# Unions, Intersections, Independence, Conditioning, Bayes' Formula 

## Outline

- Unions, Intersections
- Independence
- Conditioning
- Bayes' Formula

Prof. Metin Çakanyldırım used various resources to prepare this document for teaching/training.
To use this in your own course/training, please obtain permission from Prof. Çakanyldırım.
If you find any inaccuracies, please contact metin@utdallas.edu for corrections.

## Unions, Intersections, Complements

- A probability model is a triplet $(\Omega, \mathfrak{I}, \mathrm{P})$
- $\Omega$ : sample space
- $\mathfrak{I}$ : a $\sigma$-field (an appropriate collection of subsets of $\Omega$ )
» Includes $\Omega$, closed under complement $(\cdot)^{c}$ and countable union operations $\cup_{1}^{\infty}$
- P: a probability measure that maps sets in $\mathfrak{J}$ to real numbers in $[0,1]$
- Two events A and B can be thought as two sets $A, B \in \Omega$
- The new event that happens "when either A or B happens" corresponds to union $A \cup B$
- The new event that happens "when both A and B happens" corresponds to intersection $A \cap B$
") Note that $A \cap B=\left(A^{c} \cup B^{c}\right)^{c} \in \mathfrak{I}$ if $A, B \in \mathfrak{I}$.
- The new event that happens "when A does but B does not happen" corresponds to $A \cap B^{c}$
- $A \cap B^{c}=A \backslash(A \cap B)$
- Set as a union $A=\left(A \cap B^{c}\right) \cup(A \cap B)$
- Countable additivity $\mathrm{P}(A)=\mathrm{P}\left(A \cap B^{c}\right)+\mathrm{P}(A \cap B)$
- $\mathrm{P}\left(A \cap B^{c}\right)=\mathrm{P}(A)-\mathrm{P}(A \cap B)$

- Relating union to intersection
- Set as a union $A \cup B=\left(A \cap B^{c}\right) \cup(A \cap B) \cup\left(B \cap A^{c}\right)$
- Countable additivity $\mathrm{P}(A \cup \mathrm{~B})=\mathrm{P}\left(A \cap \mathrm{~B}^{c}\right)+\mathrm{P}(A \cap B)+\mathrm{P}\left(B \cap A^{c}\right)$
- $\quad=\mathrm{P}(A)-\mathrm{P}(A \cap B)+\mathrm{P}(A \cap B)+\mathrm{P}(B)-\mathrm{P}(B \cap A)$
- $\quad=\mathrm{P}(A)-\mathrm{P}(A \cap B)+\mathrm{P}(B)$



## Unions and Intersections

$\mathrm{P}(A \cup B \cup \mathrm{C})=\mathrm{P}(A)+\mathrm{P}(B)+\mathrm{P}(C)$

$$
-\mathrm{P}(A \cap B)-\mathrm{P}(A \cap C)-\mathrm{P}(B \cap C)
$$

$$
+\mathrm{P}(A \cap B \cap C)
$$



$$
\begin{aligned}
\mathrm{P}(A \cup B \cup C \cup D)= & \mathrm{P}(A)+\mathrm{P}(B)+\mathrm{P}(C)+\mathrm{P}(D) \\
& -\mathrm{P}(A \cap B)-\mathrm{P}(A \cap C)-\mathrm{P}(A \cap D)-\mathrm{P}(B \cap C)-\mathrm{P}(B \cap D)-\mathrm{P}(C \cap D) \\
& +\mathrm{P}(A \cap B \cap C)+\mathrm{P}(A \cap B \cap D)+\mathrm{P}(A \cap C \cap D)+\mathrm{P}(B \cap C \cap D) \\
& -P(A \cap B \cap C \cap D)
\end{aligned}
$$

- Inclusion-exclusion identity for $2,3,4, \ldots, n$ sets
- Proof for $n$ sets is by induction - a matter of getting indices right, see the notes
- Ex: $\mathrm{P}\left(A^{c}\right)=1-\mathrm{P}(A)$, from
- $1=\mathrm{P}(\Omega)=\mathrm{P}(A)+\mathrm{P}\left(A^{c}\right)-\mathrm{P}\left(A \cap A^{c}\right)=\mathrm{P}(A)+\mathrm{P}\left(A^{c}\right)$
- Ex: $A \subseteq B$ implies $\mathrm{P}(A) \leq \mathrm{P}(B)$, from
- $\mathrm{P}(B)=\mathrm{P}\left(A \cup\left(B \cap A^{C}\right)\right)=\mathrm{P}(A)+\mathrm{P}\left(B \cap A^{c}\right) \geq P(A)$


## Limit of a Measure vs Measure of the Limit

- Let $S=\{(x, y): 0 \leq \mathrm{x}, y \leq 1\}$ and $T=\{(x, y): 0 \leq x, y \leq 2, x+y \leq \sqrt{2}\}$

$-A_{n}=1_{n \text { is odd }} S+1_{n}$ is even $T$, i.e., an alternating sequence of $\boldsymbol{S}$ quares and $\boldsymbol{T}$ riangles
- Limit of a Measure: $\lim _{n \rightarrow \infty} \operatorname{Area}\left(A_{n}\right)=\operatorname{Area}(S)=\operatorname{Area}(T)=1$
- Measure of a Limit: Area $\left(\lim _{n \rightarrow \infty} A_{n}\right)$ does not exist
- Measure and Limit operations are not interchangeable!


## Continuity of Probability Measure

- Ex: Exchangeability of limit \& probability $\equiv$ Probability measure P is continuous, only for specific events
- i) Inner (from left): For increasing sequence of events $A_{n}, \mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)$.
- ii) Outer (from right): For decreasing sequence of events $A_{n}, \mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)$.


From topology: Union of finite number A closed set includes of closed sets is closed. its limiting points

Intersection of any number of closed sets is closed.

## Inner Continuity of Probability Measure

- For increasing sequence of events $A_{n}, \mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)$.


$$
\begin{array}{cr}
A_{4}=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} & A_{4}=B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \text { and } B_{i} ’ \text { disjoint } \\
\mathrm{P}\left(\lim _{n \rightarrow 4} A_{n}\right)=\mathrm{P}\left(\cup_{i=1}^{4} A_{i}\right) & \mathrm{P}\left(\cup_{i=1}^{\infty} A_{i}\right)=\mathrm{P}\left(\cup_{i=1}^{\infty} B_{i}\right) \\
\mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\mathrm{P}\left(\cup_{i=1}^{\infty} A_{i}\right) & \mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\mathrm{P}\left(\cup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} \mathrm{P}\left(B_{i}\right)
\end{array}
$$

$$
\mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\sum_{i=1}^{\infty} \mathrm{P}\left(B_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathrm{P}\left(B_{i}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(\mathrm{U}_{i=1}^{n} B_{i}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(\mathrm{U}_{i=1}^{n} A_{i}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)
$$

Insight: New sets $B_{i}$ 's are disjoint and allow us to use countable additivity of the probability measure.
This takes the limit outside of the probability measure.
For decreasing sequence of events $A_{n}, \mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)$. Use the previous result

$$
\begin{aligned}
\mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}\right) & =\mathrm{P}\left(\cap_{i=1}^{\infty} A_{i}\right)=1-\mathrm{P}\left(\cup_{i=1}^{\infty} A_{i}^{c}\right)=1-\mathrm{P}\left(\lim _{n \rightarrow \infty} A_{n}^{c}\right)=1-\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}^{c}\right)=1-\left(1-\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{P}\left(A_{n}\right) .
\end{aligned}
$$

## Independence

- Events $A$ and $B$ are independent if $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$.
- Ex: If $A$ and $B$ are independent, so are their complements: $\mathrm{P}\left(A^{c} \cap B^{c}\right)=\mathrm{P}\left(A^{c}\right) \mathrm{P}\left(B^{c}\right)$ if $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$

$$
\begin{aligned}
\mathrm{P}\left(A^{c} \cap B^{c}\right) & =\mathrm{P}\left((A \cup B)^{c}\right)=1-\mathrm{P}(A \cup B)=1-\mathrm{P}(A)-\mathrm{P}(B)+\mathrm{P}(A \cap B) \\
& =1-\mathrm{P}(A)-\mathrm{P}(B)-\mathrm{P}(A) \mathrm{P}(B)=(1-\mathrm{P}(A))(1-\mathrm{P}(B)) \\
& =\mathrm{P}\left(A^{c}\right) \mathrm{P}\left(B^{c}\right)
\end{aligned}
$$

- In repeated experiments, each experiment is often independent. Such repeated experiments include dice rolls, coin tosses, picking a number from $\{0,1,2, \ldots, 9\}$ with repetition.
- Independence is generally assumed
- Sometimes with statistical justification. See independence hypothesis tests.
- Other times with a verbal, intuitive, managerial argument
- In a few times, for convenience without any justification
» Independence really holds
» Independence fails
- Probability of each one of two engines of a plane to simultaneously hit a bird
- Probability of a hurricane \& the electricity grid failure at the same location and hour
- Probability of tuberculosis cases in New York City
- Probability of two bank bankruptcies: Lehman Brother and Bear Stearns
- Bear Stearns $\rightarrow$ JP Morgan Chase


## Independence: Urn Example

An urn contains 3 White and 2 Black balls. 3 balls are drawn without replacement one after another.
Let $A_{i}$ be the event that ball $i$ is White for $i=1,2,3$. Are $A_{1}, A_{2}, A_{3}$ independent?
This experiment creates sequences of ball colors of the form $W W W, W W B$, etc. Since 3 balls are drawn and each ball can potentially take 2 colors, the sample space has $8=2^{3}$ elements. Note $B B B$ is considered as an outcome with no probability. Table below shows all the outcomes and their probabilities.

| $\omega$ with $\geq 2 W$ | $\mathrm{P}(\omega)$ | $\omega$ with $\leq 1 W$ | P( $\omega$ ) |
| :---: | :---: | :---: | :---: |
| WWW | $(3 / 5)(2 / 4)(1 / 3)=0.1$ | WBB | $(3 / 5)(2 / 4)(1 / 3)=0.1$ |
| WWB | $(3 / 5)(2 / 4)(2 / 3)=0.2$ | BWB | $(2 / 5)(3 / 4)(1 / 3)=0.1$ |
| WBW | $(3 / 5)(2 / 4)(2 / 3)=0.2$ | BBW | $(2 / 5)(1 / 4)(3 / 3)=0.1$ |
| BWW | $(2 / 5)(3 / 4)(2 / 3)=0.2$ | BBB | $(2 / 5)(1 / 4)(0 / 3)=0.0$ |

$$
\begin{array}{r}
\mathrm{P}\left(A_{1}\right)=\mathrm{P}(W W W \text { or } W W B \text { or } W B W \text { or } W B B)=0.1+0.2+0.2+0.1=0.6 . \\
\mathrm{P}\left(A_{2}\right)=\mathrm{P}(W W W \text { or } W W B \text { or } B W W \text { or } B W B)=0.6 . \\
\mathrm{P}\left(A_{3}\right)=P(W W W \text { or } W B W \text { or } B W W \text { or } B B W)=0.6 . \\
\mathrm{P}\left(A_{1} \cap A_{2}\right)=\mathrm{P}(W W W \text { or } W W B)=0.1+0.2=0.3 . \\
\mathrm{P}\left(A_{1} \cap A_{3}\right)=P(W W W \text { or } W B W)=0.3 . \\
\mathrm{P}\left(A_{2} \cap A_{3}\right)=P(W W W \text { or } B W W)=0.3 \\
\mathrm{P}\left(A_{1} \cap A_{2}\right)=0.3 \neq 0.36=P\left(A_{1}\right) P\left(A_{2}\right) . \text { Events are not independent. } \\
\mathrm{P}\left(A_{2} \cap A_{3}\right)=0.3 \neq 0.36=P\left(A_{2}\right) P\left(A_{3}\right) . \text { Events are not independent. } \\
\mathrm{P}\left(A_{1} \cap A_{3}\right)=0.3 \neq 0.36=P\left(A_{1}\right) P\left(A_{3}\right) . \text { Events are not independent. }
\end{array}
$$

## Replacements can induce independence

An urn has 3 White and 2 Black balls. 3 balls are drawn without with replacement one after another.

- Let $B_{i}$ be the event that ball $i$ is White for $i=1,2,3$. Are $B_{1}, B_{2}, B_{3}$ independent?

This experiment creates sequences of ball colors WWW, WWB, etc. The sample space has $8=2^{3}$ elements. Table below shows all the outcomes and their probabilities.

| c with $\geq 2 W$ | $\mathbf{P}(\omega)$ | 心 with $\leq 1 W$ |  |
| :--- | :--- | :--- | :--- |
| WWW | $(3 / 5)(3 / 5)(3 / 5)=27 / 125$ | WBB | $(3 / 5)(2 / 5)(2 / 5)=12 / 125$ |
| WWB | $(3 / 5)(3 / 5)(2 / 5)=18 / 125$ | BWB | $(2 / 5)(3 / 5)(2 / 5)=12 / 125$ |
| WBW | $(3 / 5)(2 / 5)(3 / 5)=18 / 125$ | BBW | $(2 / 5)(2 / 5)(3 / 5)=12 / 125$ |
| BWW | $(2 / 5)(3 / 5)(3 / 5)=18 / 125$ | BBB | $(2 / 5)(2 / 5)(2 / 5)=8 / 125$ |

$$
\begin{gathered}
\mathrm{P}\left(B_{1}\right)=\mathrm{P}(W W W \text { or } W W B \text { or } W B W \text { or } W B B)=\frac{27+18+18+12}{125}=\frac{3}{5} . \\
\mathrm{P}\left(B_{2}\right)=\mathrm{P}(W W W \text { or } W W B \text { or } B W W \text { or } B W B)=3 / 5 . \\
\mathrm{P}\left(B_{3}\right)=P(W W W \text { or } W B W \text { or } B W W \text { or } B B W)=3 / 5 \\
\mathrm{P}\left(B_{1} \cap B_{2}\right)=\mathrm{P}(W W W \text { or } W W B)=\frac{27+18}{125}=\frac{9}{25} . \\
\mathrm{P}\left(B_{1} \cap B_{3}\right)=P(W W W \text { or } W B W)=9 / 25 . \\
\mathrm{P}\left(B_{2} \cap B_{3}\right)=P(W W W \text { or } B W W)=9 / 25 . \\
\mathrm{P}\left(B_{1} \cap B_{2} \cap B_{3}\right)=\mathrm{P}(W W W)=\frac{27}{125} . \\
\mathrm{P}\left(B_{1} \cap B_{2}\right)=\mathrm{P}\left(B_{2} \cap B_{3}\right)=\mathrm{P}\left(B_{1} \cap B_{3}\right)=9 / 25=P\left(B_{1}\right) P\left(B_{2}\right)=P\left(B_{2}\right) P\left(B_{3}\right)=P\left(B_{1}\right) P\left(B_{3}\right) .
\end{gathered}
$$

Events are pairwise independent even when they are not disjoint.
$\mathrm{P}\left(B_{1} \cap B_{2} \cap B_{3}\right)=27 / 125=P\left(B_{1}\right) P\left(B_{2}\right) P\left(B_{3}\right)$. Three events are independent.

## Independence of 3 or more events

- For independence of 3 events $A_{1}, A_{2}, A_{3}$, we need to check

Pairwise independence:

$$
\mathrm{P}\left(A_{1} \cap A_{2}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right), \mathrm{P}\left(A_{1} \cap A_{3}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{3}\right), \mathrm{P}\left(A_{2} \cap A_{3}\right)=\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right) .
$$

As well as triplet-wise independence:

$$
\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right) .
$$

- Pairwise independence of 3 or more events does not imply independence of all of them.
- Ex: An urn contains 4 balls numbered as $1,2,3,4$, and a ball is drawn randomly. Let $A_{2}$ be the event that the drawn ball is either 1 or 2 , so $A_{2}=\{1,2\}$. Similarly $A_{3}=\{1,3\}$ and $A_{4}=\{1,4\}$.
- $\mathrm{P}\left(A_{2}\right)=\frac{2}{4}=\mathrm{P}\left(A_{3}\right)=\mathrm{P}\left(A_{4}\right)$
- $\mathrm{P}\left(A_{2} \cap A_{3}\right)=1 / 4=\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right)$ and $\mathrm{P}\left(A_{2} \cap A_{4}\right)=1 / 4=\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{4}\right)$ and $\mathrm{P}\left(A_{3} \cap A_{4}\right)=1 / 4=\mathrm{P}\left(A_{3}\right) \mathrm{P}\left(A_{4}\right)$.
- However, $P\left(A_{2} \cap A_{3} \cap A_{4}\right)=1 / 4 \neq 1 / 8=P\left(A_{2}\right) P\left(A_{3}\right) P\left(A_{4}\right)$.
- Ex: $|\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B)| \leq 1 / 4$ for any two events A and B . This difference is zero for independent events and $1 / 4$ for complementary/equally likely events. The difference is a measure of dependence between two events.

$$
\begin{aligned}
\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B) & =\left(\mathrm{P}(A)+\mathrm{P}\left(A^{c}\right)\right) \mathrm{P}(A \cap \mathrm{~B})-\mathrm{P}(A)\left(\mathrm{P}(A \cap B)+\mathrm{P}\left(A^{c} \cap B\right)\right) \\
& =\mathrm{P}\left(A^{c}\right) \mathrm{P}(A \cap \mathrm{~B})-\mathrm{P}(A) \mathrm{P}\left(A^{c} \cap B\right)
\end{aligned}
$$

Let $q=P\left(A^{c}\right)$ then $\mathrm{P}(A \cap B) \leq \mathrm{P}(A)=1-q$. $\mathrm{P}\left(A^{c}\right) \mathrm{P}(A \cap \mathrm{~B}) \leq q(1-q) \leq 1 / 4$ for $0 \leq q \leq 1$. Similarly, $\mathrm{P}(A) \mathrm{P}\left(A^{c} \cap B\right) \leq 1 / 4$.

Desired quantity is the difference of two nonnegative numbers, each is $\leq 1 / 4$.
Absolute value of the difference $\leq 1 / 4$.

## Conditioning

- The conditional probability of $B$ given $A$ is $\quad \mathrm{P}(B \mid A)=\frac{\mathrm{P}(B \cap A)}{\mathrm{P}(A)}$ for $\mathrm{P}(A)>0$.
- Total probability formula: For a partition $A_{i}$ of $\Omega$,

- Ex: An instructor gives 5 questions for homeworks but grades only 2 of them. A student wants to solve only the questions that will be graded so he attempts to guess 2 questions correctly. He discovers that the instructor always asks a numerical question and grades it. Subsequently, he confidently guesses 1 question out of 5 correctly. What is the probability that he guesses 2 questions correctly given that he guesses 1 correctly?
- Let $A_{i}$ be the event that he guesses $i$ questions correctly for $i=1,2$.
- We are asking for $\mathrm{P}\left(A_{2} \mid A_{1}\right)$. Note that $A_{2} \subseteq A_{1}$, so $\mathrm{P}\left(A_{2} \mid A_{1}\right)=\frac{P\left(A_{2}\right)}{P\left(A_{1}\right)}$.
- Inserting $\mathrm{P}\left(A_{1}\right)=2 / 5$ and $\mathrm{P}\left(A_{2}\right)=\frac{1}{C_{2}^{5}}=1 / 10$, we obtain $\mathrm{P}\left(A_{2} \mid A_{1}\right)=1 / 4$.


## Conditioning: Specifying a Restaurant's Greeting Policy Not-Well Specified Setting

Ex: A restaurant can have 2 waitresses to greet customers, \{Young, Experienced\}. Sample space for the waiter personnel $\Omega=\{\mathrm{YY}, \mathrm{YE}, \mathrm{EY}, \mathrm{EE}\}$, each outcome has equal probability.

- When you arrive a Young lady waitress greets you and you wonder about the probability of the other waitress to be also a Young lady as opposed to an Experienced lady. What is P(the other is $\mathrm{Y} \mid$ yours is Y )?
- Intuitively, you may answer
- $1 / 2$ by thinking that the other waitress is either young or experienced with equal probabilities, or
- $1 / 3$ by computing $\mathrm{P}(\mathrm{YY}) /(\mathrm{P}(\mathrm{YY})+\mathrm{P}(\mathrm{YE})+\mathrm{P}(\mathrm{EY}))=(1 / 4) /(3 / 4)=1 / 3$.
$\mathrm{P}($ the other is $\mathrm{Y} \mid$ yours is Y$)$ can be computed by $\mathrm{P}($ the other is Y and yours is Y$) / \mathrm{P}($ yours is Y$)$.
- We can see that P (the other is Y and yours is Y$)=\mathrm{P}(\mathrm{YY})=1 / 4$.
- Can we say that $\mathrm{P}($ your waitress is Y$)=1 / 2$ ? No! This probability is actually
- 1 if the waitresses are YY,
- 0 if the waitresses are EE.

P (your waitress is Y ) is to be specified only under YE or EY , in which cases let q denote it.
$\mathrm{P}($ your waitress is Y$)=\mathrm{P}($ yours Y under YY$)+\mathrm{P}($ yours Y under YE$)+\mathrm{P}($ yours Y under EY$)+\mathrm{P}($ yours Y under EE$)$

$$
=1(1 / 4) \quad+\quad q(1 / 4) \quad+\quad q(1 / 4) \quad+\quad 0(1 / 4) .
$$

Hence, $P$ (the other waitress is $Y \mid$ your waitress is $Y)=(1 / 4) /(1 / 4+q / 2)=1 /(1+2 q)$.

- Only with $\mathrm{P}($ your waitress is Y$)=1 / 2$ or $\mathrm{q}=1 / 2$, we have $\mathrm{P}($ the other waitress is $\mathrm{Y} \mid$ your waitress is Y$)=1 / 2$.
- If the restaurant has a policy of $q=1$, i.e., young waitress greets the customers if available, then
- P (the other waitress is $\mathrm{Y} \mid$ your waitress is Y$)=1 / 3$.
- At the other extreme of $q=0$, i.e., experienced waitress greets customers if available,
- $\mathrm{P}($ the other waitress is $\mathrm{Y} \mid$ your waitress is Y$)=1$.

Depending on the restaurant's policy $q=1, \frac{1}{2}, 0$, the correct answer ranges from $\frac{1}{3}$ to $\frac{1}{2}$ then to 1 .

## Variation on Sample Space: Restaurant's Greeting Policy

- Ex: A restaurant can have 2 waitresses to greet customers, \{Young, Experienced\}. Sample space for the waiter personnel $\Omega=\{Y Y, Y E, E E\}$ with $\mathrm{P}(\mathrm{YY})=\mathrm{P}(\mathrm{EE})=\mathrm{P}(\mathrm{YE}) / 2=1 / 4$.
- When you arrive a Young lady waitress greets you and you wonder about the probability of the other waitress to be also a Young lady as opposed to an Experienced lady. What is P(the other is $\mathrm{Y} \mid$ yours is Y )?
- You may answer
- $1 / 2$ by thinking that the other waitress is either young or experienced with equal probabilities, or
- $1 / 3$ by computing $\mathrm{P}(\mathrm{YY}) /(\mathrm{P}(\mathrm{YY})+\mathrm{P}(\mathrm{YE}))=(1 / 4) /(3 / 4)=1 / 3$.
$\mathrm{P}($ the other is $\mathrm{Y} \mid$ yours is Y ) can be computed by $\mathrm{P}($ the other is Y and yours is Y$) / \mathrm{P}($ yours is Y$)$.
- We can see that $\mathrm{P}($ the other is Y and yours is Y$)=\mathrm{P}(\mathrm{YY})=1 / 4$.
- Can we say that $\mathrm{P}($ your waitress is Y$)=1 / 2$ ? No! This probability is actually
- 1 if the waitresses are YY,
- 0 if the waitresses are EE.

P (your waitress is Y ) is to be specified only under YE , in which cases let q denote it.
$\mathrm{P}($ your waitress is Y$)=\mathrm{P}($ yours Y under YY$)+\mathrm{P}($ yours Y under YE$)+\mathrm{P}($ yours Y under EE)

$$
=1(1 / 4) \quad+\quad q(1 / 2) \quad+\quad 0(1 / 4)
$$

Hence, $P$ (the other waitress is $Y \mid$ your waitress is $Y)=(1 / 4) /(1 / 4+q / 2)=1 /(1+2 q)$.

- Only with $\mathrm{P}($ your waitress is Y$)=1 / 2$ or $\mathrm{q}=1 / 2$, we have $\mathrm{P}($ the other waitress is $\mathrm{Y} \mid$ your waitress is Y$)=1 / 2$.
- If the restaurant has a policy of $q=1$, i.e., young waitress greets the customers if available, then
- $\mathrm{P}($ the other waitress is $\mathrm{Y} \mid$ your waitress is Y$)=1 / 3$.
- At the other extreme of $\mathrm{q}=0$, i.e., experienced waitress greets customers if available,
- $\mathrm{P}($ the other waitress is $\mathrm{Y} \mid$ your waitress is Y$)=1$.

Depending on the restaurant's policy $q=1, \frac{1}{2}, 0$, the correct answer ranges from $\frac{1}{3}$ to $\frac{1}{2}$ then to 1 .

## Conditioning <br> Any First Bidder Advantage in Sequential Bidding?

- Suppose $n$ suppliers bid for $m$ projects of a buyer for $n \geq m$. The suppliers are to choose their turn to bid and are awarded projects depending on the number of suppliers and projects at the time of their bid.
- If a supplier is awarded a project, the number of available suppliers and projects both decrease by one. Otherwise, only the number of available suppliers decrease by one.
- Before the $k$ th bidder, suppose there are $n_{k}$ available suppliers and $m_{k}$ projects remaining.
" Initially, $n_{1}=n$ and $m_{1}=m$.
- The buyer accepts the $k$ th bidder randomly, i.e., with probability $m_{k} / n_{k}$.

$$
» \text { Is } m_{k}>n_{k} \text { possible? }
$$

- Is the first bidder have a higher chance of getting a project than the second or third?

Let $A_{k}$ be the event that bidder $k$ gets a project.

- $\mathrm{P}\left(A_{1}\right)=m / n$.
- For $\mathrm{P}\left(A_{2}\right)$, we use conditioning,

$$
\mathrm{P}\left(A_{2}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2} \mid A_{1}\right)+\mathrm{P}\left(A_{1}^{c}\right) \mathrm{P}\left(A_{2} \mid A_{1}^{c}\right)=\mathrm{P}\left(A_{1} \cap A_{2}\right)+\mathrm{P}\left(A_{1}^{c} \cap A_{2}\right)=\frac{m}{n} \frac{m-1}{n-1}+\left(1-\frac{m}{n}\right) \frac{m}{n-1}=\frac{m}{n}
$$

- $\operatorname{For} \mathrm{P}\left(A_{3}\right)$,

$$
\begin{aligned}
\mathrm{P}\left(A_{3}\right) & =\mathrm{P}\left(A_{1} \cap A_{2}\right) \mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}\right)+\mathrm{P}\left(A_{1} \cap A_{2}^{c}\right) \mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}^{c}\right)+\mathrm{P}\left(A_{1}^{c} \cap A_{2}\right) \mathrm{P}\left(A_{3} \mid A_{1}^{c} \cap A_{2}\right)+\mathrm{P}\left(A_{1}^{c} \cap A_{2}^{c}\right) \mathrm{P}\left(A_{3} \mid A_{1}^{c} \cap A_{2}^{c}\right) \\
& =\frac{m}{n} \quad \frac{m-1}{n-1} \quad \frac{m-2}{n-2}+\frac{m}{n} \quad \frac{n-m}{n-1} \quad \frac{m-1}{n-2} \quad+\frac{n-m}{n} \quad \frac{m}{n-1} \quad \frac{m-1}{n-2} \quad+\frac{n-m}{n} \frac{n-1-m}{n-1} \frac{m}{n-2} \\
& =\frac{m}{n}
\end{aligned}
$$

> Fairness: The first bidder does not have an advantage over the others.
Does naivety cause fairness?

## Bayes' Formula

For a partition $A_{j}$ of $\Omega$,

$$
\mathrm{P}\left(A_{j} \mid B\right)=\frac{\mathrm{P}\left(A_{j} \cap B\right)}{\mathrm{P}(B)}=\frac{\mathrm{P}\left(A_{j}\right) \mathrm{P}\left(B \mid A_{j}\right)}{\sum_{i=1}^{\infty} \mathrm{P}\left(A_{i}\right) \mathrm{P}\left(B \mid A_{i}\right)} .
$$

- A woman has recently started a friendship with a man. She is generally happy with the friendship.
- But she expects gifts such as flowers. Common wisdom: Gifts are indication of affection.
- Getting no gifts, she wants to assess whether the man is truly in love or possibly searching for another.
- Events: $N$ no gifts, $L$ truly in love, $S$ possibly searching.
- She wants to know $\mathrm{P}(L \mid N)$.
- Available data:
» $\mathrm{P}(L)=30 \%$ judging from the friendship.
» $\mathrm{P}(N \mid L)=40 \%$ and $\mathrm{P}(N \mid S)=60 \%$ according to magazine surveys, best available data.

$$
\mathrm{P}(L \mid N)=\frac{\mathrm{P}(N \mid L) \mathrm{P}(L)}{\mathrm{P}(N \mid L) \mathrm{P}(L)+\mathrm{P}(N \mid S) \mathrm{P}(S)}=\frac{0.4 * 0.3}{0.4 * 0.3+0.6 * 0.7}=\frac{12}{54}=0.2222<0.3
$$

- Available data change: A searching man gifts more than others to hide his intentions
» $\mathrm{P}(N \mid L)=60 \%$ and $\mathrm{P}(N \mid S)=40 \%$ according to recent magazine surveys.

$$
\mathrm{P}(L \mid N)=\frac{\mathrm{P}(N \mid L) \mathrm{P}(L)}{\mathrm{P}(N \mid L) \mathrm{P}(L)+\mathrm{P}(N \mid S) \mathrm{P}(S)}=\frac{0.6 * 0.3}{0.6 * 0.3+0.4 * 0.7}=\frac{18}{46}=0.3913>0.3
$$



Loves or not

## Guilty Verdict After a Confession

A person is accused of an offence.

- Generally, a confession of the offence is treated as a sign that he is guilty.
- Events: $I$ the person is innocent, $G$ he is guilty, $V$ he verbally confesses.

$$
\frac{\mathrm{P}(G \mid V)}{\mathrm{P}(I \mid V)}=\frac{\mathrm{P}(G \mid V)=\frac{\mathrm{P}(V \mid G) \mathrm{P}(G)}{\mathrm{P}(V \mid G) \mathrm{P}(G)+\mathrm{P}(V \mid I) \mathrm{P}(I)}}{\mathrm{P}(I \mid V)=\frac{\mathrm{P}(V \mid I) \mathrm{P}(I)}{\mathrm{P}(V \mid G) \mathrm{P}(G)+\mathrm{P}(V \mid I) \mathrm{P}(I)}}=\frac{\mathrm{P}(V \mid G)}{\mathrm{P}(V \mid I)} \frac{\mathrm{P}(G)}{\mathrm{P}(I)}
$$

Prior $\frac{\mathrm{P}(G)}{\mathrm{P}(I)} \xrightarrow{\text { Confession }}: \begin{array}{c:c}\mathrm{P}(V \mid G) \\ & \frac{\mathrm{P}(G)}{\mathrm{P}(I)} \\ \text { or }<1 ?\end{array}$
Can a confession decrease the chances of a guilty verdict?
What does guilty "beyond a reasonable doubt" mean?
 \& possibly a confession

$$
\text { Doubt } \Rightarrow \text { Uncertainty } \Rightarrow \mathrm{P}(\text { other explanation })>0
$$

Inconsistency in interpretation of laws?
A person, guilty with probability $70 \%=\mathrm{P}(\mathrm{G})=1-\mathrm{P}(\mathrm{I})$, confesses, what is the likelihood of being guilty?

- If innocent, confesses with $40 \%$. If guilty, confesses with $60 \%$.
- $\mathrm{P}(\mathrm{V} \mid \mathrm{I})=0.4, \mathrm{P}(\mathrm{V} \mid \mathrm{G})=0.6$, then $\mathrm{P}(\mathrm{G} \mid \mathrm{V}) / \mathrm{P}(\mathrm{I} \mid \mathrm{V})=(0.6 / 0.4)(0.7 / 0.3)=7 / 2$.
- Since $\mathrm{P}(\mathrm{G} \mid \mathrm{V})+\mathrm{P}(\mathrm{I} \mid \mathrm{V})=1, \mathrm{P}(\mathrm{G} \mid \mathrm{V})=7 / 9=0.77>0.7=\mathrm{P}(\mathrm{G})$. Guilty probability $\uparrow$ with a confession.
- Suppose innocent confesses with $60+\epsilon \%>60 \%$ of a guilty confessing. Everything else is the same.
- $\mathrm{P}(\mathrm{V} \mid \mathrm{I})=0.6+\epsilon$, then $\mathrm{P}(\mathrm{G} \mid \mathrm{V}) / \mathrm{P}(\mathrm{I} \mid \mathrm{V})=(0.6 /(0.6+\epsilon))(0.7 / 0.3)<7 / 3$.
- Hence, $\mathrm{P}(\mathrm{G} \mid \mathrm{V})<0.7=\mathrm{P}(\mathrm{G})$. Guilty probability $\downarrow$ with a confession.


## Answering a Question Correctly by Chance

- Ex: In a multiple choice exam, the instructor provides 4 alternatives: a), b), c) and d). A student knows the true answer to a particular question with probability 0.6 . If the student does not know the answer, he randomly picks one of the alternatives from a) to d).
$>$ If this question is answered correctly by the student, what is the probability that it is answered correctly by chance?
- Let $A_{T}$ be the event that the student knows the True answer.
- Let $A_{C}$ be the event that the student answers the question Correctly.
- We want $\mathrm{P}\left(A_{T}^{C} \mid A_{C}\right)$.
- We know $\mathrm{P}\left(A_{T}\right)=1-\mathrm{P}\left(A_{T}^{c}\right)=0.6$ and

$$
\mathrm{P}\left(A_{T}^{c} \mid A_{C}\right)=\frac{\mathrm{P}\left(A_{C} \mid A_{T}^{c}\right) \mathrm{P}\left(A_{T}^{c}\right)}{\mathrm{P}\left(A_{C} \mid A_{T}^{c}\right) \mathrm{P}\left(A_{T}^{c}\right)+\mathrm{P}\left(A_{C} \mid A_{T}\right) \mathrm{P}\left(A_{T}\right)}=\frac{(0.25)(0.4)}{(0.25)(0.4)+1(0.6)}=\frac{1}{7}=0.142
$$

- The student guesses the correct answer without knowing the correct answer with $14.2 \%$ chance.


## Summary

- Unions, Intersections
- Independence
- Conditioning
- Bayes' Formula

