Unions, Intersections, Independence, Conditioning, Bayes' Formula

Outline

- Unions, Intersections
- Independence
- Conditioning
- Bayes' Formula

Prof. Metin Çakanyıldırım used various resources to prepare this document for teaching/training. To use this in your own course/training, please obtain permission from Prof. Çakanyıldırım. If you find any inaccuracies, please contact metin@utdallas.edu for corrections.

- A probability model is a triplet (Ω, \Im, P)
 - Ω : sample space
 - \Im : a σ -field (an appropriate collection of subsets of Ω)
 - » Includes Ω , closed under complement $(\cdot)^c$ and countable union operations \bigcup_{1}^{∞}
 - P: a probability measure that maps sets in \Im to real numbers in [0,1]
- Two events A and B can be thought as two sets $A, B \in \Omega$
 - The new event that happens "when either A or B happens" corresponds to union $A \cup B$
 - The new event that happens "when both A and B happens" corresponds to intersection $A \cap B$
 - » Note that $A \cap B = (A^c \cup B^c)^c \in \mathfrak{I}$ if $A, B \in \mathfrak{I}$.

• The new event that happens "when A does but B does not happen" corresponds to $A \cap B^c$

- $A \cap B^c = A \setminus (A \cap B)$
- Set as a union $A = (A \cap B^c) \cup (A \cap B)$
- Countable additivity $P(A) = P(A \cap B^c) + P(A \cap B)$
- $P(A \cap B^c) = P(A) P(A \cap B)$
- Relating union to intersection
 - Set as a union $A \cup B = (A \cap B^c) \cup (A \cap B) \cup (B \cap A^c)$
 - Countable additivity $P(A \cup B) = P(A \cap B^c) + P(A \cap B) + P(B \cap A^c)$
 - $= P(A) P(A \cap B) + P(A \cap B) + P(B) P(B \cap A)$

$$= P(A) - P(A \cap B) + P(B)$$

 $P(A \cup B \cup C \cup D) = P(A) + P(B) + P(C) + P(D)$ -P(A \cap B) - P(A \cap C) - P(A \cap D) - P(B \cap C) - P(B \cap D) - P(C \cap D) + P(A \cap B \cap C) + P(A \cap B \cap D) + P(A \cap C \cap D) + P(B \cap C \cap D) -P(A \cap B \cap C \cap D)

- Inclusion-exclusion identity for 2, 3, 4, ..., *n* sets
 - Proof for n sets is by induction a matter of getting indices right, see the notes
 - Ex: $P(A^c)=1-P(A)$, from
 - $1 = P(\Omega) = P(A) + P(A^{c}) P(A \cap A^{c}) = P(A) + P(A^{c})$
 - Ex: $A \subseteq B$ implies $P(A) \leq P(B)$, from
 - $P(B) = P(A \cup (B \cap A^c)) = P(A) + P(B \cap A^c) \ge P(A)$

itdallas , əŝed

• Let $S = \{(x, y): 0 \le x, y \le 1\}$ and $T = \{(x, y): 0 \le x, y \le 2, x + y \le \sqrt{2}\}$

• $A_n = 1_{n \text{ is odd}}S + 1_{n \text{ is even}}T$, i.e., an alternating sequence of **S** quares and **T** riangles

- Limit of a Measure: $\lim_{n \to \infty} Area(A_n) = Area(S) = Area(T) = 1$
- Measure of a Limit: $Area\left(\lim_{n\to\infty}A_n\right)$ does not exist
- Measure and Limit operations are not interchangeable!

- Ex: Exchangeability of limit & probability ≡ Probability measure P is continuous, only for specific events
 - i) Inner (from left): For increasing sequence of events A_n , $P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n)$.

utdallas

~metin Page 5

- ii) Outer (from right): For decreasing sequence of events A_n , $P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n)$.

Inner Continuity of Probability Measure

• For increasing sequence of events A_n , $P(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} P(A_n)$.

$$B_1 = A_1$$

$$B_2 = A_2 \setminus A_1$$

$$B_3 = A_3 \setminus A_2$$

$$B_4 = A_4 \setminus A_3$$

or de la construction de la con

 $A_{4} = A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \qquad A_{4} = B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \text{ and } B_{i} \text{'s disjoint}$ $P\left(\lim_{n \to 4} A_{n}\right) = P(\cup_{i=1}^{4} A_{i}) \qquad P\left(\bigcup_{i=1}^{\infty} A_{i}\right) = P(\cup_{i=1}^{\infty} A_{i}) = P(\cup_{i=1}^{\infty} B_{i}) = \sum_{i=1}^{\infty} P(B_{i})$ $P\left(\lim_{n \to \infty} A_{n}\right) = \sum_{i=1}^{\infty} P(B_{i}) = \lim_{n \to \infty} \sum_{i=1}^{n} P(B_{i}) = \lim_{n \to \infty} P(\cup_{i=1}^{n} B_{i}) = \lim_{n \to \infty} P(\bigcup_{i=1}^{n} A_{i}) = \lim_{n \to \infty} P(A_{n})$

Insight: New sets B_i 's are disjoint and allow us to use countable additivity of the probability measure. This takes the limit outside of the probability measure.

For decreasing sequence of events A_n , $P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n)$. Use the previous result $P\left(\lim_{n \to \infty} A_n\right) = P(\bigcap_{i=1}^{\infty} A_i) = 1 - P(\bigcup_{i=1}^{\infty} A_i^c) = 1 - P\left(\lim_{n \to \infty} A_n^c\right) = 1 - \lim_{n \to \infty} P(A_n^c) = 1 - \left(1 - \lim_{n \to \infty} P(A_n)\right)$ $= \lim_{n \to \infty} P(A_n).$

Independence

- Events A and B are independent if $P(A \cap B) = P(A)P(B)$.
- Ex: If A and B are independent, so are their complements: $P(A^c \cap B^c) = P(A^c)P(B^c)$ if $P(A \cap B) = P(A)P(B)$

$$P(A^{c} \cap B^{c}) = P((A \cup B)^{c}) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(A \cap B)$$

= 1 - P(A) - P(B) - P(A)P(B) = (1 - P(A))(1 - P(B))
= P(A^{c})P(B^{c})

- In repeated experiments, each experiment is often independent. Such repeated experiments include dice rolls, coin tosses, picking a number from {0,1,2,...,9} with repetition.
- Independence is generally assumed
 - Sometimes with statistical justification. See independence hypothesis tests.
 - Other times with a verbal, intuitive, managerial argument
 - In a few times, for convenience without any justification
 - » Independence really holds
 - » Independence fails
 - Probability of each one of two engines of a plane to simultaneously hit a bird
 - Probability of a hurricane & the electricity grid failure at the same location and hour
 - Probability of tuberculosis cases in New York City
 - Probability of two bank bankruptcies: Lehman Brother and Bear Stearns
 - Bear Stearns \rightarrow JP Morgan Chase

Independence: Urn Example

- utdallas. 8 a^{bad} pa utjan~/~metiu
- An urn contains 3 White and 2 Black balls. 3 balls are drawn without replacement one after another.
- Let A_i be the event that ball *i* is White for i=1,2,3. Are A_1, A_2, A_3 independent?

This experiment creates sequences of ball colors of the form WWW, WWB, etc. Since 3 balls are drawn and each ball can potentially take 2 colors, the sample space has $8=2^3$ elements. Note *BBB* is considered as an outcome with no probability. Table below shows all the outcomes and their probabilities.

ω with $\geq 2 W$	Ρ (ω)	ω with $\leq 1 W$	Ρ (ω)
WWW	(3/5)(2/4)(1/3)=0.1	WBB	(3/5)(2/4)(1/3)=0.1
WWB	(3/5)(2/4)(2/3)=0.2	BWB	(2/5)(3/4)(1/3)=0.1
WBW	(3/5)(2/4)(2/3)=0.2	BBW	(2/5)(1/4)(3/3)=0.1
BWW	(2/5)(3/4)(2/3)=0.2	BBB	(2/5)(1/4)(0/3)=0.0

 $P(A_1) = P(WWW \text{ or } WWB \text{ or } WBW \text{ or } WBB) = 0.1 + 0.2 + 0.2 + 0.1 = 0.6.$ $P(A_2) = P(WWW \text{ or } WWB \text{ or } BWW \text{ or } BWB) = 0.6.$ $P(A_3) = P(WWW \text{ or } WBW \text{ or } BWW \text{ or } BBW) = 0.6.$

> $P(A_1 \cap A_2) = P(WWW \text{ or } WWB) = 0.1 + 0.2 = 0.3.$ $P(A_1 \cap A_3) = P(WWW \text{ or } WBW) = 0.3.$ $P(A_2 \cap A_3) = P(WWW \text{ or } BWW) = 0.3.$

> > $P(A_1 \cap A_2) = 0.3 \neq 0.36 = P(A_1)P(A_2)$. Events are not independent. $P(A_2 \cap A_3) = 0.3 \neq 0.36 = P(A_2)P(A_3)$. Events are not independent. $P(A_1 \cap A_3) = 0.3 \neq 0.36 = P(A_1)P(A_3)$. Events are not independent.

Replacements can induce independence

- An urn has 3 White and 2 Black balls. 3 balls are drawn without with replacement one after another.
 - Let B_i be the event that ball *i* is White for i=1,2,3. Are B_1, B_2, B_3 independent?

This experiment creates sequences of ball colors WWW, WWB, etc. The sample space has $8=2^3$ elements. Table below shows all the outcomes and their probabilities.

ω with $\geq 2 W$	Ρ (ω)	ω with $\leq 1 W$	Ρ (ω)
WWW	(3/5)(3/5)(3/5)=27/125	WBB	(3/5)(2/5)(2/5)=12/125
WWB	(3/5)(3/5)(2/5)=18/125	BWB	(2/5)(3/5)(2/5)=12/125
WBW	(3/5)(2/5)(3/5)=18/125	BBW	(2/5)(2/5)(3/5)=12/125
BWW	(2/5)(3/5)(3/5)=18/125	BBB	(2/5)(2/5)(2/5)=8/125

 $P(B_1) = P(WWW \text{ or } WWB \text{ or } WBW \text{ or } WBB) = \frac{27+18+18+12}{125} = \frac{3}{5}.$ $P(B_2) = P(WWW \text{ or } WWB \text{ or } BWW \text{ or } BWB) = 3/5.$ $P(B_3) = P(WWW \text{ or } WBW \text{ or } BWW \text{ or } BBW) = 3/5.$

$$P(B_1 \cap B_2) = P(WWW \text{ or } WWB) = \frac{27+18}{125} = \frac{9}{25}.$$

$$P(B_1 \cap B_3) = P(WWW \text{ or } WBW) = 9/25.$$

$$P(B_2 \cap B_3) = P(WWW \text{ or } BWW) = 9/25.$$

$$P(B_1 \cap B_2 \cap B_3) = P(WWW) = \frac{27}{125}.$$

 $P(B_1 \cap B_2) = P(B_2 \cap B_3) = P(B_1 \cap B_3) = 9/25 = P(B_1)P(B_2) = P(B_2)P(B_3) = P(B_1)P(B_3).$ Events are pairwise independent even when they are not disjoint. $P(B_1 \cap B_2 \cap B_3) = 27/125 = P(B_1)P(B_2)P(B_3).$ Three events are independent.

Independence of 3 or more events

• For independence of 3 events A_1, A_2, A_3 , we need to check

Pairwise independence:

 $P(A_1 \cap A_2) = P(A_1)P(A_2), P(A_1 \cap A_3) = P(A_1)P(A_3), P(A_2 \cap A_3) = P(A_2)P(A_3).$ As well as triplet-wise independence:

 $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3).$

- Pairwise independence of 3 or more events does not imply independence of all of them.
- Ex: An urn contains 4 balls numbered as 1,2,3,4, and a ball is drawn randomly. Let A_2 be the event that the drawn ball is either 1 or 2, so $A_2 = \{1,2\}$. Similarly $A_3 = \{1,3\}$ and $A_4 = \{1,4\}$.

•
$$P(A_2) = \frac{2}{4} = P(A_3) = P(A_4)$$

- $P(A_2 \cap A_3) = 1/4 = P(A_2)P(A_3)$ and $P(A_2 \cap A_4) = 1/4 = P(A_2)P(A_4)$ and $P(A_3 \cap A_4) = 1/4 = P(A_3)P(A_4)$.
- However, $P(A_2 \cap A_3 \cap A_4) = 1/4 \neq 1/8 = P(A_2)P(A_3)P(A_4)$.
- Ex: |P(A ∩ B) P(A)P(B)| ≤ 1/4 for any two events A and B. This difference is zero for independent events and 1/4 for complementary/equally likely events. The difference is a measure of dependence between two events.

$$P(A \cap B) - P(A)P(B) = (P(A) + P(A^c))P(A \cap B) - P(A)(P(A \cap B) + P(A^c \cap B))$$
$$= P(A^c)P(A \cap B) - P(A)P(A^c \cap B)$$

Let $q = P(A^c)$ then $P(A \cap B) \le P(A) = 1 - q$. $P(A^c) P(A \cap B) \le q(1 - q) \le 1/4$ for $0 \le q \le 1$. Similarly, $P(A) P(A^c \cap B) \le 1/4$. Desired quantity is the difference of two nonnegative numbers, each is $\leq 1/4$. Absolute value of the difference $\leq 1/4$.

01 aBvd 6

Conditioning

ntdallas. 11 ∍^{bad} pa international internatornational international international international i

- The conditional probability of *B* given *A* is $P(B|A) = \frac{P(B \cap A)}{P(A)}$ for P(A) > 0.
- Total probability formula: For a partition A_i of Ω ,

 $P(B) = \sum_{i=1}^{\infty} P(B \cap A_i) = \sum_{i=1}^{\infty} P(B|A_i) P(A_i)$ by countable additivity.

- Ex: An instructor gives 5 questions for homeworks but grades only 2 of them. A student wants to solve only the questions that will be graded so he attempts to guess 2 questions correctly. He discovers that the instructor always asks a numerical question and grades it. Subsequently, he confidently guesses 1 question out of 5 correctly. What is the probability that he guesses 2 questions correctly given that he guesses 1 correctly?
 - Let A_i be the event that he guesses *i* questions correctly for *i*=1,2.
 - We are asking for $P(A_2|A_1)$. Note that $A_2 \subseteq A_1$, so $P(A_2|A_1) = \frac{P(A_2)}{P(A_1)}$.
 - Inserting $P(A_1) = 2/5$ and $P(A_2) = \frac{1}{C_2^5} = 1/10$, we obtain $P(A_2|A_1) = 1/4$.

Conditioning: Specifying a Restaurant's Greeting Policy Not-Well Specified Setting

- Ex: A restaurant can have 2 waitresses to greet customers, {Young, Experienced}. Sample space for the waiter personnel $\Omega = \{YY, YE, EY, EE\}$, each outcome has equal probability.
 - When you arrive a Young lady waitress greets you and you wonder about the probability of the other waitress to be also a Young lady as opposed to an Experienced lady. What is P(the other is Y | yours is Y)?
 - Intuitively, you may answer
 - 1/2 by thinking that the other waitress is either young or experienced with equal probabilities, or
 - 1/3 by computing P(YY)/(P(YY)+P(YE)+P(EY))=(1/4)/(3/4)=1/3.
- P(the other is Y | yours is Y) can be computed by P(the other is Y and yours is Y) / P(yours is Y).
 - We can see that P(the other is Y and yours is Y)=P(YY)=1/4.
 - Can we say that P(your waitress is Y)=1/2? No! This probability is actually
 - 1 if the waitresses are YY,
 - 0 if the waitresses are EE.
- P(your waitress is Y) is to be specified only under YE or EY, in which cases let q denote it.
- P(your waitress is Y)= P(yours Y under YY) +P(yours Y under YE) +P(yours Y under EY) +P(yours Y under EE) = 1(1/4) + q(1/4) + q(1/4) + 0(1/4).
- Hence, P(the other waitress is Y | your waitress is Y)=(1/4)/(1/4+q/2)=1/(1+2q).
 - Only with P(your waitress is Y)=1/2 or q=1/2, we have P(the other waitress is Y | your waitress is Y)=1/2.
 - If the restaurant has a policy of q=1, i.e., young waitress greets the customers if available, then
 - P(the other waitress is $Y \mid your waitress is Y)=1/3$.
 - At the other extreme of q=0, i.e., experienced waitress greets customers if available,
 - P(the other waitress is Y | your waitress is Y)=1.
- Depending on the restaurant's policy $q = 1, \frac{1}{2}, 0$, the correct answer ranges from $\frac{1}{3}$ to $\frac{1}{2}$ then to 1.

Variation on Sample Space: Restaurant's Greeting Policy

- odu /∼metin 13. da 13. da 13. da
- Ex: A restaurant can have 2 waitresses to greet customers, {Young, Experienced}. Sample space for the waiter personnel $\Omega = \{YY, YE, EE\}$ with P(YY) = P(EE) = P(YE)/2 = 1/4.
 - When you arrive a Young lady waitress greets you and you wonder about the probability of the other waitress to be also a Young lady as opposed to an Experienced lady. What is P(the other is Y | yours is Y)?
 - You may answer
 - 1/2 by thinking that the other waitress is either young or experienced with equal probabilities, or
 - 1/3 by computing P(YY)/(P(YY)+P(YE))=(1/4)/(3/4)=1/3.
- P(the other is Y | yours is Y) can be computed by P(the other is Y and yours is Y) / P(yours is Y).
 - We can see that P(the other is Y and yours is Y)=P(YY)=1/4.
 - Can we say that P(your waitress is Y)=1/2? No! This probability is actually
 - 1 if the waitresses are YY,
 - 0 if the waitresses are EE.
- P(your waitress is Y) is to be specified only under YE, in which cases let q denote it.
- P(your waitress is Y)= P(yours Y under YY) +P(yours Y under YE) +P(yours Y under EE)

1(1/4) + q(1/2) + 0(1/4).

- Hence, P(the other waitress is Y | your waitress is Y)=(1/4)/(1/4+q/2)=1/(1+2q).
 - Only with P(your waitress is Y)=1/2 or q=1/2, we have P(the other waitress is Y | your waitress is Y)=1/2.
 - If the restaurant has a policy of q=1, i.e., young waitress greets the customers if available, then
 - P(the other waitress is $Y \mid your \text{ waitress is } Y \rangle = 1/3$.
 - At the other extreme of q=0, i.e., experienced waitress greets customers if available,
 - P(the other waitress is $Y \mid your \text{ waitress is } Y)=1$.
- Depending on the restaurant's policy $q = 1, \frac{1}{2}, 0$, the correct answer ranges from $\frac{1}{3}$ to $\frac{1}{2}$ then to 1.

Conditioning Any First Bidder Advantage in Sequential Bidding?

- Suppose *n* suppliers bid for *m* projects of a buyer for $n \ge m$. The suppliers are to choose their turn to bid and are awarded projects depending on the number of suppliers and projects at the time of their bid.
 - If a supplier is awarded a project, the number of available suppliers and projects both decrease by one.
 Otherwise, only the number of available suppliers decrease by one.
 - Before the kth bidder, suppose there are n_k available suppliers and m_k projects remaining.
 - » Initially, $n_1 = n$ and $m_1 = m$.
 - The buyer accepts the kth bidder randomly, i.e., with probability m_k/n_k .
 - » Is $m_k > n_k$ possible?
- Is the first bidder have a higher chance of getting a project than the second or third?

Let A_k be the event that bidder k gets a project.

- $P(A_1) = m/n$.
- For $P(A_2)$, we use conditioning,

 $P(A_2) = P(A_1)P(A_2|A_1) + P(A_1^c)P(A_2|A_1^c) = P(A_1 \cap A_2) + P(A_1^c \cap A_2) = \frac{m}{n}\frac{m-1}{n-1} + \left(1 - \frac{m}{n}\right)\frac{m}{n-1} = \frac{m}{n}$ For $P(A_2)$

• For $P(A_3)$,

 $P(A_3) = P(A_1 \cap A_2)P(A_3|A_1 \cap A_2) + P(A_1 \cap A_2^c)P(A_3|A_1 \cap A_2^c) + P(A_1^c \cap A_2)P(A_3|A_1^c \cap A_2) + P(A_1^c \cap A_2^c)P(A_3|A_1^c \cap A_2^c) + P(A_1^c \cap A$

<u> </u>	m-1	m-2	$+\frac{m}{m}$	n-m	m-1	$+\frac{n-m}{2}$	m	m-1	$+ \frac{n-m}{n-1-m}$	m
— n	n-1	n-2	'n	n-1	n-2	'n	n-1	n-2	n $n-1$	n-2
$=\frac{m}{m}$										
n										

- > Fairness: The first bidder does not have an advantage over the others.
- > Does naivety cause fairness?

For a partition
$$A_j$$
 of Ω , $P(A_j|B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^{\infty} P(A_i)P(B|A_i)}$.

A woman has recently started a friendship with a man. She is generally happy with the friendship.

- But she expects gifts such as flowers. Common wisdom: Gifts are indication of affection.
- Getting no gifts, she wants to assess whether the man is truly in love or possibly searching for another.
- Events: N no gifts, L truly in love, S possibly searching.
- She wants to know P(L|N).
- Available data:
 - » P(L)=30% judging from the friendship.
 - » P(N|L)=40% and P(N|S)=60% according to magazine surveys, best available data.

$$P(L|N) = \frac{P(N|L)P(L)}{P(N|L)P(L) + P(N|S)P(S)} = \frac{0.4 * 0.3}{0.4 * 0.3 + 0.6 * 0.7} = \frac{12}{54} = 0.2222 < 0.3$$

- Available data change: A searching man gifts more than others to hide his intentions

» P(N|L)=60% and P(N|S)=40% according to recent magazine surveys.

$$P(L|N) = \frac{P(N|L)P(L)}{P(N|L)P(L) + P(N|S)P(S)} = \frac{0.6 * 0.3}{0.6 * 0.3 + 0.4 * 0.7} = \frac{18}{46} = 0.3913 > 0.3$$

Loves or not

Guilty Verdict After a Confession

- A person is accused of an offence.
 - Generally, a confession of the offence is treated as a sign that he is guilty.
 - Events: I the person is innocent, G he is guilty, V he verbally confesses.

$$\frac{P(G|V)}{P(I|V)} = \frac{P(G|V) = \frac{P(V|G)P(G)}{P(V|G)P(G) + P(V|I)P(I)}}{P(I|V) = \frac{P(V|I)P(I)}{P(V|G)P(G) + P(V|I)P(I)}} = \frac{P(V|G)}{P(V|I)}$$

Prior
$$\frac{P(G)}{P(I)}$$
 Confession $\stackrel{P(V|G)}{\xrightarrow{P(V|I)}} \frac{P(G)}{P(I)}$ Posterior $>1 \text{ or } <1?$

Can a confession decrease the chances of a guilty verdict? What does guilty "*beyond a reasonable doubt*" mean?

Doubt \Rightarrow Uncertainty \Rightarrow P(other explanation) > 0

I DIDN'T Do NUTHIN'! OOO! A CONFESSION! OOO! A CONFESSION!

.edu

/~metin bage 10

Beyond a reasonable doubt holds when no other explanation can be derived from the facts except that the accused committed the crime, thereby overcoming the presumption that a person is innocent until proven guilty. Source: http://legal-dictionary.thefreedictionary.com

No other explanation \Rightarrow P(other explanation) = 0 Almost certainly no other explanation

Inconsistency in interpretation of laws?

- A person, guilty with probability 70% = P(G) = 1 P(I), confesses, what is the likelihood of being guilty?
 - If innocent, confesses with 40%. If guilty, confesses with 60%.
 - P(V|I)=0.4, P(V|G)=0.6, then P(G|V)/P(I|V) = (0.6/0.4)(0.7/0.3) = 7/2.
 - Since P(G|V)+P(I|V)=1, P(G|V)=7/9=0.77 > 0.7=P(G). Guilty probability \uparrow with a confession.
 - Suppose innocent confesses with $60+\epsilon\%>60\%$ of a guilty confessing. Everything else is the same.
 - $P(V|I)=0.6+\epsilon$, then $P(G|V)/P(I|V) = (0.6/(0.6+\epsilon))(0.7/0.3) < 7/3$.
 - Hence, P(G|V) < 0.7 = P(G). Guilty probability \downarrow with a confession.

Answering a Question Correctly by Chance

- Ex: In a multiple choice exam, the instructor provides 4 alternatives: a), b), c) and d). A student knows the true answer to a particular question with probability 0.6. If the student does not know the answer, he randomly picks one of the alternatives from a) to d).
- If this question is answered correctly by the student, what is the probability that it is answered correctly by chance?
- Let A_T be the event that the student knows the True answer.
- Let A_C be the event that the student answers the question Correctly.
- We want $P(A_T^c|A_C)$.
- We know $P(A_T) = 1 P(A_T^c) = 0.6$ and

$$P(A_T^c|A_C) = \frac{P(A_C|A_T^c)P(A_T^c)}{P(A_C|A_T^c)P(A_T^c) + P(A_C|A_T)P(A_T)} = \frac{(0.25)(0.4)}{(0.25)(0.4) + 1(0.6)} = \frac{1}{7} = 0.142$$

• The student guesses the correct answer without knowing the correct answer with 14.2% chance.

- Unions, Intersections
- Independence
- Conditioning
- Bayes' Formula