a particular sequence of states,
then

Pr{Y l1 = u&X l0 = i}= Pr{X0 = i0}

·
l∏
t=1

Pr{(Yt,Xt) = (ut, it)|Xt−1 = it−1}

=πi0

l∏
t=1

m
(ut)
it−1it

.

Now to compute fu, we can observe that

fu = Pr{Y l1 = u}
=
∑

i∈Nl+1

Pr{Y l1 = u&X l0 = i},

by summing over all possible state sequences i. So in principle we could
compute the above probability for each sequence i ∈ Nl+1 and then add
them up. This gives the expression

fu =
∑

(i0,...,il)∈Nl+1

πi0

l∏
t=1

m
(ut)
it−1it

. (9.12)

If the above equation is interpreted literally and we sum over all possible
state sequences, this computation requires O(nl+1) computations. Clearly
this is a very silly way to compute fu.

Instead let us note that (9.12) can be interpreted as a matrix product. In
fact it equals

fu = πM (u1) · · ·M (ul)en. (9.13)

The equivalence of the two formulae (9.12) and (9.13) can be seen easily by
expanding the right side of (9.12) as

fu =
∑
i0

∑
i1

. . .
∑
il

πi0m
(u1)
i0i1

. . .m
(ul)
il−1il

.

Now if we simply start from the leftmost term in (9.13) and multiply π by
M (u1), and then multiply the resulting row vector by M (u2), and so on,
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and finally multiply the resulting row vector by en, then the complexity is
O(ln2), since multiplying an 1 × n row vector by an n × n matrix requires
O(n2) operations, and we need to do this l + 1 times.5

The very useful formula (9.13) can be given a very nice interpretation,
which is referred to in some HMM literature as the ‘forward-backward re-
cursion.’ Observe that, given a sequence u ∈ M∗ of length l, the formula
(9.13) for fu can be written as

fu = α(u, k)β(u, k),

where

α(u, k) = πM (u1) · · ·M (uk) = π

k∏
t=1

M (ut), (9.14)

β(u, k) = M (uk+1) · · ·M (ul)en =

l∏
t=k+1

M (ut)en. (9.15)

These formulas are valid for every k between 1 and l, provided we take the
empty product as the identity matrix. These formulas can now be given a
very simple interpretation in terms of conditional probabilities, which is the
basis of the so-called ‘forward-backward recursion.’ Observe that α(u, k) is
a 1× n row vector, whereas β(u, k) is an n× 1 column vector.

Lemma 9.7 With α(u, k) and β(u, k) defined as in (9.14) and (9.15) re-
spectively, we have

αi(u, k) = Pr{(Y1, . . . ,Yk) = (u1, . . . uk)&Xk = i}. (9.16)

βi(u, k) = Pr{Xk = i&(Yk+1, . . . ,Yl) = (uk+1, . . . , ul)}. (9.17)

The proof is obvious from the formulas (9.14) and (9.15) respectively, and
is left as an exercise to the reader.

9.2.2 Computation of Likelihoods of State Sequences: The Viterbi
Algorithm

In this subsection, we study the following question: Suppose we are given
a HMM, and an observation u ∈ Ml. Thus we know the parameters of an
HMM, and are given an observation Y1 = u1, . . . ,Yl = ul. The question is:
What is the “most likely” state sequence X0, . . . ,Xl, where “most likely” is
interpreted in the sense of the maximum a posteriori estimate as defined in
Section 2.2.4. Thus the problem is: Find

Arg max
i∈Nl+1

Pr{X l0 = i|Y l1 = u}.

5Since l + 1 and l are of the same order of magnitude, we can write O(ln2) instead of
O((l + 1)n2).
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In words, the problem is to find i ∈ Nl+1 that maximizes the a posteriori
probability Pr{X l0 = i|Y l1 = u}. The first, but very crucial, step is to observe
that

Pr{X l0 = i|Y l1 = u} =
Pr{X l0 = i&Y l1 = u}

Pr{Y l1 = u}
.

Now the variable of optimization here is i ∈ Nl+1, which does not appear in
the denominator. So we can treat the denominator as a constant and simply
maximize the numerator with respect to i. In other words, the problem is
to find

Arg max
i∈Nl+1

Pr{X l0 = i&Y l1 = u}.

An explicit expression for the right side can be deduced from (9.12), namely

Pr{X l0 = i&Y l1 = u} = πi0

l∏
t=1

m
(ut)
it−1it

.

Maximizing the right side with respect to i0, . . . , il is a very difficult prob-
lem if we try solve it directly. The well-known Viterbi algorithm is a
systematic approach that allows us to break down the single (and seemingly
intractable) optimization problem into a sequence of optimization problems,
each of which is tractable.

Towards this end, let us fix a time t ≤ l, a state j ∈ N, and define

γ(t, j; i) := Pr{X t−1
0 = i&Xt = j&Yt1 = ut1}

= πi0 ·

[
t−1∏
s=1

m
(us)
is−1is

]
·m(ut)

it−1j
, (9.18)

γ∗(t, j) := max
i∈Nt

γ(t, j; i), (9.19)

I∗(t, j) := {i ∈ Nt : γ(t, j; i) = γ∗(t, j)}. (9.20)

Thus I∗(t, j) consists of the most likely state sequences i ∈ Nt that lead to
state j at time t and match the observation history up to time t. The key
result is stated next. It is an instance of the “Principle of Optimality.” This
principle states that in a sequential optimization problem, any subsequence
of an optimal solution is also optimal (under suitable conditions of course).

Theorem 9.8 Fix t and j, and define I∗(t, j) as in 9.20. Suppose t ≥ 2
and that i0 . . . it−1 ∈ I∗(t, j). Then

i0 . . . it−2 ∈ I∗(t− 1, it−1). (9.21)

More generally, for any s ≤ t− 1, we have

i0 . . . is−1 ∈ I∗(s, is). (9.22)
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Proof. Suppose by way of contradiction that

i0 . . . it−2 6∈ I∗(t− 1, it−1).

This implies that there exists another sequence j0 . . . jt−2 ∈ Nt−1 such that

γ(t− 1, it−1; i0 . . . it−2) < γ(t− 1, it−1; j0 . . . jt−2).

Expanding this inequality leads to

πi0

[
t−2∏
s=1

m
(us)
is−1is

]
·m(ut−1)

it−2it−1
< πj0

[
t−2∏
s=1

m
(us)
js−1js

]
·m(ut−1)

jt−2it−1
.

Multiplying both sides by m
(ut)
it−1j

shows that

γ(t, j; i) < γ(t, j; j0 . . . jt−2it−1),

which contradicts the assumption that i0 . . . it−2it−1 ∈ I∗(t, j). Hence (9.21)
is true. The proof of (9.22) is entirely similar. 2

Theorem 9.9 The function γ∗(·, ·) satisfies the recursive relationship

γ∗(t, j) = max
i∈N

[
γ∗(t− 1, i) ·m(ut)

ij

]
, t ≤ l. (9.23)

Proof. Fix t ≤ l and j ∈ N. Suppose i0 . . . it−1 ∈ I∗(t, j) is an optimal state
sequence. Then it follows from Theorem 9.8 that

γ ∗ (t, j) = γ(t, j, i0 . . . it−1)

= γ(t, it−1; i0 . . . it−2) ·m(ut)
it−1j

from (9.18)

= γ∗(t− 1, it−1) ·m(ut)
it−1j

(9.24)

At this point the only variable of optimization left is it−1, which we can
simply relabel as i. Choosing i = it−1 so as to maximize the right side of
(9.24) leads to the recursive relationship (9.23). 2

Now we have everything in place to state the Viterbi algorithm.
Step 1. (Initialization) For each i1 ∈ N, choose i0 ∈ N so as to maximize

the product πi0m
(u1)
i0i1

. In case there is more than one optimal i0 correspond-
ing to a given i1, choose any one of the optimal i0. Thus leads to n optimal

trajectories i0i1, and n corresponding optimal values γ(i, i1) = πi0m
(u1)
i0i1

, one
for each i1 ∈ N.

Step 2. (Recursion) Suppose 2 ≤ t ≤ l. At time t, for each it−1 ∈ N we
have an optimal value γ∗(t − 1, it−1) and an associated optimal trajectory
i0 . . . it−2. Now, for each it ∈ N, choose it−1 ∈ N as the value of i that
achieves the maximum in (9.23), with j = it. If there is more than one
value of it−1 that achieves the maximum, choose any one value. Once it−1

is determined, concatenate it−1 to the associated optimal trajectory to it−1,
and call it the optimal trajectory corresponding to it. The optimal value
γ∗(t, it) is the maximum value in (9.23).

Step 3. (Completion) Let t = l. At this stage we have n optimal values
γ∗(l, 1), . . . , γ∗(l, n), and n associated optimal trajectories. Now choose as
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il the value of j that maximizes γ∗(l, j) and choose the associated optimal
trajectory as the most likely state sequence.

The algorithm is illustrated through a “baby” example below, so as to
illustate the various steps involved. But now let us analyze the computa-
tional complexity of the algorithm. At each time t and for each state j ∈ N,

we need to compute the product γ(t − 1, i)m
(ut)
ij for each i ∈ N, and then

find the largest value of the product. This has complexity O(n) for each
j ∈ N, or O(n2) in all. Since we need to do this l times in all, the overall
complexity is O(ln2), which is the same as the complexity of computing the
frequency fu for a given u ∈Ml. Note that a frontal attack on the problem
by enumerating all possible state trajectories would have complexity O(nl),
which would be unacceptable.

9.2.3 Learning Hidden Markov Models: The Baum-Welch Algo-
rithm

In this subsection we study the problem of “learning” a hidden Markov
model (HMM) on the basis of observations. In the literature, two distinct
problems are usually mixed up, and we try to disentangle them here.

Suppose we are specified a state space N = {1, . . . , n}, an output space
M = {1, . . . ,m} and a family of Type 3 HMM’s, parametrized by λ ∈ Λ ⊆
Rd. Here Λ is the set of parameters, d is the number of parameters, and λ is a
generic symbol denoting a particular parameter (vector if d > 1). The family
of HMM’s is denoted by {(π(λ);M (u)(λ), u ∈M), λ ∈ Λ}. As in Section 9.1,
the various quantities are interpreted as follows: M (u)(λ) ∈ [0, 1]n×n for each
u ∈M, and

m
(u)
ij (λ) = Pr{Xt = j&Yt = u|Xt−1 = i},

when the parameter is λ. The matrix

A(λ) :=
∑
u∈M

M (u)(λ) ∈ [0, 1]n×n

is a stochastic matrix, and is the state transition matrix of the Markov chain
associated with the HMM. Finally, π(λ)A(λ) = π(λ), so that π(λ) is the
stationary distribution of the Markov chain. So the only new feature here
is that the vector π(λ) and the matrices M (u)(λ) depend on the auxiliary
parameter λ.

Now suppose we are given a specific observation u ∈ Ml. Thus we have
observed that Y1 = u1, . . . ,Yl = ul. The problem is to choose, amongst all
the given HMM’s, a model that maximizes the likelihood of the observed
sequence. Now we know from (9.12) that

fu(λ) =
∑

i∈Nl+1

πi0

l∏
t=1

m
(ut)
it−1it

(λ). (9.25)

So the problem is to maximize fu(λ) with respect to λ ∈ Λ. From Definition
2.23, we see that we are seeking a maximum likelihood estimate of λ ∈
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Λ. Once we find a λ∗ ∈ Λ that maximizes fu(λ), we can say that the
corresponding model (π(λ∗);M (u)(λ∗), u ∈M)} is the most likely model.

There is a further refinement possible. Up to now we have assumed that
the length l of the observation is fixed. Now suppose that the data is gen-
erated by a “true but unknown” model (π(λ0);M (u)(λ0), u ∈ M)}, where
λ0 is the “true but unknown” value of the parameter. We take longer and
longer observations, and at each length l, we form a corresponding estimate
λ∗l . So the question is: Does λ∗l → λ0 as l → ∞? In other words, does the
estimated model converge to the true but unknown model as the length of
the observations approaches infinity?

Let us begin with the first problem, namely, finding the most likely model,
or in other words, maximizing the right side of (9.25) with respect to λ. It
is clear that trying to differentiate this expression with respect to λ is very
complicated. Instead, we use an observation first presented in [14] to make
the problem tractable. A little bit of notation is presented first.

Let µ denote the uniform probability distribution on hte set Nl+1. Thus
µ assigns a weight of n−(l+1) to each element i ∈ Nl+1. With this notation,
we can think of the expression in (9.25) as an expected value. Let us define
the map φu(λ) : Nl+1 → [0, 1] by

φu(λ, i) := Pr{X l0 = i&Y l1 = u}

= πi0

l∏
t=1

m
(ut)
it−1it

(λ).

Then it is clear from (9.25) that

fu(λ) = nl+1E[φu(λ, i), µ].

Since nl+1 is just a constant, the problem of maximizing fu(λ) with re-
spect to λ is equivalent to the problem of maximizing the expected value
E[φu(λ, i), µ] with respect to λ. Actually, since u is a given fixed observa-
tion, there is no need to display explicitly the dependence of various quan-
tities on u. Accordingly, we suppress this dependence in all intermediate
calculations, and display it only later on, as needed.

Now we come to the theorem first presented in [14]. Note that the theorem
applies to any function φ, not just a function arising from a HMM.

Theorem 9.10 Suppose φ : Λ→ Nl+1× [0,∞) has the property, for a given
λ ∈ Λ, that

φ(λ, i) = 0 ⇒ φ(ν, i) = 0 ∀ν ∈ Λ.

Let µ denote the uniform probability distribution on Nl+1, and define

g(λ) := E[φ(λ, i), µ], g(ν) := E[φ(ν, i), µ],

h(λ, ν) := E[φ(λ, i) log φ(ν, i), µ].

Then

h(λ, ν)− h(λ, λ) ≤ g(λ) log

[
g(ν)

g(λ)

]
. (9.26)
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So in particular it follows that

[h(λ, ν) ≥ h(λ, λ)] ⇒ [g(ν) ≥ g(λ)] . (9.27)

Proof. The assumption on φ(λ, ·) ensures that the quantity φ(λ, i) log φ(ν, i)
is well-defined for all i (and equals zero if φ(λ, i) = 0). Now we reason as
follows: Since µ is the probability distribution on Nl+1, it follows that

g(λ) = n−(l+1)
∑

i∈Nl+1

φ(λ, i),

g(ν) = n−(l+1)
∑

i∈Nl+1

φ(ν, i),

log

[
g(ν)

g(λ)

]
= log

 1

nl+1g(λ)

∑
i∈Nl+1

φ(ν, i)


= log

 ∑
i∈Nl+1

φ(ν, i)

φ(λ, i)
· φ(λ, i)

nl+1g(λ)


Now observe that ∑

i∈Nl+1

φ(λ, i)

nl+1g(λ)
= 1

by the definition of g(λ). So the vector

qλ :=

[
φ(λ, i)

nl+1g(λ)
, i ∈ Nl+1

]
∈ Snl+1

is a probability distribution on Nl+1. So we can write

log

[
g(ν)

g(λ)

]
= logE

[
φ(ν, i)

φ(λ, i)
,qλ

]
.

Now, since log is a concave function, we can apply Jensen’s inequality to
conclude that

log

[
g(ν)

g(λ)

]
≥E

[
log

φ(ν, i)

φ(λ, i)
,qλ

]
=E[log φ(ν, i),qλ]− E[log φ(λ, i),qλ]

=
1

g(λ)
[h(λ, ν)− h(λ, λ)]

This establishes (9.26), from which (9.27) follows readily. 2
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Chapter Ten

Hidden Markov Processes: Complete Realization

Problem

In this chapter we continue our study of hidden Markov processes begun
in the previous chapter. The focus of study here is the so-called complete
realization problem, which can be stated as follows: Suppose M = {1, . . . ,m}
is a finite set1 and that {Yt}t≥0 is a stationary stochastic process assuming
values in M. We wish to derive necessary and/or sufficient conditions for
{Yt} to be a hidden Markov process. As shown in Theorem 9.4, the existence
of each of the three types of HMMs is equivalent: The process {Yt} has any
one kind of a HMM realization if and only if it has all three. Thus we shall
use whichever HMM makes it easy to prove what we wish to prove.

In summary, it is quite easy to prove a universal necessary condition for
the given process to have a HMM. But this condition is not sufficient in
general. Unfortunately the demonstration of this fact is rather long. One
can in principle present a ‘necessary and sufficient condition’, but as pointed
out by Anderson [6], the ‘necessary and sufficient condition’ is virtually a
restatement of the problem to be solved and does not shed any insight on the
problem. However, if one adds the requirement that the process {Yt} is also
‘mixing’, then it is possible to present conditions that are ‘almost necessary
and sufficient’ for the process to have a HMM realization.

10.1 A UNIVERSAL NECESSARY CONDITION

10.1.1 The Hankel Matrix

In this subsection we introduce a very useful matrix which we refer to as
a ‘Hankel’ matrix, because it has some superficial similarity to a Hankel
matrix. Given the set M in which the stochastic process {Yt} assumes
its values, let us define some lexical ordering of the elements in M. The
specific order itself does not matter, and the reader can verify that all of
the discussion in the present chapter is insensitive to the specific lexical
ordering used. For each integer l, the set Ml has cardinality ml and consists
of l-tuples. These can be arranged either in first-lexical order (flo) or last-
lexical order (llo). First-lexical order refers to indexing the first element,

1As always, we really mean that M = {m1, . . . ,mn}, a collection of abstract symbols,
and we write M = {1, . . . ,m} only to simplify notation.
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then the second, and so on, while last-lexical order refers to indexing the
last element, then the next to last, and so on. For example, suppose m = 2
and that M = {1, 2} in the natural order. Then

M3 in llo = {111, 112, 121, 122, 211, 212, 221, 222},

M3 in flo = {111, 211, 121, 221, 112, 212, 122, 222}.

Given any finite string u ∈Ml, its frequency fu is defined by

fu := Pr{(Yt+1,Yt+2, . . . ,Yt+1) = (u1, u2, . . . , ul)}.

Since the process {Yt} is assumed to be stationary, the above probability is
independent of t. Moreover, as seen earlier, the frequency vector is consis-
tent; that is

fu =
∑
v∈M

fuv =
∑
w∈M

fwu, ∀u ∈M∗. (10.1)

More generally,

fu =
∑
v∈Mr

fuv =
∑

w∈Ms

fwu, ∀u ∈M∗. (10.2)

Given integers k, l ≥ 1, the matrix Fk,l is defined as

Fk,l = [fuv,u ∈Mk in flo,v ∈Ml in llo] ∈ [0, 1]m
k×ml

.

Thus the rows of Fk,l are indexed by an element of Mk in flo, while the
columns are indexed by an element of Ml in llo. For example, suppose
m = 2, and M = {1, 2}. Then

F1,2 =

[
f111 f112 f121 f122

f211 f212 f221 f222

]
,

whereas

F2,1 =


f111 f112

f211 f212

f121 f122

f221 f222

 .
In general, for a given integer s, the matrices F0,s, F1,s−1, . . . , Fs−1,1, Fs,0
all contain frequencies of the ms s-tuples in the set Ms. However, the di-
mensions of the matrices are different, and the elements are arranged in a
different order. Note that by convention F0,0 is taken as the 1× 1 matrix 1
(which can be thought of as the frequency of occurence of the empty string).

Given integers k, l ≥ 1, we define the matrix Hk,l as

Hk,l :=


F0,0 F0,1 . . . F0,l

F1,0 F1,1 . . . F1,l

...
...

...
...

Fk,0 Fk,1 . . . Fk,l

 .
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Note that Hk,l has 1 + m + . . . + mk rows, and 1 + m + . . . + ml columns.
In general, Hk,l is not a ‘true’ Hankel matrix, since it is not constant along
backward diagonals. It is not even ‘block Hankel.’ However, it resembles
a Hankel matrix in the sense that the matrix in the (i, j)-th block consists
of frequencies of strings of length i + j. Finally, we define H (without any
subscripts) to be the infinite matrix of the above form, that is,

H :=



F0,0 F0,1 . . . F0,l . . .
F1,0 F1,1 . . . F1,l . . .

...
...

...
...

...
Fk,0 Fk,1 . . . Fk,l . . .

...
...

...
...

...

 .

Through a mild abuse of language we refer to H as the Hankel matrix asso-
ciated with the process {Yt}.

10.1.2 A Necessary Condition for the Existence of Hidden Markov
Models

In this section, it is shown that a process {Yt} has a HMM only if the matrix
H has finite rank. Taking some liberties with the English language, we refer
to this as the ‘finite Hankel rank condition’. Theorem 10.1 below shows
that the finite Hankel rank condition is a universal necessary condition for
a given process to have a HMM realization. However, as shown in the next
subsection, the finiteness of the rank of H is only necessary, but not sufficient
in general.

Theorem 10.1 Suppose {Yt} has a Type 3 HMM with the associated {Xt}
process having n states. Then Rank(H) ≤ n.

Proof: The definition of a Type 3 HMM implies that the process {Xt} is
Markov over a set N of cardinality n. Define the matrices M (1), . . . ,M (m), A
as in (9.7) and (9.8) respectively, and let π denote the stationary distribution
associated with this Markov process. Now suppose u ∈ Ml, specificlly that
u = u1 . . . ul. Then from the sum of products formula (9.13) derived earlier,
we have

fu =

n∑
i=1

n∑
j1=1

. . .

n∑
jl=1

πim
(u1)
ij1
· · ·m(ul)

jl−1jl
= πM (u1) · · ·M (ul)en. (10.3)

Note that∑
l∈M

M (l) = A, π

[∑
l∈M

M (l)

]
= π, and

[∑
l∈M

M (l)

]
en = en. (10.4)

Thus the sum of the matrices M (u) is the state transition matrix of the
Markov chain, and π and en are respectively a row eigenvector and a column
eigenvector of A corresponding to the eigenvalue 1.
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Now let us return to the matrix H. Using (10.3), we see at once that H
can be factored as a product KL, where

K =



π
πM (1)

...
πM (m)

πM (1)M (1)

...
πM (m)M (m)

...


,

L = [en |M (1)en| . . . |M (m)en |M (1)M (1)en| . . . |M (m)M (m)en| . . .].
In other words, the rows of K consist of πM (u1) · · ·M (ul) as u ∈ Ml is in
flo and l increases, whereas the columns of L consist of M (u1) · · ·M (ul)en as
u ∈Ml is in llo and l increases. Now note that the first factor has n columns
whereas the second factor has n rows. Hence Rank(H) ≤ n.

It has been shown by Sontag [102] that the problem of deciding whether
or not a given ‘Hankel’ matrix has finite rank is undecidable.

10.2 NON-SUFFICIENCY OF THE FINITE HANKEL RANK

CONDITION

Let us refer to the process {Yt} as ‘having finite Hankel rank’ if Rank(H) is
finite. Thus Theorem 10.1 shows that Rank(H) being finite is a necessary
condition for the given process to have a HMM. However, the converse is
not true in general – it is possible for a process to have finite Hankel rank
and yet not have a realization as a HMM. The original example in this
direction was given by Fox and Rubin [49]. However, their proof contains an
error, in the opinion of this author. In a subsequent paper, Dharmadhikari
and Nadkarni [41] quietly and without comment simplified the example of
Fox and Rubin and also gave a correct proof (without explicitly pointing
out that the Fox-Rubin proof is erroneous). In this section, we present the
example of [41] and slightly simplify their proof. It is worth noting that
the example crucially depends on rotating a vector by an angle α that is
not commensurate with π, that is, α/π is not a rational number. A similar
approach is used by Benvenuti and Farina [16], Example 4 to construct a
nonnegative impulse response with finite Hankel rank which does not have
a finite rank nonnegative realization.

Let us begin by choosing numbers λ ∈ (0, 0.5], α ∈ (0, 2π) such that α and
π are noncommensurate. In particular, this rules out the possibility that
α = π. Now define

hl := λl sin2(lα/2), ∀l ≥ 1.
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Note that we can also write

hl = λl
(eilα/2 − e−ilα/2)2

4
,

where (just in this equation) i denotes
√
−1. Simplifying the expression for

hl shows that

hl =
λl

4
(ζl + ζ−l − 2), (10.5)

where ζ := eiα. Because hl decays at a geometric rate with respect to l, the
following properties are self-evident.

1. hi > 0 ∀i. Note that lα can never equal a multiple of π because α and
π are noncommensurate.

2. We have that
∞∑
i=1

hi =: δ < 1. (10.6)

3. We have that
∞∑
i=1

ihi <∞.

4. The infinite Hankel matrix

H̄ :=


h1 h2 h3 . . .
h2 h3 h4 . . .
h3 h4 h5 . . .
...

...
...

. . .


has finite rank of 3.

This last property follows from standard linear system theory. Given a
sequence {hi}i≥1, let us define its z-transform h̃(·) by2

h̃(z) :=

∞∑
i=1

hiz
i−1.

Thanks to an old theorem of Kronecker [75], it is known that the Hankel
matrix H̄ has finite rank if and only if h̃ is a rational function of z, in which
case the rank of the Hankel matrix is the same as the degree of the rational
function h̃(z). Now it is a ready consequence of (10.5) that

h̃(z) =
1

4

[
λζ

1− λζz
+

λζ−1

1− λζ−1z
− 2

λ

1− λz

]
.

2Normally in z-transformation theory, the sequence {hi} is indexed starting from
i = 0, whereas here we have chosen to begin with i = 1. This causes the somewhat
unconventional-looking definition.
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Hence the infinite matrix H̄ has rank 3.
The counterexample is constructed by defining a Markov process {Xt}

with a countable state space and another process {Yt} with just two output
values such that Yt is a function of Xt. The process {Yt} satisfies the finite
Hankel rank condition; in fact Rank(H) ≤ 5. And yet no Markov process
with a finite state space can be found such that Yt is a function of that
Markov process. Since we already know from Section 9.4 that the existence
of all the three kinds of HMMs is equivalent, this is enough to show that the
process {Yt} does not have a joint Markov process type of HMM.

The process {Xt} is Markovian with a countable state space {0, 1, 2, . . .}.
The transition probabilities of the Markov chain are defined as follows:

Pr{Xt+1 = 0|Xt = 0} = 1− δ = 1−
∞∑
i=1

hi,

Pr{Xt+1 = i|Xt = 0} = hi for i = 1, 2, . . . ,

Pr{Xt+1 = i|Xt = i+ 1} = 1 for i = 1, 2, . . . ,

and all other probabilities are zero. Thus the dynamics of the Markov chain
are as follows: If the chain starts in the initial state 0, then it makes a
transition to state i with probability hi, or remains in 0 with the probability
1−

∑
i hi = 1− δ. Once the chain moves to the state i, it then successively

goes through the states i− 1, i− 2, . . . , 1, 0. Then the process begins again.
Thus the dynamics of the Markov chain consist of a series of cycles beginning
and ending at state 0, but where the lengths of the cycles are random,
depending on the transition out of the state 0.

Clearly {Xt} is a Markov process. Now we define {Yt} to be a function
of this Markov process. Let Yt = a if Xt = 0, and let Yt = b otherwise, i.e.,
if Xt = i for some i ≥ 1. Thus the output process {Yt} assumes just two
values a and b. Note that in the interests of clarity we have chosen to denote
the two output states as a and b instead of 1 and 2. For this process {Yt}
we shall show that (i)

Rank(H) ≤ Rank(H̄) + 2 = 5,

where H is the Hankel matrix associated with the process {Yt}, and (ii)
there is no Markov process {Zt} with a finite state space such that Yt is a
(deterministic) function of Zt.

The stationary distribution of the Markov chain is as follows:

π0 = g :=

[
1 +

∞∑
i=1

ihi

]−1

,

πi = g

∞∑
j=i

hj , i ≥ 1.

To verify this, note the structure of the state transition matrix A of the
Markov chain: State 0 can be reached only from states 0 and 1. Thus
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column 0 of A has 1− δ in row 0, 1 in row 1, and zeros in all other rows. For
i ≥ 1, state i can be reached only from states 0 and i + 1. Hence column i
has hi in row 0, 1 in row i+ 1, and zeros elsewhere. As a result

(πA)0 = g

1− δ +

∞∑
j=1

hj

 = g(1− δ + δ) = g = π0,

while for i ≥ 1,

(πA)i = hiπ0 + πi+1 = g

hi +

∞∑
j=i+1

hj

 = g

∞∑
j=i

hj = πi.

To verify that this is indeed a probability vector, note that

∞∑
i=0

πi = g

1 +

∞∑
i=1

∞∑
j=i

hj

 = g

1 +

∞∑
j=1

j∑
i=1

hj

 = g

1 +

∞∑
j=1

jhj

 = 1

in view of the definition of g.
Next, let us compute the frequencies of various output strings. Note that

if Yt = a, then certainly Xt = 0. Hence, if Yt = a, then the conditional
probability of Yt+1 does not depend on the values of Yi, i < t. Therefore,
for arbitrary strings u,v ∈ {a, b}∗, we have

fuav = fua · fv|ua = fua · fv|a.

Hence the infinite matrix H(a) defined by

H(a) := [fuav,u,v ∈ {a, b}∗]
has rank one. In such a case, it is customary to refer to a as a ‘Markovian
state.’

Next, let us compute the frequencies of strings of the form abla, abl, bla,
and bl. A string of the form abla can occur only of Xt = 0,Xt+1 =
l, . . . ,Xt+l = 1,Xt+l+1 = 0. All transitions except the first one have proba-
bility one, while the first transition has probability hl. Finally, the proba-
bility that Xt = 0 is π0. Hence

fabla = π0hl, ∀l.
Next, note that

fabl = fabl+1 + fabla.

Hence, if we define

π0γl := fabl ,

then γl satisfies the recursion

π0γl = π0γl+1 + π0hl.

To start the recursion, note that

π0γ1 = fab = fa − faa = π0 − π0(1− δ) = π0δ = π0

∞∑
i=1

hi.
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Therefore

π0γl = π0

∞∑
i=l

hi, or γl =

∞∑
i=l

hi.

Now we compute the frequencies fbl for all l. Note that

fbl = fbl+1 + fabl = fbl+1 + π0γl.

Hence if we define π0ηl := fbl , then ηl satisfies the recursion

ηl = ηl+1 + γl.

To start the recursion, note that

fb = 1− fa = 1− π0.

Now observe that

π0 =

[
1 +

∞∑
i=1

ihi

]−1

and as a result

1− π0 = π0

∞∑
i=1

ihi = π0

∞∑
i=1

i∑
j=1

hi = π0

∞∑
j=1

∞∑
i=j

hi = π0

∞∑
j=1

γj .

Hence

fbl = π0ηl, where ηl =

∞∑
i=l

γi.

Finally, to compute fbla, note that

fbla + fbl+1 = fbl .

Hence

fbla = fbl − fbl+1 = π0(ηl − ηl+1) = π0γl.

Now let us look at the Hankel matrix H corresponding to the process
{Yt}. We can think of H as the interleaving of two infinite matrices H(a)

and H(b), where

H(a) = [fuav,u,v ∈ {a, b}∗],

H(b) = [fubv,u,v ∈ {a, b}∗].

We have already seen that H(a) has rank one, since a is a Markovian state.
Hence it follows that

Rank(H) ≤ Rank(H(a)) + Rank(H(b)) = Rank(H(b)) + 1.

To bound Rank(H(b)), fix integers l, n, and define

H
(b)
l,n := [fubv,u ∈ {a, b}l,v ∈ {a, b}n].
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Note that H
(b)
l,n ∈ [0, 1]2

l×2n

. It is now shown that

Rank(H
(b)
l,n ) ≤ Rank(H̄) + 1 = 4. (10.7)

Since the right side is independent of l, n, it follows that

Rank(H(b)) ≤ 4,

whence

Rank(H) ≤ 5.

To prove (10.7), suppose u ∈ {a, b}l−1 is arbitrary. Then

fuabv = fua · fbv|ua = fua · fbv|a,

because a is a Markovian state. Hence each of the 2l−1 rows [fuabv,u ∈
{a, b}l−1] is a multiple of the row [fbv|a], or equivalently, of the row [falbv].

Hence Rank(H(b)) is unaffected if we keep only this one row and jettison
the remaining 2l−1 − 1 rows. Similarly, as u varies over {a, b}l−2, each of
the rows [fuabbv] is proportional to [fal−2abbv] = [fal−1b2v]. So we can again
retain just the row [fal−1b2v] and discard the rest. Repeating this argument
l times shows that H(b) has the same rank as the (l + 1)× 2n matrix

falbv
fal−1b2v

...
fablv
fbl+1v

 ,v ∈ {a, b}n.
A similar exercise can now be repeated with v. If v has the form v = aw,
then

faibl+1−iaw = faibl+1−ia · fw|a.

So all 2n−1 columns [faibl+1−iaw,w{a, b}n−1] are proportional to the single
column [faibl+1−ian ]. So we can keep just this one column and throw away
the rest. Repeating this argument shows that H(b) has the same rank as the
(l + 1)× (n+ 1) matrix

ban b2an−1 . . . bna bn+1

al

al−1b
...

abl−1

bl


falban falb2an−1 . . . falbna falbn+1

fal−1b2an fal−1b3an−1 . . . fal−1bn+1a fal−1bn+2

...
...

...
...

...
fablan fabl+1an−1 . . . fabl+n−1a fabl+n

fbl+1an fbl+2an−1 . . . fbl+na fbl+n+1


.

The structure of this matrix becomes clear if we note that

faibjat = fai · fbjat|a
= fai · fbja|a · fat−1|a

=π0(1− δ)i−1 · hj · (1− δ)t−1. (10.8)
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The strings in the last row and column either do not begin with a, or end
with a, or both. So let us divide the first row by π0(1 − δ)l−1, the second
row by π0(1− δ)l−2, etc., the l-th row by π0, and do nothing to the last row.
Similarly, let us divide the first column by (1− δ)n−1, the second column by
(1− δ)n−2, etc., the n-th column by (1− δ)0 = 1, and leave the last column

as is. The resulting matrix has the same rank as H
(b)
l,n , and the matrix is

h1 h2 . . . hn ×
h2 h3 . . . hn+1 ×
...

...
...

...
...

hl hl+1 . . . hl+n ×
× × . . . × ×

 ,
where × denotes a number whose value does not matter. Now the upper left
l × n submatrix is a submatrix of H̄; as a result its rank is bounded by 3.
This proves(10.7).3

To carry on our analysis of this example, we make use of z-transforms.
This is not done in [41], but it simplifies the arguments to follow. As shown
earlier, the z-transform of the sequence {hi} is given by

h̃(z) =
1

4

[
λζ

1− λζz
+

λζ−1

1− λζ−1z
− 2

λ

1− λz

]
=
ψh(z)

φ(z)
,

where

φ(z) := (1− λζ)(1− λζ−1)(1− λ), (10.9)

and ψh(z) is some polynomial of degree no larger than two; its exact form
does not matter. Next, recall that

γi =

∞∑
j=i

hj .

Now it is an easy exercise to show that

γ̃(z) =
δ − h̃(z)

1− z
,

where, as defined earlier, δ =
∑∞
i=1 hi. Even though we are dividing by 1−z

in the above expression, in reality γ̃ does not have a pole at z = 1, because
h̃(1) = δ. Hence we can write

γ̃(z) =
ψγ(z)

φ(z)
,

where again ψγ is some polynomial of degree no larger than two, and φ(z) is
defined in (10.9). By entirely similar reasoning, it follows from the expression

ηi =

∞∑
j=i

γj

3Through better book-keeping, Dharmadhikari and Nadkarni [41] show that the rank
is bounded by 3, not 4. This slight improvement is not worthwhile since all that matters
is that the rank is finite.
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that

η̃(z) =
s− γ̃(z)

1− z
,

where

s :=

∞∑
i=1

γi =

∞∑
i=1

∞∑
j=i

hj =

∞∑
j=1

j∑
i=1

hj =

∞∑
j=1

jhj .

Here again, η̃(·) does not have a pole at z = 1, and in fact

γ̃(z) =
ψη(z)

φ(z)
,

where ψη is also a polynomial of degree no larger than two. The point of all
these calculations is to show that each of the quantities γl, ηl has the form

γl = c0,γλ
l + c1,γλ

lζl + c2,γλ
lζ−l, (10.10)

ηl = c0,ηλ
l + c1,ηλ

lζl + c2,ηλ
lζ−l, (10.11)

for appropriate constants. Note that, even though ζ is a complex number,
the constants occur in conjugate pairs so that γl, ηl are always real. And as
we have already seen from (10.5), we have

hl = −1

2
λl +

1

4
λlζl +

1

4
λlζ−l.

Now the expression (10.11) leads at once to two very important observations.
Observation 1: Fix some positive number ρ, and compute the weighted

average

1

T

T∑
l=1

ρ−lηl =: θ(ρ, T ).

Then it follows that

1. If ρ < λ, then θ(ρ, T )→∞ as T →∞.

2. If ρ > λ, then θ(ρ, T )→ 0 as T →∞.

3. If ρ = λ, then θ(ρ, T )→ c0,η as T →∞, where c0,η is the constant in
(10.11).

If ρ 6= λ, then the behavior of θ(ρ, T ) is determined by that of (λ/ρ)l.
If ρ = λ, then the averages of the oscillatory terms (λζ/ρ)l and (λ/ρζ)l

will both approach zero, and only the first term in (10.11) contributes to a
nonzero average.

Observation 2: Let T be any fixed integer, and consider the moving
average

1

T

l+T∑
j=l+1

λ−jηj =: θTl .
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This quantity does not have a limit as l→∞ if α is not commensurate with
π. To see this, take the z-transform of {θTl }. This leads to

θ̃T (z) =
βT (z)

φ(z)
,

where βT (z) is some high degree polynomial. After dividing through by
φ(z), we get

θ̃T (z) = βTq (z) +
βTr (z)

φ(z)
,

where βTq is the quotient and βTr is the remainder (and thus has degree
no more than two). By taking the inverse z-transform, we see that the
sequence {θTl } is the sum of two parts: The first part is a sequence having
finite support (which we can think of as the ‘transient’), and the second is a
sequence of the form

c0,θλ
l + c1,θλ

lζl + c2,θλ
lζ−l.

From this expression it is clear that if α is noncommensurate with π, then
θTl does not have a limit as l→∞.

These two observations are the key to the concluding part of this very
long line of reasoning. Suppose by way of contradiction that the output
process {Yt} can be expressed as a function of a Markov process {Zt} with
a finite state space. Let N = {1, . . . , n} denote the state space, and let π,A
denote the stationary distribution and state transition matrix of the Markov
chain {Zt}. Earlier we had used these symbols for the Markov chain {Xt},
but no confusion should result from this recycling of notation. From Item
2 of Theorem 5.6, it follows that by a symmetric permutation of rows and
columns (which corresponds to permuting the labels of the states), A can be
arranged in the form

A =

[
P 0
R Q

]
,

where the rows of P correspond to the recurring states and those of R to
transient states. Similarly, it follows from Item 7 of Theorem 5.6 that the
components of π corresponding to transient states are all zero. Hence the
corresponding states can be dropped from the set N without affecting any-
thing. So let us assume that all states are recurrent.

Next, we can partition the state space N into those states that map into
a, and those states that map into b. With the obvious notation, we can
partition π as [πa πb] and the state transition matrix as

A =

[
Aaa Aab
Aba Abb

]
.

Moreover, from Theorem 4.8, it follows that we can arrange Abb in the form

Abb =


A11 0 . . . 0
A21 A22 . . . 0

...
...

...
...

As1 As1 . . . Ass

 ,
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where s is the number of communicating classes within those states that
map into the output b, and each of the diagonal matrices Aii is irreducible.
Of course, the fact that each of the diagonal blocks is irreducible does still
not suffice to determine π uniquely, but as before we can assume that no
component of π is zero, because if some component of π is zero, then we can
simply drop that component from the state space.

Now it is claimed that ρ(Abb) = λ, where ρ(·) denotes the spectral radius.
To show this, recall that if B is an irreducible matrix with spectral radius
ρ(B), and θ,φ are respectively the (unique strictly positive) row eigenvec-
tor and column eigenvector corresponding to the eigenvalue ρ(B), then the
‘ergodic average’

1

T

T∑
l=1

[ρ(B)]−lBl

converges to the rank one matrix φθ as T → ∞. Now from the triangular
structure of Abb, it is easy to see that ρ(Abb) is the maximum amongst the
numbers ρ(Aii), i = 1, . . . , s. If we let θi, φi denote the unique row and
column eigenvectors of Aii corresponding to ρ(Aii), it is obvious that

1

T

T∑
l=1

[ρ(Abb]
−lAlbb → Block Diag {φiθiI{ρ(Aii)=ρ(Abb)}}. (10.12)

In other words, if ρ(Aii) = ρ(Abb), then the corresponding term φiθi is
present in the block diagonal matrix; if ρ(Aii) < ρ(Abb), then the corre-
sponding entry in the block diagonal matrix is the zero matrix. Let D
denote the block diagonal in (10.12), and note that at least one of the ρ(Aii)
equals ρ(Abb). Hence at least one of the products φiθi is present in the block
diagonal matrix D.

From the manner in which the HMM has been set up, it follows that

ηl = fbl = πbA
l
bbe.

In other words, the only way in which we can observe a sequence of l symbols
b in succession is for all states to belong to the subset of N that map into
the output b. Next, let us examine the behavior of the quantity

1

T

T∑
l=1

ρ−lηl =
1

T

T∑
l=1

ρ−lπbA
l
bbe,

where ρ = ρ(Abb). Now appealing to (10.12) shows that the above quantity
has a definite limit as T →∞. Moreover, since πb and e are strictly positive,
and the block diagonal matrix D has at least one positive block φiθi, it
follows that

lim
T→∞

1

T

T∑
l=1

ρ−lηl = πDe ∈ (0,∞).

By Observation 1, this implies that ρ(Abb) = λ.
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Finally (and at long last), let us examine those blocks Aii which have the
property that ρ(Aii) = ρ(Abb) = ρ. Since each of these is an irreducible
matrix, it follows from Theorem 4.11 that each such matrix has a unique
‘period’ ni, which is an integer. Moreover, it follows from Theorem 4.23
that Aii has eigenvalues at ρ exp(i2πj/ni), j = 1, . . . , ni − 1, and all other
eigenvalues of Aii have magnitude strictly less than ρ. This statement applies
only to those indices i such that ρ(Aii) = ρ(Abb) = ρ. Now let N denote
the least common multiple of all these integers ni. Then it is clear that
the matrix Abb has a whole lot of eigenvalues of the form ρ exp(i2πj/N) for
some (though not necessarily all) values of j ranging from 0 to N − 1; all
other eigenvalues of A have magnitude strictly less than ρ. As a result, the
quantity

1

N

t+N∑
l=t+1

Albb

has a definite limit at t→∞. In turn this implies that the quantity

1

N

t+N∑
l=t+1

πbA
l
bbe =

1

N

t+N∑
l=t+1

ηl

has a definite limit at t→∞. However, this contradicts Observation 2, since
α is noncommensurate with π. This contradiction shows that the stochastic
process {Yt} cannot be realized as a function of a finite state Markov chain.

10.3 AN ABSTRACT NECESSARY AND SUFFICIENT CON-

DITION

In this section we reproduce an abstract necessary and sufficient condition
for a given probability law to have an HMM realization, as first presented
by Heller [55], with a significantly simplified proof due to Picci [89].

Recall that M∗, the set of all finite strings over M = {1, . . . ,m}, is a
countable set. We let µ(M∗) denote the set of all maps p : M∗ → [0, 1]
satisfying the following two conditions:∑

u∈M
pu = 1, (10.13)

∑
v∈M

puv = pu, ∀u ∈M∗. (10.14)

Note that by repeated application of (10.14), we can show that∑
v∈Ml

puv = pu, ∀u ∈M∗. (10.15)

By taking u to be the empty string, so that pu = 1, we get from the above
that ∑

v∈Ml

pv = 1, ∀l. (10.16)
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We can think of µ(M∗) as the set of all frequency assignments to strings
in M∗ that are right-consistent by virtue of satisfying (10.14).

Definition 10.2 Given a frequency assignment p ∈ µ(M∗), we say that
{π,M (1), . . . ,M (m)} is a HMM realization of p if

π ∈ Rn+,
n∑
i=1

πi = 1, (10.17)

M (u) ∈ [0, 1]n×n ∀u ∈M, (10.18)[∑
u∈M

M (u)

]
en = en, (10.19)

and finally

pu = πM (u1) . . .M (ul)en ∀u ∈Ml. (10.20)

Given a frequency distribution p ∈ µ(M∗), for each u ∈ M we define the
conditional distribution

p(·|u) := v ∈M∗ 7→ puv
pu

. (10.21)

If by chance pu = 0, we define p(·|u) to equal p. Note that p(·|u) ∈ µ(M∗);
that is, p(·|u) is also a frequency assignment map. By applying (10.21)
repeatedly, for each u ∈M∗ we can define the conditional distribution

p(·|u) := v ∈M∗ 7→ puv
pu

. (10.22)

Again, for each u ∈M∗, the conditional distribution p(·|u) is also a frequency
assignment. Clearly conditioning can be applied recursively and the results
are consistent. Thus

p((·|u)|v) = p(·|uv), ∀u,v ∈M∗. (10.23)

It is easy to verify that if p satisfies the right-consistency condition (10.14),
then so do all the conditional distributions p(·|u) for all u ∈ M∗. Thus, if
p ∈ µ(M∗), then p(·|u) ∈ µ(M∗) for all u ∈M∗.

A set C ⊆ µ(M∗) is said to be polyhedral if there exist an integer n
and distributions q(1), . . . , q(n) ∈ µ(M∗) such that C is the convex hull of
these q(i), that is, every q ∈ C is a convex combination of these q(i). A set
C ⊆ µ(M∗) is said to be stable if

q ∈ C ⇒ q(·|u) ∈ C ∀u ∈M∗. (10.24)

In view of (10.23), (10.24) can be replaced by weaker-looking condition

q ∈ C ⇒ q(·|u) ∈ C ∀u ∈M. (10.25)

Now we are ready to state the main result of this section, first proved
in [55]. However, the proof below follows [89] with some slight changes in
notation.
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Theorem 10.3 A frequency distribution p ∈ µ(M∗) has a HMM realization
if and only if there exists a stable polyhedral set C ⊆ µ(M∗) containing p.

Proof: “If” Suppose q(1), . . . , q(n) ∈ µ(M∗) are the generators of the
polyhedral set C. Thus every q ∈ C is of the form

q =

n∑
i=1

aiq
(i), ai ≥ 0,

n∑
i=1

ai = 1.

In general neither the integer n nor the individual distributions q(i) are
unique, but this does not matter. Now, since C is stable, q(·|u) ∈ C for all

a ∈ C, u ∈ M. In particular, for each i, u, there exist constants α
(u)
ij such

that

q(i)(·|u) =
n∑
j=1

α
(u)
ij q

(j)(·), α(u)
ij ≥ 0,

n∑
j=1

α
(u)
ij = 1.

Thus from (10.21) it follows that

q(i)
uv =

n∑
j=1

q(i)
u α

(u)
ij q

(j)
v

=

n∑
j=1

m
(u)
ij q

(j)
v , (10.26)

where

m
(u)
ij := q(i)

u α
(u)
ij , ∀i, j, u. (10.27)

We can express (10.26) more compactly by using matrix notation. For u ∈
M∗, define

qu := [q(1)
u . . . q(n)

u ]t ∈ [0, 1]n×1.

Then (10.26) states that

quv = M (u)qv ∀u ∈M,v ∈M∗,

where M (u) = [m
(u)
ij ] ∈ [0, 1]n×n. Moreover, it follows from (10.23) that

quv = M (u1) . . .M (ul)qv ∀uMl,v ∈M∗.

If we define

M (u) := M (u1) . . .M (ul) ∀u ∈Ml,

then the above equation can be written compactly as

quv = M (u)M (v)qv ∀u,v ∈M∗. (10.28)

By assumption, p ∈ C. Hence there exist numbers π1, . . . , πn, not neces-
sarily unique, such that

p(·) =

n∑
i=1

πiq
(i)(·), πi ≥ 0 ∀i,

n∑
i=1

πi = 1. (10.29)
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We can express (10.29) as

p(·) = πq(·).

Hence, for all u,v ∈M∗, it follows from (10.28) that

puv = πquv = πM (u)qv, ∀u,v ∈M∗. (10.30)

In particular, if we let v equal the empty string, then qv = en, and puv = pu.
Thus (10.30) becomes

pu = πM (u)en,

which is the same as (10.20).
Next, we verify (10.19) by writing it out in component form. We have

n∑
j=1

∑
u∈M

m
(u)
ij =

∑
u∈M

n∑
j=1

m
(u)
ij

=
∑
u∈M

q(i)
u

 n∑
j=1

α
(u)
ij


=
∑
u∈M

q(i)
u because

n∑
j=1

α
(u)
ij = 1

= 1, ∀i because q(i) ∈ µ(M∗) and (10.13).

Before leaving the “If” part of the proof, we observe that if the probability
distribution p ∈ µ(M∗) is also left-consistent by satisfying∑

u∈M
puv = pv ∀u ∈M,v ∈M∗,

then it is possible to choose the vector π such that

π

[∑
u∈M

M (u)

]
= π. (10.31)

To see this, we substitute into (10.20) which has already been established.
This gives

πM (v)en = pv =
∑
u∈M

puv = π

[∑
u∈M

M (u)

]
M (v)en, ∀v ∈M∗.

Now it is not possible to “cancel” M (v)en from both sides of the above
equation. However, it is always possible to choose the coefficient vector π so
as to satisfy (10.31).

“Only if” Suppose p has a HMM realization {π,M (1), . . . ,M (m)}. Let n
denote the dimension of the matrices M(u) and the vector π. Define the
distributions q(1), . . . , q(n) by

qu = [q(1)
u . . . q(n)

u ]t := M (u)en, ∀u ∈M∗. (10.32)
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Thus q
(i)
u is the i-th component of the column vector M (u)en. First it is

shown that each q(i) is indeed a frequency distribution. From (10.32), it
follows that ∑

u∈M
qu =

[∑
u∈M

M (u)

]
en = en,

where we make use of (10.19). Thus each q(i) satisfies (10.13) (with p replaced
by q(i)). Next, to show that each q(i) is right-consistent, observe that for
each u ∈M∗, v ∈M we have∑

v∈M
quv = M (u)

[∑
v∈M

M (v)

]
en = M (u)en = qu.

Thus each q(i) is right-consistent. Finally, to show that the polyhedral set
consisting of all convex combinations of q(1), . . . , q(n) is stable, observe that

q(i)(v|u) =
q(i)(uv)

q(i)(u)
.

Substituting from (10.31) gives

q(i)(v|u) =
1

q(i)(u)
M (u)M (v)en

= a(i)
u M (v)en,

= a(i)
u qv, (10.33)

where

a(i)
u :=

[
m

(u)
ij

q(i)(u)
, j = 1, . . . , n

]
∈ [0, 1]1×n.

Thus each conditional distribution q(i)(·|u) is a linear combination of q(1)(·), . . . , q(n)(·).
It remains only to show that q(i)(·|u) is a convex combination, that is, that

each a
(i)
u ∈ Rn+ and that a

(i)
u en = 1. The first is obvious from the definition

of the vector a(i). To establish the second, substitute v equal to the empty
string in (10.33). Then q(i)(v|u) = 1 for all i, u, and qv = en. Substituting
these into (10.32) shows that

1 = a(i)
u en,

as desired. Thus the polyhedral set C consisting of all convex combinations
of the q(i) is stable. Finally, it is obvious from (10.20) that p is a convex
combination of the q(i) and thus belongs to C.

10.4 EXISTENCE OF REGULAR QUASI-REALIZATIONS

In this section, we study processes whose Hankel rank is finite, and show
that it is always possible to construct a ‘quasi-realization’ of such a process.
Moreover, any two regular quasi-realizations of a finite Hankel rank process
are related through a similarity transformation.
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Definition 10.4 Suppose a process {Yt} has finite Hankel rank r. Sup-
pose n ≥ r, x is a row vector in Rn, y is a column vector in Rn, and
C(u) ∈ Rn×n ∀u ∈ M. Then we say that {n,x,y, C(u),u ∈ M} is a quasi-
realization of the process if three conditions hold. First,

fu = xC(u1) . . . C(ul)y ∀u ∈M∗, (10.34)

where l = |u|. Second,

x

[∑
u∈M

C(u)

]
= x. (10.35)

Third, [∑
u∈M

C(u)

]
y = y. (10.36)

We say that {n,x,y, C(u),u ∈ M} is a regular quasi-realization of the
process if n = r, the rank of the Hankel matrix.

The formula (10.34) is completely analogous to (10.3). Similarly, (10.35)
and (10.36) are analogous to (10.4). The only difference is that the various
quantities are not required to be nonnegative. This is why we speak of
a ‘quasi-realization’ instead of a true realization. With this notion, it is
possible to prove the following powerful statements:

1. Suppose the process {Yt} has finite Hankel rank, say r. Then the
process always has a regular quasi-realization.

2. Suppose a process {Yt} has finite Hankel rank r, and suppose {θ1, φ1, D
(u)
1 , u ∈

M} and {θ2, φ2, D
(u)
2 , u ∈M} are two regular quasi-realizations of this

process. Then there exists a nonsingular matrix T such that

θ2 = θ1T
−1, D

(u)
2 = TD

(u)
1 T−1 ∀u ∈M, φ2 = Tφ1.

These two statements are formally stated and proven as Theorem 10.8 and
Theorem 10.9 respectively.

The results of this section are not altogether surprising. Given that the
infinite matrix H has finite rank, it is clear that there must exist recur-
sive relationships between its various elements. Earlier work, most notably
[37, 25], contains some such recursive relationships. However, the present
formulae are the cleanest, and also the closest to the conventional formula
(10.3). Note that Theorem 10.8 is more or less contained in the work of Er-
ickson [44]. In [61], the authors generalize the work of Erickson by studying
the relationship between two quasi-realizations, without assuming that the
underlying state spaces have the same dimension. In this case, in place of the
similarity transformation above, they obtain ‘intertwining’ conditions of the

form D
(u)
2 T = TD

(u)
1 , where the matrix T may now be rectangular. In the

interests of simplicity, in the present case we do not study this more general
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case. Moreover, the above formulae are the basis for the construction of a
‘true’ (as opposed to quasi) HMM realization in subsequent sections.

Some notation is introduced to facilitate the subsequent proofs. Suppose
k, l are integers, and I ⊆ Mk, J ⊆ Ml; thus every element of I is a string
of length k, while every element of J is a string of length l. Specifically,
suppose I = {i1, . . . , i|I|}, and J = {j1, . . . , j|J|}. Then we define

FI,J :=


fi1j1 fi1j2 . . . fi1j|J|
fi2j1 fi2j2 . . . fi2j|J|

...
...

...
...

fi|I|j1 fi|I|j2 . . . fi|I|j|J|

 . (10.37)

Thus FI,J is a submatrix of Fk,l and has dimension |I| × |J |. This notation
is easily reconciled with the earlier notation. Suppose k, l are integers. Then
we can think of Fk,l as shorthand for FMk,Ml . In the same spirit, if I is a
subset of Mk and l is an integer, we use the ‘mixed’ notation FI,l to denote
FI,Ml . This notation can be extended in an obvious way to the case where
either k or l equals zero. If l = 0, we have that M0 := {∅}. In this case

FI,0 := [fi : i ∈ I] ∈ R|I|×1.

Similarly if J ⊆Ml for some integer l, then

F0,J := [fj : j ∈ J ] ∈ R1×|J|.

Finally, given any string u ∈M∗, we define

F
(u)
k,l := [fiuj, i ∈Mk in flo, j ∈Ml in llo], (10.38)

F
(u)
I,J := [fiuj, i ∈ I, j ∈ J ]. (10.39)

Lemma 10.5 Suppose H has finite rank. Then there exists a smallest in-
teger k such that

Rank(Fk,k) = Rank(H).

Moreover, for this k, we have

Rank(Fk,k) = Rank(Hk+l,k+s), ∀l, s ≥ 0. (10.40)

Proof: We begin by observing that, for every pair of integers k, l, we have

Rank(Hk,l) = Rank(Fk,l). (10.41)

To see this, observe that the row indexed by u ∈ Mk−1 in Fk−1,s is the
sum of the rows indexed by vu in Fk,s, for each s. This follows from (10.1).
Similarly each row in Fk−2,s is the sum of m rows in Fk−1,s and thus of m2

rows of Fk,s, and so on. Thus it follows that every row of Ft,s for t < k is a
sum of mk−t rows of Fk,s. Therefore

Rank(Hk,l) = Rank([Fk,0 Fk,1 . . . Fk,l]).
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Now repeat the same argument for the columns of this matrix. Every col-
umn of Fk,t is the sum of mk−t columns of Fk,l. This leads to the desired
conclusion (10.41).

To complete the proof, observe that, since Hl,l is a submatrix of Hl+1,l+1,
we have that

Rank(H1,1) ≤ Rank(H2,2) ≤ . . . ≤ Rank(H).

Now at each step, there are only two possibilities: Either Rank(Hl,l) <
Rank(Hl+1,l+1), or else Rank(Hl,l) = Rank(Hl+1,l+1). Since Rank(H) is
finite, the first possibility can only occur finitely many times. Hence there
exists a smallest integer k such that

Rank(Hk,k) = Rank(H).

We have already shown that Rank(Hk,k) = Rank(Fk,k). Finally, since
Hk+l,k+s is a submatrix of H and contains Hk.k as a submatrix, the de-
sired conclusion (10.40) follows.

Note: Hereafter, the symbol k is used exclusively for this integer and
nothing else. Similarly, hereafter the symbol r is used exclusively for the
(finite) rank of the Hankel matrix H and nothing else.

Now consider the matrix Fk,k, which is chosen so as to have rank r. Thus
there exist sets I, J ⊆ Mk, such that |I| = |J | = r and FI,J has rank r.
(Recall the definition of the matrix FI,J from (10.37).) In other words,
the index sets I, J are chosen such that FI,J is any full rank nonsingular
submatrix of Fk,k. Of course the choice of I and J is not unique. However,

once I, J are chosen, there exist unique matrices U ∈ Rmk×r, V ∈ Rr×mk

such that Fk,k = UFI,JV . Hereafter, the symbols U, V are used only for
these matrices and nothing else.

The next lemma shows that, once the index sets I, J are chosen (thus fixing
the matrices U and V ), the relationship Fk,k = UFI,JV can be extended to
strings of arbitrary lengths.

Lemma 10.6 With the various symbols defined as above, we have

F
(u)
k,k = UF

(u)
I,J V, ∀u ∈M∗. (10.42)

This result can be compared to [6], Lemma 1, p. 99.
Proof: For notational convenience only, let us suppose I, J consist of the

first r elements of Mr. The more general case can be handled through more
messy notation. The matrix U can be partitioned as follows:

U =

[
Ir
Ū

]
.

This is because FI,k is a submatrix of Fk,k. (In general we would have to
permute the indices so as to bring the elements of I to the first r positions.)
Now, by the rank condition and the assumption that Fk,k = UFI,JV (=
UFI,k), it follows that[

Ir 0
−Ū Imk−r

]
Hk,. =

[
FI,k FI,.
0 FMk\I,. − ŪFI,.

]
,
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where

FI,. = [FI,k+1 FI,k+2 . . .], and FMk\I,. = [FMk\I,k+1 FMk\I,k+2 . . .].

This expression allows us to conclude that

FMk\I,. = ŪFI,.. (10.43)

Otherwise the (2, 2)-block of the above matrix would contain some nonzero
element, which would in turn imply that Rank(Hk,.) > r, a contradiction.
Now the above relationship implies that

F
(u)
k,k = UF

(u)
I,K , ∀u ∈M∗.

Next, as with U , partition V as V = [Ir V̄ ]. (In general, we would
have to permute the columns to bring the elements of J to the first posi-

tions.) Suppose N > k is some integer. Observe that FN,k is just [F
(u)
k,k ,u ∈

MN−k in flo]. Hence

[
Ir 0
−Ū Imk−r

]
H.,k =

[
F

(u)
I,k ,u ∈M∗ in flo

0

]
=


FI,k
0

F
(u)
I,k ,u ∈M∗ \ ∅ in flo

0

 .
Now post-multiply this matrix as shown below:

[
Ir 0
−Ū Imk−r

]
H.,k

[
Ir −V̄
0 Imk−r

]
=


FI,J 0
0 0

F
(u)
I,J F

(u)

I,Mk\J − F
(u)
I,J V̄ ,u ∈M∗in flo

0 0

 .
So if F

(u)

I,Mk\J 6= F
(u)
I,J V̄ for some u ∈ M∗, then Rank(H.,k) would exceed

Rank(FI,J), which is a contradiction. Thus it follows that

F
(u)

I,Mk\J = F
(u)
I,J V̄ , ∀u ∈M∗. (10.44)

The two relationships (10.43) and (10.44) can together be compactly ex-
pressed as (10.42), which is the desired conclusion.

Lemma 10.7 Choose unique matrices D̄(u), u ∈M, such that

F
(u)
I,J = FI,JD̄

(u), ∀u ∈M. (10.45)

Then for all u ∈M∗, we have

F
(u)
I,J = FI,JD̄

(u1) . . . D̄(ul), where l = |u|. (10.46)

Choose unique matrices D(u), u ∈M, such that

F
(u)
I,J = D(u)FI,J , ∀u ∈M. (10.47)

Then for all u ∈M∗, we have

F
(u)
I,J = D(u1) . . . D(ul)FI,J , where l = |u|. (10.48)
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This result can be compared to [6], Theorem 1, p. 90.
Proof: We prove only (10.46), since the proof of (10.48) is entirely similar.

By the manner in which the index sets I, J are chosen, we have

Rank[FI,J F
(u)
I,J ] = Rank[FI,J ], ∀u ∈M.

Hence there exist unique matrices D̄(u), u ∈M such that (10.45) holds. Now
suppose v is any nonempty string in M∗. Then, since FI,J is a maximal rank
submatrix of H, it follows that

Rank

[
FI,J F

(u)
I,J

F
(v)
I,J F

(vu)
I,J

]
= Rank

[
FI,J

F
(v)
I,J

]
, ∀u ∈M.

Now post-multiply the matrix on the left side as shown below:[
FI,J F

(u)
I,J

F
(v)
I,J F

(vu)
I,J

] [
I −D̄(u)

0 I

]
=

[
FI,J 0

F
(v)
I,J F

(vu)
I,J − F

(v)
I,J D̄

(u)

]
.

This shows that

F
(vu)
I,J = F

(v)
I,J D̄

(u), ∀v ∈M∗, ∀u ∈M. (10.49)

Otherwise, the (2,2)-block of the matrix on the right side would contain
a nonzero element and would therefore have rank larger than that of FI,J ,
which would be a contradiction. Note that if v is the empty string in (10.49),
then we are back to the definition of the matrix D̄(u). Now suppose u ∈M∗
has length l and apply (10.49) recursively. This leads to the desired formula
(10.46).

Suppose u ∈M∗ has length l. Then it is natural to define

D̄(u) := D̄(u1) . . . D̄(ul), D(u) := D(u1) . . . D(ul).

With this notation let us observe that the matrices D(u) and D̄(u) ‘inter-
twine’ with the matrix FI,J . That is,

FI,JD̄
(u) = D(u)FI,J , and F−1

I,JD
(u) = D̄(u)F−1

I,J . (10.50)

This follows readily from the original relationship

FI,JD̄
(u) = D(u)FI,J(= F

(u)
I,J ) ∀u ∈M

applied recursively.
Finally we come to the main theorem about quasi-realizations. We begin

by formalizing the notion.
Note that a regular quasi-realization in some sense completes the analogy

with the formulas (10.3) and (10.4).

Theorem 10.8 Suppose the process {Yt} has finite Hankel rank, say r.
Then the process always has a regular quasi-realization. In particular, choose
the integer k as in Lemma 10.5, and choose index sets I, J ⊆ Mk such that
|I| = |J | = r and FI,J has rank r. Define the matrices U, V,D(u), D̄(u) as
before. The following two choices are regular quasi-realizations. First, let

x = θ := F0,JF
−1
I,J , y = φ := FI,0, C

(u) = D(u) ∀u ∈M. (10.51)

Second, let

x = θ̄ := F0,J , y = φ̄ := F−1
I,JFI,0, C

(u) = D̄(u) ∀u ∈M. (10.52)
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This result can be compared to [6], Theorem 1, p. 90 and Theorem 2, p.
92.

Proof: With all the spade work done already, the proof is very simple.
For any string u ∈M∗, it follows from (10.47) that

F
(u)
I,J = D(u1) . . . D(ul)FI,J , where l = |u|.

Next, we have from (10.42) that

F
(u)
k,k = UF

(u)
I,J V, ∀u ∈M∗.

Now observe that, by definition, we have

fu =
∑
i∈Mk

∑
j∈Mk

fiuj = etmkF
(u)
k,k emk = etmkUD

(u1) . . . D(ul)FI,JV emk ,

where emk is the column vector with mk one’s. Hence (10.34) is satisfied
with the choice

n = r, θ := etmkU, φ := FI,JV emk , C(u) = D(u) ∀u ∈M,

and the matrices D(u) as defined in (10.47). Since D(u)FI,J = FI,JD̄
(u), we

can also write

fu = etmkUFI,JD̄
(u1) . . . D̄(ul)V emk .

Hence (10.34) is also satisfied with the choice

n = r, θ̄ := etmkUFI,J , φ̄ := V emk , C(u) = D̄(u) ∀u ∈M,

and the matrices D̄(u) as defined in (10.46).
Next, we show that the vectors θ, φ, θ̄, φ̄ can also be written as in (10.51)

and (10.52). For this purpose, we proceed as follows:

θ = etmkU = etmkUFI,JF
−1
I,J = etmkFk,JF

−1
I,J = F0,JF

−1
I,J .

Therefore

θ̄ = θFI,J = F0,J .

Similarly

φ = FI,JV emk = FI,kemk = FI,0,

and

φ̄ = F−1
I,JFI,0.

It remains only to prove the eigenvector properties. For this purpose, note
that, for each u ∈M, we have

F0,JD̄
(u) = etmkUFI,JD̄

(u) = etmkUF
(u)
I,J = F

(u)
0,J .

Now

θD(u) = F0,JF
−1
I,JD

(u) = F0,JD̄
(u)F−1

I,J = F
(u)
0,J F

−1
I,J .
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Hence

θ

[∑
u∈M

D(u)

]
=
∑
u∈M

θD(u) =
∑
u∈M

F
(u)
0,J F

−1
I,J = F0,JF

−1
I,J = θ,

since ∑
u∈M

F
(u)
0,J = F0,J .

As for φ, we have

D(u)φ = D(u)FI,JV emk = F
(u)
I,J V emk = F

(u)
I,k emk = F

(u)
I,0 .

Hence [∑
u∈M

D(u)

]
φ =

∑
u∈M

D(u)φ =
∑
u∈M

F
(u)
I,0 = FI,0 = φ.

This shows that {r, θ, φ,D(u)} is a quasi-realization. The proof in the case
of the barred quantities is entirely similar. We have

θ̄D̄(u) = F0,JD̄
(u) = F

(u)
0,J ,

so

θ̄

[∑
u∈M

D̄(u)

]
=
∑
u∈M

F
(u)
0,J = F0,J = θ̄.

It can be shown similarly that[∑
u∈M

D̄(u)

]
φ̄ = φ̄.

Next, it is shown that any two ‘regular’ quasi-realizations of the process
are related through a similarity transformation.

Theorem 10.9 Suppose a process {Yt} has finite Hankel rank r, and sup-

pose {θ1, φ1, D
(u)
1 , u ∈ M} and {θ2, φ2, D

(u)
2 , u ∈ M} are two regular quasi-

realizations of this process. Then there exists a nonsingular matrix T such
that

θ2 = θ1T
−1, D

(u)
2 = TD

(u)
1 T−1 ∀u ∈M, φ2 = Tφ1.

Proof: Suppose the process has finite Hankel rank, and let r denote the
rank of H. Choose the integer k as before, namely, the smallest integer k
such that Rank(Fk,k) = Rank(H). Choose subsets I, J ⊆ Mk such that
|I| = |J | = r and Rank(FI,J) = r. Up to this point, all entities depend
only on the process and its Hankel matrix (which depends on the law of the
process), and not on the specific quasi-realization. Moreover, the fact that
I, J are not unique is not important.
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Now look at the matrix FI,J , and express it in terms of the two quasi-
realizations. By definition,

FI,J =

 fi1j1 . . . fi1jr
...

...
...

firj1 . . . firjr

 .
Now, since we are given two quasi-realizations, the relationship (10.34) holds
for each quasi-realization. Hence

FI,J =


θsD

(i1)
s

...

θsD
(ir)
s

 [D(j1)
s φs . . . D

(jr)
s φs], for s = 1, 2.

Define

Ps :=


θsD

(i1)
s

...

θsD
(ir)
s

 , Qs := [D(j1)
s φs . . . D

(jr)
s φs], for s = 1, 2.

Then FI,J = P1Q1 = P2Q2. Since FI,J is nonsingular, so are P1, Q1, P2, Q2.
Moreover,

P−1
2 P1 = Q2Q

−1
1 =: T, say.

Next, fix u ∈M and consider the r× r matrix F
(u)
I,J . We have from (10.34)

that

F
(u)
I,J = P1D

(u)
1 Q1 = P2D

(u)
2 Q2.

Hence

D
(u)
2 = P−1

2 P1D
(u)
1 Q1Q

−1
2 = TD

(u)
1 T−1, ∀u ∈M.

Finally, we can factor the entire matrix H as

H = [θsD
(u)
s ,u ∈M∗ in flo][D(v)

s φs,v ∈M∗ in llo], s = 1, 2,

where

D(u) := D(u1) . . . D(ul), l = |u|,
and D(v) is defined similarly. Note that the first matrix in the factorization
of H has r columns and infinitely many rows, while the second matrix has r
rows and infinitely many columns. Thus there exists a nonsingular matrix,
say S, such that

[θ2D
(u)
2 ,u ∈M∗ in flo] = [θ1D

(u)
1 ,u ∈M∗ in flo]S−1,

and

[D
(v)
2 φ2,v ∈M∗ in llo] = S[D

(v)
1 φ1,v ∈M∗ in llo].

Choosing u = i1, . . . , ir and v = j1, . . . , jr shows that in fact S = T . Finally,
choosing u = v = ∅ shows that

θ2 = θ1T
−1, φ2 = Tφ1.
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We conclude this section with an example from [37] of a regular quasi-
realization that does not correspond to a regular realization.

Let n = 4, and define the 4× 4 ‘state transition matrix’

A =


λ1 0 0 1− λ1

0 −λ2 0 1 + λ2

0 0 −λ3 1 + λ3

1− λ1 c(1 + λ2) −c(1 + λ3) λ1 + c(λ3 − λ2)

 ,
as well as the ‘output matrix’

B =


1 0
1 0
1 0
0 1

 .
It is easy to see that Ae4 = e4, that is, the matrix A is ‘stochastic.’ Similarly
Be2 = e2 and so B is stochastic (without quotes). Let bi denote the i-th
column of B, and let Diag(bi) denote the diagonal 4 × 4 matrix with the
elements of bi on the diagonal. Let us define

C(1) = ADiag(b1) =


λ1 0 0 0
0 −λ2 0 0
0 0 −λ3 0

1− λ1 c(1 + λ2) −c(1 + λ3) 0

 ,

C(2) = ADiag(b2) =


0 0 0 1− λ1

0 0 0 1 + λ2

0 0 0 1 + λ3

0 0 0 λ1 + c(λ3 − λ2)

 .
Then C(1) + C(2) = A. Note that

x = [0.5 0.5c − 0.5c 0.5]

is a ‘stationary distribution’ of A; that is, xA = x. With these preliminaries,
we can define the ‘quasi-frequencies’

fu = xC(u1) . . . C(ul)e4,

where u = u1 . . . ul. Because x and e4 are respectively row and column eigen-
vectors of A corresponding to the eigenvalue one, these quasi-frequencies sat-
isfy the consistency conditions (10.1) and (10.2). Thus, in order to qualify
as a quasi-realization, the only thing missing is the property that fu ≥ 0 for
all strings u.

This nonegativity property is established in [37] using a Markov chain
analogy, and is not reproduced here. All the frequencies will all be nonneg-
ative provided the following inequalities are satisfied:

0 < λi < 1, i = 1, 2, 3;λ1 > λi, i = 2, 3; 0 < c < 1,

λ1 + c(λ3 − λ2) > 0; (1− λ1)k > c(1 + λi)
k, i = 2, 3, k = 1, 2.
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One possible choice (given in [37]) is

λ1 = 0.5, λ2 = 0.4, λ3 = 0.3, c = 0.06.

Thus the above is a quasi-realization.
To test whether this quasi-realization can be made into a realization (with

nonnegative elements), we can make use of Theorem 10.9. All possible quasi-
realizations of this process can be obtained by performing a similarity trans-
formation on the above quasi-realization. Thus there exists a regular real-
ization (not quasi-realization) of this process if and only if there exists a
nonsingular matrix T such that xT−1, TC(i)T−1, Te4 are all nonnegative.
This can in turn be written as the feasibility of a linear program, namely:

πT = x;TC(i) = M (i)T, i = 1, 2;Te4 = e4;M (i) ≥ 0, i = 1, 2;π ≥ 0.

It can be readily verified that the above linear program is not feasible, so that
there is no regular realization for this process, only regular quasi-realizations.

As pointed out above, it is possible to check in polynomial time whether
a given regular quasi-realization can be converted into a regular realization
of a stationary process. There is a related problem that one can examine,
namely: Suppose one is given a triplet {x, C(u), u ∈ M,y} with compatible
dimensions. The problem is to determine whether the triple product

fu := xC(u)y = xC(u1) · · ·C(ul)y ≥ 0 ∀u ∈Ml, ∀l.
This problem can be viewed as one of deciding whether a given rational
power series always has nonnegative coefficients. This problem is known to
be undecidable; see [94], Theorem 3.13. Even if m = 2, the above problem
is undecidable if n ≥ 50, where n is the size of the vector x. The arguments
of [21] can be adapted to prove this claim.4 Most likely the problem remains
undecidable even if we add the additional requirements that

x

[∑
u∈M

C(u)

]
= x,

[∑
u∈M

C(u)

]
y = y,

because the above two conditions play no role in determining the nonneg-
ativity or otherwise of the ‘quasi-frequencies’ fu, but serve only to assure
that these quasi-frequencies are consistent.

10.5 SPECTRAL PROPERTIES OF ALPHA-MIXING PROCESSES

In this section, we add the assumption that the finite Hankel rank process
under study is also α-mixing, and show that the regular quasi-realizations
have an additional property, namely: The matrix that plays the role of the

4Thanks to Vincent Blondel for these references.
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state transition matrix in the HMM has a spectral radius of one, this eigen-
value is simple, and all other eigenvalues have magnitude strictly less than
one. This property is referred to as the ‘quasi strong Perron property.’ As a
corollary, it follows that if an α-mixing process has a regular realization (and
not just a quasi-realization), then the underlying Markov chain is irreducible
and aperiodic.

We begin by reminding the reader about the notion of α-mixing. Suppose
the process {Yt} is defined on the probability space (S,Ω), where Ω is a
σ-algebra on the set S. For each pair of indices s, t with s < t, define Σts
to be the σ-algebra (a subalgebra of Ω) generated by the random variables
Ys, . . . ,Yt. Then the α-mixing coefficient α(l) of the process {Yt} is
defined as

α(l) := sup
A∈Σt

0,B∈Σ∞t+l

|P (A ∩B)− P (A)P (B)|.

The process {Yt} is said to be α-mixing if α(l)→ 0 as l→∞. Note that in
the definition above, A is an event that depends strictly on the ‘past’ random
variables before time t, whereas B is an event that depends strictly on the
‘future’ random variables after time t+ l. If the future were to be completely
independent of the past, we would have P (A ∩ B) = P (A)P (B). Thus the
α-mixing coefficient measures the extent to which the future is independent
of the past.

Remark: As will be evident from the proofs below, actually we do not
make use of the α-mixing property of the process {Yt}. Rather, what is
needed is that ∑

w∈Ml

fuwv → fufv as l→∞, ∀u,v ∈Mk, (10.53)

where k is the fixed integer arising from the finite Hankel rank condition.
Since the process assumes values in a finite alphabet, (10.53) is equivalent
to the condition

max
A∈Σk

1 ,B∈Σ2k
l+k+1

|P (A ∩B)− P (A)P (B)| → 0 as l→∞. (10.54)

To see this, suppose that (10.54) holds, and choose A to be the event
(y1, . . . , yk) = u, and similarly, chooseB to be the event (yl+k+1, . . . , yl+2k) =
v, for some u,v ∈Mk. Then it is clear that A∩B is the event that a string
of length l + 2k begins with u and ends with v. Thus

P (A) = fu, P (B) = fv, P (A ∩B) =
∑

w∈Ml

fuwv.

Hence (10.54) implies (10.53). To show the converse, suppose (10.53) holds.
Then (10.54) also holds for elementary events A and B. Since k is a fixed
number and the alphabet of the process is finite, both of the σ-algebras
Σk1 , Σ2k

l+k+1 are finite unions of elementary events. Hence (10.53) is enough
to imply (10.54). It is not known whether (10.54) is strictly weaker than
α-mixing for processes assuming values over a finite alphabet.

Now we state the main result of this section.
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Theorem 10.10 Suppose the process {Yt} is α-mixing and has finite Hankel
rank r. Let {r,x,y, C(u), u ∈ M} be any regular quasi-realization of the
process, and define

S :=
∑
u∈M

C(u).

Then Sl → yx as l → ∞, ρ(S) = 1, ρ(S) is a simple eigenvalue of S, and
all other eigenvalues of S have magnitude strictly less than one.

This theorem can be compared with [6], Theorem 4, p. 94.
Proof: It is enough to prove the theorem for the particular quasi-realization

{r, θ, φ,D(u), u ∈ M} defined in (10.35). This is because there exists a non-
singular matrix T such that C(u) = T−1D(u)T for all u, and as a result the
matrices

∑
u∈M C

(u) and
∑
u∈MD

(u) have the same spectrum. The α-mixing
property implies that, for each i ∈ I, j ∈ J , we have∑

w∈Ml

fiwj → fifj as l→∞. (10.55)

This is a consequence of (10.53) since both I and J are subsets of Mk. Now
note that, for each fixed w ∈Ml, we have from (10.34) that

[fiwj, i ∈ I, j ∈ J ] = F
(w)
I,J = D(w)FI,J , (10.56)

where, as per earlier convention, we write

D(w) := D(w1) . . . D(wl).

It is clear that ∑
w∈Ml

D(w) =

[∑
u∈M

D(u)

]l
= Sl. (10.57)

Now (10.55) implies that∑
w∈Ml

[fiwj, i ∈ I, j ∈ J ]→ [fi, i ∈ I][fj, j ∈ J ] =: FI,0F0,J ,

where FI,0 is an r-dimensional column vector and F0,J is an r-dimensional
row vector. Moreover, combining (10.56) and (10.57) shows that

SlFI,J → FI,0F0,J ,

and since FI,J is nonsingular, that

Sl → FI,0F0,JF
−1
I,J = φθ as l→∞.

So the conclusion is that Sl approaches φθ, which is a rank one matrix, as
l → ∞. Moreover, this rank one matrix has one eigenvalue at one and the
rest at zero. To establish this, we show that

F0,JF
−1
I,JFI,0 = 1.
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This is fairly straight-forward. Note that F0,JF
−1
I,J = θ and FI,0 = φ as

defined in (10.35). Then taking u to be the empty string in (10.34) (and of
course, substituting x = θ,y = φ) shows that θφ = 1, which is the desired
conclusion. Let A denote the rank one matrix

A := FI,0F0,JF
−1
I,J .

Then Sl → A as l→∞. Suppose the spectrum of the matrix S is {λ1, . . . , λn},
where n = mk, and |λ1| = ρ(S). Then, since the spectrum of Sl is precisely
{λl1, . . . , λln}, it follows that

{λl1, . . . , λln} → {1, 0, . . . , 0} as l→∞.
Here we make use of the facts that A is a rank one matrix, and that its
spectrum consists of n−1 zeros plus one. This shows that S has exactly one
eigenvalue on the unit circle, namely at λ = 1, and the remaining eigenvalues
are all inside the unit circle.

Corollary 10.11 Suppose a stationary process {Yt} is α-mixing and has
a regular realization. Then the underlying Markov chain is aperiodic and
irreducible.

Proof: Suppose that the process under study has a regular realization
(and not just a regular quasi-realization). Let A denote the state transition
matrix of the corresponding Markov process {Xt}. From Theorem 10.9, it
follows that A is similar to the matrix S defined in Theorem 10.10. Moreover,
if the process {Yt} is α-mixing, then the matrix A (which is similar to
S) satisfies the strong Perron property. In other words, it has only one
eigenvalue on the unit circle, namely a simple eigenvalue at one. Hence the
Markov chain {Xt} is irreducible and aperiodic.

10.6 ULTRA-MIXING PROCESSES AND THE EXISTENCE OF

HMM’S

In the previous two sections, we studied the existence of quasi-realizations.
In this section, we study the existence of ‘true’ (as opposed to quasi) real-
izations. We introduce a new property known as ‘ultra-mixing’ and show
that if a process has finite Hankel rank, and is both α-mixing as well as
ultra-mixing, then modulo a technical condition it has a HMM where the
underlying Markov chain is itself α-mixing (and hence aperiodic and irre-
ducible) or else satisfies a ‘consistency condition.’ The converse is also true,
modulo another technical condition.

The material in this section is strongly influenced by [6]. In that paper,
the author begins with the assumption that the stochastic process under
study is generated by an irreducible HMM (together with a few other as-
sumptions), and then gives a constructive procedure for constructing an
irreducible HMM for the process. Thus the paper does not give a set of con-
ditions for the existence of a HMM in terms of the properties of the process
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under study . Moreover, even with the assumptions in [6], the order of the
HMM constructed using the given procedure can in general be much larger
than the order of the HMM that generates the process in the first place.
In contrast, in the present paper we give conditions explicitly in terms of
the process under study, that are sufficient to guarantee the existence of an
irreducible HMM. However, the proof techniques used here borrow heavily
from [6].

10.6.1 Constructing a Hidden Markov Model

We begin with a rather ‘obvious’ result that sets the foundation for the
material to follow.

Lemma 10.12 Suppose {Yt} is a stationary process over a finite alphabet
M. Then the process {Yt} has a ‘joint Markov process’ HMM if and only
if there exist an integer n, a stochastic row vector h, and n× n nonnegative
matrices G(1), . . . , G(m) such that the following statements are true.

1. The matrix Q :=
∑
u∈MG(u) is stochastic, in that each of its rows adds

up to one. Equivalently, en is a column eigenvector of Q corresponding
to the eigenvalue one.

2. h is a row eigenvector h of Q corresponding to the eigenvalue one, i.e.,
hQ = h.

3. For every u ∈M∗, we have

fu = hG(u1) · · ·G(ul)en,

where l = |u|.

In this case there exists a Markov process {Xt} evolving over N := {1, . . . , n}
such that the joint process {(Xt,Yt)} is a Type 3 HMM.

Proof: One half of this lemma has already been proven in the course of
proving Theorem 10.1. Suppose {Yt} has a ‘joint Markov process’ HMM
model. Let {Xt} denote the associated Markov process. Define the matrices
M (1), . . . ,M (m) as in (9.6). and let π denote the stationary distribution
of the process {Xt}. Then it is clear that the conditions of the lemma are
satisfied with h = π and G(u) = M (u) for each u ∈M.

To prove the converse, suppose h, G(1), . . . , G(m) exist that satisfy the
stated conditions. Let {Zt} be a stationary Markov process with the state
transition matrix

AZ :=

 G(1) G(2) . . . G(m)

...
...

...
...

G(1) G(2) . . . G(m)

 .
and the stationary distribution

πZ = [hG(1)| . . . |hG(m)].
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To show that πZ is indeed a stationary distribution of AZ , partition πZ
in the obvious fashion as [π1 . . . πm], and observe that πv = hG(v). Then,
because of the special structure of the matrix AZ , in order to be a station-
ary distribution of the Markov chain, the vector πZ needs to satisfy the
relationship [∑

v∈M
πv

]
·G(u) = πu. (10.58)

Now observe that [∑
v∈M

πv

]
= h

∑
v∈M

G(v) = hQ = h.

Hence the desired relationship (10.58) follows readily. Now the stationary
distribution of the Xt process is clearly

∑
v∈M hG(v) = h. Hence, by the

formula (10.3), it follows that the frequencies of the Yt process are given by

fu = hG(u1) · · ·G(ul)en.

This is the desired conclusion.

10.6.2 The Consistency Condition

Before presenting the sufficient condition for the existence of a HMM, we
recall a very important result from [6]. Consider a ‘joint Markov process’
HMM where the associated matrix A (the transition matrix of the {Xt}
process) is irreducible. In this case, it is well known and anyway rather
easy to show that the state process {Xt} is α-mixing if and only if the
matrix A is aperiodic in addition to being irreducible. If A is aperiodic (so
that the state process is α-mixing), then the output process {Yt} is also
α-mixing. However, the converse is not always true. It is possible for the
output process to be α-mixing even if the state process is not. Theorem 5 of
[6] gives necessary and sufficient conditions for this to happen. We reproduce
this important result below.

Suppose a ‘joint Markov process’ HMM has n states and that the state
transition matrix A is irreducible. Let π denote the unique positive sta-
tionary probability distribution of the Xt process. As in (9.6), define the
matrices M (u), u ∈M by

m
(u)
ij = Pr{X1 = j&Y1 = u|X0 = i}, 1 ≤ i, j ≤ n, u ∈M.

Let p denote the number of eigenvalues of A on the unit circle (i.e., the period
of the Markov chain). By renumbering the states if necessary, rearrange A
so that it has the following cyclic form:

A =


0 0 . . . 0 A1

Ap 0 . . . 0 0
0 Ap−1 . . . 0 0
...

...
...

...
...

0 0 . . . A2 0

 , (10.59)
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where all blocks have the same size (n/p)× (n/p) (which clearly implies that
p is a divisor of n). The matrices M (u) inherit the same zero block structure

as A; so the notation M
(u)
i is unambiguous. For a string u ∈Ml, define

M
(u)
i := M

(u1)
i M

(u2)
i+1 . . .M

(ul)
i+l−1,

where the subscripts on M are taken modulo p. Partition π into p equal
blocks, and label them as π1 through πp.

Theorem 10.13 The output process {Yt} is α-mixing if and only if, for
every string u ∈M∗, the following ‘consistency conditions’ hold:

π1M
(u)
1 e(n/p) = π2M

(u)
p e(n/p) = π3M

(u)
p−1e(n/p) = . . . = πpM

(u)
2 e(n/p) =

1

p
πM (u)en.

(10.60)

For a proof, see [6], Theorem 5.

10.6.3 The Ultra-Mixing Property

In earlier sections, we studied the spectrum of various matrices under the
assumption that the process under study is α-mixing. For present purposes,
we introduce a different kind of mixing property.

Definition 10.14 Given the process {Yt}, suppose it has finite Hankel rank,
and let k denote the unique integer defined in Lemma 10.5. Then the process
{Yt} is said to be ultra-mixing if there exists a sequence {δl} ↓ 0 such that∣∣∣∣fiufu − fiuv

fuv

∣∣∣∣ ≤ δl, ∀i ∈Mk,u ∈Ml,v ∈M∗. (10.61)

Note that, the way we have defined it here, the notion of ultra-mixing is
defined only for processes with finite Hankel rank.

In [64], Kalikow defines a notion that he calls a ‘uniform martingale,’
which is the same as an ultra-mixing stochastic process. He shows that a
stationary stochastic process over a finite alphabet is a uniform martingale if
and only if it is also a ‘random Markov process,’ which is defined as follows:
A process {(Yt, Nt)} where Yt ∈ M and Nt is a positive integer (natural
number) for each t is said to be a ‘random Markov process’ if (i) The process
{Nt} is independent of the {Yt} process, and (ii) for each t, we have

Pr{Yt|Yt−1,Yt−2, . . .} = Pr{Yt|Yt−1,Yt−2, . . . ,Yt−Nt
}.

Observe that if Nt equals a fixed integer N for all t, then the above condition
says that {Yt} is an N -step Markov process. Hence a ‘random Markov
process’ is an Nt-step Markov process where the length of the ‘memory’ Nt
is itself random and independent of Yt. One of the main results of [64] is
that the ultra-mixing property is equivalent to the process being random
Markov. However, the random Markov property seems to be quite different
in spirit from a process having a HMM.
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The ultra-mixing property can be interpreted as a kind of long-term inde-
pedence. It says that the conditional probability that a string begins with
i, given the next l entries, is just about the same whether we are given just
the next l entries, or the next l entries as well as the still later entries. This
property is also used in [6]. It does not appear straight-forward to relate
ultra-mixing to other notions of mixing such as α-mixing. This can be seen
from the treatment of [6], Section 11, where the author assumes (in effect)
that the process under study is both ultra-mixing as well as α-mixing.

10.6.4 The Main Result

Starting with the original work of Dharmadhikari [38], ‘cones’ have played
a central role in the construction of HMM’s. The present paper continues
that tradition. Moreover, cones also play an important role in the so-called
positive realization problem. Hence it is not surprising that the conditions
given here also borrow a little bit from positive realization theory. See [16]
for a survey of the current status of this problem.

Recall that a set S ⊆ Rr is said to be a ‘cone’ if x,y ∈ S ⇒ αx + βy ∈
S ∀α, β ≥ 0. The term ‘convex cone’ is also used to describe such an
object. Given a (possibly infinite) set V ⊆ Rr, the symbol Cone(V) denotes
the smallest cone containing V, or equivalently, the intersection of all cones
containing V. If V = {v1, . . . ,vn} is a finite set, then it is clear that

Cone(V) = {
n∑
i=1

αivi : αi ≥ 0 ∀i}.

In such a case, Cone(V) is said to be ‘polyhedral’ and v1, . . . ,vn are said
to be ‘generators’ of the cone. Note that, in the way we have defined the
concept here, the generators of a polyhedral cone are not uniquely defined. It
is possible to refine the definition; however, the above definition is sufficient
for the present purposes. Finally, given a cone C (polyhedral or otherwise),
the ‘polar cone’ Cp is defined by

Cp := {y ∈ Rr : ytx ≥ 0 ∀x ∈ C}.
It is easy to see that Cp is also a cone, and that C ⊆ (Cp)p.

Next, we introduce two cones that play a special role in the proof. Suppose
as always that the process under study has finite Hankel rank, and define
the integer k as in Lemma 10.5. Throughout, we use the quasi-realization
{r, θ, φ,D(u)} defined in (10.35). Now define

Cc := Cone{D(u)φ : u ∈M∗},

Co := {y ∈ Rr : θD(v)y ≥ 0, ∀v ∈M∗}.
The subscripts o and c have their legacy from positive realization theory,
where Cc is called the ‘controllability cone’ and Co is called the ‘observability
cone.’ See for example [16]. However, in the present context, we could have
used any other symbols. Note that from (10.34) and (10.35) we have

θD(v)D(u)φ = fuv ≥ 0, ∀u,v ∈M∗.
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Hence D(u)φ ∈ Co ∀u ∈ M∗, and as a result Cc ⊆ Co. Moreover, both Cc
and Co are invariant under D(w) for each w ∈M. To see this, let w ∈M be
arbitrary. Then D(w)D(u)φ = D(wu)φ, for all u ∈M∗. Hence

D(w)Cc = Cone{D(wu)φ : u ∈M∗} ⊆ Cc.

Similarly, suppose y ∈ Co. Then the definition of Co implies that θD(v)y ≥ 0
for all v ∈M∗. Therefore

θD(v)D(w)y = θD(vw)y ≥ 0 ∀v ∈M∗.

Hence D(w)y ∈ Cc. The key difference between Cc and Co is that the former
cone need not be closed, whereas the latter cone is always closed (this is easy
to show).

In order to state the sufficient condition for the existence of a HMM, a few
other bits of notation are introduced. Suppose the process under study has
finite Hankel rank, and let k be the unique integer defined in Lemma 10.5.
Let r denote the rank of the Hankel matrix, and choose subsets I, J ⊆Mk

such that |I| = |J | = r and FI,J has rank r. For each finite string u ∈ M∗,
define the vectors

pu :=
1

fu
F

(u)
I,0 = [fiu/fu, i ∈ I] ∈ [0, 1]r×1, qu :=

1

fu
F

(u)
0,J = [fuj/fu, j ∈ J ] ∈ [0, 1]1×r.

The interpretation of pu is that the i-th component of this vector is the
conditional probability, given that the last part of a sample path consists of
the string u, that the immediately preceding k symbols are i. The vector qu

is interpreted similarly. The j-th component of this vector is the conditional
probability, given that the first part of a sample path consists of the string
u, that the next k symbols are j.

Lemma 10.15 Let ‖ · ‖ denote the `1-norm on Rr. Then there exists a
constant γ > 0 such that

γ ≤ ‖pu‖ ≤ 1, γ ≤ ‖qu‖ ≤ 1, ∀u ∈M∗.

Proof: Note that the vector [fiu/fu, i ∈ Mk] is a probability vector, in
the sense that its components are nonnegative and add up to one. Hence
this vector has `1-norm of one. Since pu is a subvector of it, it follows that
‖pu‖ ≤ 1. On the other hand, we have

[fiu/fu, i ∈Mk] = Upu, ∀u ∈M∗,

and U has full column rank. Hence ‖pu‖ is bounded away from zero inde-
pendently of u. Similar arguments apply to qu.

The vectors pu and qu satisfy some simple recurrence relationships.

Lemma 10.16 Suppose u,v ∈M∗. Then

D(u)pv =
fuv
fv

puv, quC
(v) =

fuv
fu

quv.
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Proof: From Lemmas 10.6 and 10.7, it follows that

F
(v)
I,0 = F

(v)
I,k emk = D(v)FI,JV emk = D(v)φ, ∀v ∈M∗.

This shows that

pv =
1

fv
F

(v)
I,0 =

1

fv
D(v)φ.

Hence, for arbitrary u,v ∈M∗, we have

D(u)pv =
1

fv
D(u)D(v)φ =

1

fv
D(uv)φ =

fuv
fv

puv.

The proof in the case of qv is entirely similar.
Now let us consider the countable collection of probability vectors A :=
{pu : u ∈M∗}. Since pu equals D(u)φ within a scale factor, it follows that
Cc = Cone(A). Moreover, since A ⊆ Cc ⊆ Co and Co is a closed set, it follows
that the set of cluster points of A is also a subset of Co.5 Finally, it follows
from Lemma 10.15 that every cluster point of A has norm no smaller than
γ.

Now we state the main result of this section.

Theorem 10.17 Suppose the process {Yt} satisfies the following conditions:

1. It has finite Hankel rank.

2. It is ultra-mixing.

3. It is α-mixing.

4. The cluster points of the set A of probability vectors are finite in num-
ber and lie in the interior of the cone Co.

Under these conditions, the process has an irreducible ‘joint Markov pro-
cess’ hidden Markov model. Moreover the HMM satisfies the consistency
conditions (10.60).

Remark: Among the hypotheses of Theorem 10.17, Conditions 1 through
3 are ‘real’ conditions, whereas Condition 4 is a ‘technical’ condition.

The proof proceeds via two lemmas. The first lemma gives insight into
the behaviour of the matrix D(u) as |u| → ∞. To put these lemmas in
context, define the matrix S =

∑
u∈MD(u). Then by Theorem 10.10, we

know that if the process {Yt} is α-mixing, then Sl approaches a rank one
matrix as l→∞. In the present case it is shown that, if the process is ultra-
mixing, then each individual matrix D(u) approaches a rank one matrix as
|u| → ∞. This result has no counterpart in earlier literature and may be of
independent interest.

5Recall that a vector y is said to be a ‘cluster point’ of A if there exists a sequence in
A, no entry of which equals y, converging to y. Equivalently, y is a cluster point if A if
every neighbourhood of y contains a point of A not equal to y.
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Lemma 10.18 Let ‖ · ‖ denote both the `1-norm of a vector in Rmk

as well
as the corresponding induced norm on the set of mk×mk matrices. Suppose
the process {Yt} is ultra-mixing. Define

bU := etmkU ∈ R1×r.

Then

‖ 1

fu
D(u) − 1

fu
pubUD

(u)‖ ≤ rδ|u|‖F−1
I,J‖, (10.62)

where {δl} is the sequence in the definition of the ultra-mixing property, and
|u| denotes the length of the string u.

Proof: If we substitute j for v in (10.61), we get∣∣∣∣fiufu − fiuj
fuj

∣∣∣∣ ≤ δ|u|.
For each j ∈ J , we have that fuj/fu ≤ 1. Hence we can multiply both sides
of the above equation by fuj/fu ≤ 1, which gives∣∣∣∣fiufu · fujfu − fiuj

fuj
· fuj
fu

∣∣∣∣ =

∣∣∣∣fiufu · fujfu − fiuj
fu

∣∣∣∣ ≤ δ|u| · fujfu ≤ δ|u|.
Now define the r × r matrix R(u) by

(R(u))ij :=
fiu
fu
· fuj
fu
− fiuj

fu
.

Then (see for example [109])

‖R(u)‖ = max
j∈Mk

∑
i∈Mk

|(R(u))ij| ≤ rδ|u|.

Next, note that

R(u) = puqu −
1

fu
D(u)FI,J .

Hence we have established that

‖ 1

fu
D(u)FI,J − puqu‖ ≤ rδ|u|. (10.63)

Therefore

‖ 1

fu
D(u) − puquF

−1
I,J‖ ≤ rδ|u|‖F

−1
I,J‖.

Thus the proof is complete once it is shown that

quF
−1
I,J =

1

fu
bUD

(u).

But this last step is immediate, because

fuquF
−1
I,J = F

(u)
0,J F

−1
I,J = etmkUF

(u)
I,J F

−1
I,J == etmkUD

(u)FI,JF
−1
I,J = bUD

(u).

This completes the proof.
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The reader may wonder about the presence of the factor 1/fu in (10.62).
Obviously, in any reasonable stochastic process, the probability fu approaches
zero as |u| → ∞. Hence, unless we divide by this quantity, we would get
an inequality that is trivially true because both quantities individually ap-
proach zero. In contrast, (10.63) shows that the matrix (1/fu)D(u) is both
bounded and bounded away from zero for all u ∈M∗.

Thus Lemma 10.18 serves to establish the behaviour of the matrix D(u)

as |u| → ∞. Whatever be the vector x ∈ Rr, the vector (1/fu)D(u)x
approaches (1/fu)pubUD

(u)x and thus eventually gets ‘aligned’ with the
vector pu as |u| → ∞.

Lemma 10.19 Suppose the process under study is ultra-mixing, and that
the cluster points of the probability vector set A are finite in number and
belong to the interior of the cone Cc. Then there exists a polyhedral cone P
such that

1. P is invariant under each D(u),u ∈M.

2. Cc ⊆ P ⊆ Co.

3. φ ∈ P.

4. θt ∈ Pp.

Remark: In some sense this is the key lemma in the proof of the main
theorem. It is noteworthy that the hypotheses do not include the assumption
that the process under study is α-mixing.

Proof: First, note that, given any ε > 0, there exists an L = L(ε) such
that the following is true: For each w ∈ M∗ with |w| > L, write w = uv
with |u| = L. Then ‖pw − pu‖ ≤ ε. To see this, given ε > 0, choose L such
that δL ≤ ε/mk. Then (10.61) implies that ‖pu − pw‖ ≤ ε.

By assumption, the set of probability vectors A := {pu : u ∈ Mk} has
only finitely many cluster points. Let us denote them as x1, . . . ,xn. By
assumption again, each of these vectors lies in the interior of Co. Hence
there exists an ε > 0 such that the sphere (in the `1-norm) centered at each
xi of radius 2ε is also contained in Co.

Next, note that there exists an integer L such that every vector pu with
|u| ≥ L lies within a distance of ε (in the `1-norm) from at least one of the
xi. In other words, there exists an integer L such that

min
1≤i≤n

‖pu − xi‖ ≤ ε, ∀u ∈Ml with l > L.

To see why this must be so, assume the contrary. Thus there exists a se-
quence puj such that ‖puj − xi‖ > ε for all i, j. Now the sequence {puj}
is bounded and therefore has a convergent subsequence. The limit of this
convergent subsequence cannot be any of the xi by the assumption that
‖puj

−xi‖ > ε for all i, j. This violates the earlier assumption that x1, . . . ,xn
are all the cluster points of the set A.
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Now choose a set z1, . . . , zr of basis vectors for Rr such that each zj has
unit norm. For instance, we can take zj to be the unit vector with a 1 in
position j and zeros elsewhere. With ε already defined above, define the unit
vectors

y+
i,j :=

xi + 2εzj
‖xi + 2εzj‖

, y−i,j :=
xi − 2εzj
‖xi − 2εzj‖

, 1 ≤ i ≤ n, 1 ≤ j ≤ s.

With this definition, it is clear that every vector in the ball of radius 2ε
centered at each xi can be written as a nonnegative combination of the set
of vectors {y+

i,j ,y
−
i,j}.

Now define the cone

B := Cone{y+
i,j ,y

−
i,j}.

We begin by observing that pu ∈ B whenever |u| ≥ L. This is because each
such pu lies within a distance of ε from one of the xi whenever |u| ≥ L. In
particular, pu ∈ B whenever |u| = L. Moreover, by (10.1) and (10.2), every
pv with |v| < L is a nonnegative combination of pu with |u| = L. To see
this, let s := L− |v|, and note that

fvpv = F
(v)
I,0 =

∑
w∈Ms

F
(vw)
I,0 ,

and each vector F
(vw)
I,0 belongs to B. Hence pu ∈ B whenever |u| < L.

Combining all this shows that pu ∈ B for all u ∈M∗. As a result, it follows
that Cc ⊆ B.

While the cone B is polyhedral, it is not necessarily invariant under each
D(u). For the purpose of constructing such an invariant cone, it is now
shown that B is invariant under each D(u) whenever |u| is sufficiently long.
By Lemma 10.18, it follows that for every vector y, the vector (1/fu)D(u)y
gets ‘aligned’ with pu as |u| becomes large. Therefore it is possible to choose
an integer s such that

‖ ‖pu‖
‖D(u)y‖

D(u)y − pu‖ ≤ ε whenever |u| ≥ s,

whenever y equals one of the 2nr vectors y+
i,j ,y

−
i,j . Without loss of generality

it may be assumed that s ≥ L. In particular, the vectors D(u)y+
i,j and

D(u)y−i,j , after normalization, are all within a distance of ε from pu, which
in turn is within a distance of ε from some xt. By the triangle inequality, this
implies that the normalized vectors corresponding to D(u)y+

i,j and D(u)y−i,j
are all within a distance of 2ε from some xt, and hence belong to B. In other
words, we have shown that

D(u)B ⊆ B ∀u with |u| ≥ s.

Now we are in a position to construct the desired polyhedral cone P.
Define

Bi := {D(u)B : |u| = i}, 1 ≤ i ≤ s− 1.
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Thus Bi is the set obtained by multiplying each vector in B by a matrix of
the form D(u) where u has length precisely i. It is easy to see that, since B
is polyhedral, so is each Bi. Now define

P := Cone{B,B1, . . . ,Bs−1}.
For this cone, we establish in turn each of the four claimed properties.

Property 1: By definition we have that D(u)Bi ⊆ Bi+1 ∀u ∈ M, when-
ever 0 ≤ i ≤ s− 2, and we take B0 = B. On the other hand, D(u)Bs−1 ⊆ B
as has already been shown. Hence P is invariant under D(u) for each u ∈M.

Property 2: We have already seen that pu ∈ B for all u ∈ M∗. Hence
Cc = Cone{pu : u ∈ M∗} ⊆ B ⊆ P. To prove the other containment, note
that by assumption, the sphere of radius 2ε centered at each cluster point
xi is contained in Co. Hence B ⊆ Co. Moreover, Co is invariant under D(u)

for each u ∈M. Hence Bi ⊆ Co for each i ∈ {1, . . . , s− 1}. Finally P ∈ Co.
Property 3: Note that each pu belongs to B, which is in turn a subset

of P. In particular, φ = p∅ ∈ P.
Property 4: Since P ⊆ Co, it follows that (P)p ⊇ (Co)p. Hence it is

enough to show that θt ∈ (Co)p. But this is easy to establish. Let y ∈ Co be
arbitrary. Then by the definition of Co we have that

θD(u)y ≥ 0 ∀u ∈M∗ ∀y ∈ Co.
In particular, by taking u to be the empty string (leading to D(u) = I), it
follows that θy ≥ 0 ∀y ∈ Co. Since y is arbitrary, this shows that θt ∈ (Co)p.

Proof of Theorem 10.17: The proof of the main theorem closely fol-
lows the material in [6], pp. 117-119. Let us ‘recycle’ the notation and let
y1, . . . ,ys denote generators of the polyhedral cone P. In other words, P
consists of all nonnegative combinations of the vectors y1, . . . ,ys. Note that
neither the integer s nor the generators need be uniquely defined, but this
does not matter. Define the matrix

Y := [y1| . . . |ys] ∈ Rm
k×s.

Then it is easy to see that

P = {Y x : x ∈ Rs+}.
Now we can reinterpret the four properties of Lemma 10.19 in terms of this
matrix. Actually we need not bother about Property 2.

Property 1: Since P is invariant under D(u) for each u ∈ M, it follows
that each D(u)yi is a nonnegative combination of y1, . . . ,ys. Hence there

exist nonnegative matrices G(u) ∈ Rs×m
k

+ , u ∈M such that

D(u)Y = Y G(u), ∀u ∈M.

Property 3: Since φ ∈ P, there exists a nonnegative vector z ∈ Rs+ such
that

φ = Y z.

Property 4: Since θ ∈ Pp, we have in particular that θyi ≥ 0 for all i.
Hence

h := θY ∈ Rs+.
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Moreover, h 6= 0, because θφ = hz = 1, the frequency of the empty string.
With these observations, we can rewrite the expression for the frequency

of an arbitrary string u ∈M∗. We have

fu = θD(u1) · · ·D(ul)φ

= θD(u1) · · ·D(ul)Y z

= θD(u1) · · ·D(ul−1)Y G(ul)z = · · ·
= θY G(u1) · · ·G(ul)z

= hG(u1) · · ·G(ul)z (10.64)

The formula (10.64) is similar in appearance to (10.34), but with one very
important difference: Every matrix and vector in (10.64) is nonnegative.
Therefore, in order to construct an irreducible HMM from the above formula,
we need to ensure that the matrix Q :=

∑
u∈MG(u) is irreducible and row

stochastic, that h satisfies h = hQ, and that z = es. This is achieved
through a set of three reductions. Note that these reductions are the same
as in [6], pp. 117-119.

Now for the first time we invoke the assumption that the process {Yt}
is α-mixing. From Theorem 10.10, this assumption implies that the matrix
S =

∑
u∈MD(u) has the ‘strong Perron property,’ namely: The spectral

radius of S is one, and one is an eigenvalue of S; moreover, if λ is any
eigenvalue of S besides one, then |λ| < 1. We also know that φ and θ are
respectively a column eigenvector and a row eigenvector of S corresponding
to the eigenvalue one.

Now let us return to the formula (10.64). Define Q :=
∑
u∈MG(u) as

before. Observe that Q is a nonnegative matrix; hence, by [17], Theorem
1.3.2, p. 6, it follows that the spectral radius ρ(Q) is also an eigenvalue.
Moreover, ρ(Q) is at least equal to one, because

hQ = θ
∑
u∈M

Y G(u) = θ

(∑
u∈M

D(u)

)
Y = θY = h.

Here we make use of the fact that θ is a row eigenvector of
∑
u∈MD(u)

corresponding to the eigenvalue one.
In what follows, we cycle through three steps in order to arrive at a sit-

uation where Q is irreducible and row stochastic. In each step we will be
replacing the various matrices by other, smaller matrices that play the same
role. To avoid notational clutter, the old and new matrices are denoted by
the same symbols.

Step 1: If Q is irreducible, go to Step 3. If Q is reducible, permute rows
and columns if necessary and partition Q as

Q =

[
Q11 Q12

0 Q22

]
,

where Q11 is irreducible and has dimension (s − l) × (s − l), and Q22 has
dimension l × l for some l < s. (It is not assumed that Q22 is irreducible,
since an irreducible partition of Q may have more than two ‘blocks.’) Since
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Q =
∑
u∈MG(u) and each G(u) is nonnegative, if we partition each G(u)

commensurately, then the block zero structure of Q will be reflected in each
G(u). Now there are two possibilities: Either ρ(Q11) = 1, or it is not. If
ρ(Q11) = 1, go to Step 2. If ρ(Q11) 6= 1, proceed as follows: Let λ1 =
ρ(Q11) 6= 1. Choose a positive vector x1 ∈ Rs−l+ such that Q11x1 = λ1x1.
(Note that, by [17], Theorem 2.2.10, p. 30, it is possible to choose a strictly
positive eigenvector of Q11 corresponding to the eigenvalue ρ(Q11), since
Q11 is irreducible.) Then clearly Qx = λ1x, where x = [xt1 0t]t. Since
λ1 6= 1, it follows that hx = 0. (Recall that a row eigenvector and a column
eigenvector corresponding to different eigenvalues are orthogonal.) So if we
partition h as [h1 h2], then h1 = 0 since x1 is a positive vector. Now
observe that each G(u) has the same block-triangular structure as Q. Hence,
by a slight abuse of notation, let us define, for every string u ∈M∗,

G(u) =

[
G

(u)
11 G

(u)
12

0 G
(u)
22

]
.

Let us partition z commensurately. Because the first block of h is zero, it is
easy to verify that, for every u ∈M∗, we have

fu = hG(u)z = h2G
(u)
22 z2,

where z2 consists of the last l components of z. Hence we can partition Y
as [Y1|Y2] where Y2 ∈ Rr×l and make the following substitutions:

s← l, Y ← Y2, G
(u) ← G

(u)
22 ∀u ∈M,h← h2, z← z2.

In this way, we have reduced the number of columns of Y from s to r, and
(10.64) continues to hold. Now go back to Step 1.

Step 2: If we have reached this point, then Q is reducible, and if it is
partitioned as above, we have ρ(Q11) = 1. Choose a positive vector x1 such
that Q11 = x1. Then Qx = x, where as before x = [xt1 0t]t. Next, note
that

SY x =

(∑
u∈M

D(u)

)
Y x = Y

(∑
u∈M

G(u)

)
x = Y Qx = Y x.

Hence Y x is a column eigenvector of S corresponding to the eigenvalue one.
However, from Theorem 10.10, the α-mixing property implies that S has a
simple eigenvalue at one, with corresponding column eigenvector φ = FI,0.
Hence FI,0 equals Y x times some scale factor, which can be taken as one
without loss of generality (since both vectors are nonnegative). Partition Y
as [Y1 Y2] where Y1 ∈ Rr×(s−l). Then

FI,0 = [Y1 Y2]

[
x1

0

]
= Y1x1.

Moreover, since each G(u) inherits the zero structure of Q, we have that

D(u)[Y1 Y2] = [Y1 Y2]

[
G

(u)
11 G

(u)
12

0 G
(u)
22

]
.
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In particular, we have that D(u)Y1 = Y1G
(u)
11 . This means that FI,0 lies in

the cone generated by the columns of Y1, and that this cone is invariant
under D(u) for each u ∈ M. So if we define h1 := θY1, then because of the
zero block in x it follows that

fu = θD(u)FI,0 = h1G
(u)
11 x1.

So now we can make the substitutions

s← s− l, Y ← Y1, G
(u) ← G

(u)
11 ,h← h1, z← x1.

With these substitutions we have the relationship (10.64) continues to hold.
In the process, the number of columns of Y has been reduced from s to s− l.
Moreover, the resulting matrix Q is the old Q11, which is irreducible. Now
go to Step 3.

Step 3: When we reach this stage, (10.64) continues to hold, but with
two crucial additional features: Q is irreducible and ρ(Q) = 1. As before,
let s denote the size of the matrix Q, and write z = [z1 . . . zs]

t, where each
zi is positive. Define Z = Diag{z1, . . . , zs}. Now (10.64) can be rewritten as

fu = hZZ−1G(u1)Z · Z−1G(u2)Z . . . Z−1G(ul)Z · Z−1z.

Thus (10.64) holds with the substitutions

G(u) ← Z−1G(u)Z,h← hZ, z← Z−1z.

In this process, Q gets replaced by Z−1QZ. Now observe that

Z−1QZes = Z−1Qz = Z−1z = es.

In other words, the matrix Z−1QZ is row stochastic. It is obviously non-
negative and irreducible. Moreover, we have that hz = 1 since it is the
frequency of the empty string, which by definition equals one. Hence the
row vector hZ−1 is row stochastic in that its entries add up to one. Hence,
after we make the substitutions, (10.64) holds with the additional proper-
ties that (i) Q :=

∑
u∈MG(u) is row-stochastic, (ii) h is row-stochastic and

satisfies h = hQ, and (iii) z = es. Now it follows from Lemma 10.12 that
the process {Yt} has a ‘joint Markov process’ HMM. Moreover, the matrix
Q is irreducible.

Thus far it has been established that the stochastic process {Yt} has an
irreducible HMM. Moreover, this process is assumed to be α-mixing. So
from Theorem 10.13, it finally follows that either the corresponding state
transition matrix is aperiodic, or else the consistency conditions (10.60) hold.

Theorem 10.17 gives sufficient conditions for the existence of an irreducible
HMM that satisfies some consistency conditions in addition. It is therefore
natural to ask how close these sufficient conditions are to being necessary.
The paper [6] also answers this question.

Theorem 10.20 Given an irreducible HMM with n states and m outputs,
define its period p. Rearrange the state transition matrix A as in Theorem
10.13, permute the matrices M (u), u ∈ M correspondingly, and define the
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blocks M
(u)
i in analogy with the partition of A. Suppose in addition that

there exists an index q ≤ s such that the following property holds: For every
string u ∈ Mq and every integer r between 1 and p, every column of the

product M
(u1)
r M

(u2)
r+1 . . .M

(uq)
r+q−1 is either zero or else is strictly positive. In

this computation, any subscript Mi is replaced by i mod p if i > p. With this
property, the HMM is α-mixing and also ultra-mixing.

For a proof, see [6], Lemma 2.
Thus we see that there is in fact a very small gap between the sufficiency

condition presented in Theorem 10.17 and the necessary condition discov-
ered earlier in [6]. If the sufficient conditions of Theorem 10.17 are satisfied,
then there exists an irreducible HMM that also satisfies the consistency con-
ditions (10.60). Conversely, if an irreducible HMM satisfies the consistency
conditions (10.60) and one other technical condition, then it satisfies three
out of the four hypotheses of Theorem 10.17, the only exception being the
technical condition about the cluster points lying in the interior of the cone
Cc.

We conclude this section by discussing the nature of the ‘technical’ con-
ditions in the hypotheses of Theorems 10.17 and 10.20. The idea is to show
that, in a suitably defined topology, each of the conditions is satisfied by an
‘open dense subset’ of stochastic processes. Thus, if the given process satis-
fies the condition, so does any sufficiently small perturbation of it, whereas
if a given process fails to satisfy the condition, an arbitrarily small pertur-
bation will cause the condition to hold.

Let us begin with the fourth hypothesis of Theorem 10.13. We follow
[85] and define a topology on the set of all stationary stochastic processes
assuming values in M. Suppose we are given two stochastic processes as-
suming values in a common finite alphabet M. Let fu, gu,u ∈ M∗ denote
the frequency vectors of the two stochastic processes. This is equivalent to
specifying the joint distribution of l-tuples of each stochastic process, for
every integer l. If we arrange all strings u ∈M∗ in some appropriate lexical
ordering (say first lexical), then each of [fu,u ∈M∗], [gu,u ∈M∗] is a vector
with a countable number of components, and each component lies between
0 and 1.6 Let the symbols f ,g, without any subscript, denote these vectors
belonging to `∞. We might be tempted to compare the two stochastic pro-
cesses by computing the norm ‖f−g‖∞. The difficulty with this approach is
that, as the length of the string u approaches infinity, the likelihood of that
sequence will in general approach zero. Thus, in any ‘reasonable’ stochastic
process, the difference fu − gu will approach zero as |u| → ∞, but this tells
us nothing about how close the two probability laws are. To get around this
difficulty, for each u ∈M∗, we define the vector p|u ∈ [0, 1]m as follows:

p|u =
1

fu
fuv,v∈M =

[
fuv
fu

, v ∈M
]
.

6Note that there is a lot of redundancy in this description of a stochastic process be-
cause, as we have already seen, the joint distribution of l-tuples can be uniquely determined
from the joint distribution of s-tuples if s > l.
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Thus p|u is just the conditional distribution of the next symbol, given the
past history u. The advantage of p|u is that, even as |u| becomes large,
the elements of this vector must still add up to one, and as a result they
cannot all go to zero. With this convention, let us list all strings u ∈ M∗
in some appropriate lexical ordering (say first lexical), and for each u let us
define the conditional distribution vectors p|u corresponding to {fu}, and
the conditional distribution vectors q|u corresponding to the vector {gu}.
Finally, let us define the vectors

p̃ := [p|u,u ∈M∗], q̃ := [q|u,u ∈M∗].

Thus both p̃, q̃ have a countable number of components, since M∗ is a
countable set. Thus the `∞ norm of the difference p̃ − q̃ is a measure of
the disparity between the two stochastic processes. This is essentially the
distance measure introduced in [85]. With this measure, it is easy to see
that the fourth hypothesis of Theorem 10.13 is truly technical: If a given
stochastic process satisfies the condition about the cluster points, then so will
any sufficiently small perturbation of it, while if a given stochastic process
fails to satisfy this condition, any sufficiently small perturbation of it will
cause the condition to be satisfied.

Now let us turn to the condition in Theorem 10.20. Given two HMMs
over a common state space, a natural metric is∑

u∈M
‖M (u)

1 −M (u)
2 ‖,

where ‖ · ‖ is any reasonable matrix norm. Again, it is easy to see that the
condition in Theorem 10.20 about the various columns being either iden-
tically zero or strictly positive is ‘technical.’ In fact, if for a HMM some

elements of the matrices M
(u1)
r M

(u2)
r+1 . . .M

(uq)
r+q−1 are zero, then by simply

making an arbitrarily small perturbation in the matrices we can ensure that
every entry is strictly positive.
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Applications to Computational Biology Problems

11.1 GENE-FINDING

11.2 PROTEIN CLASSIFICATION
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