Markov Chains

Outline

- Stochastic Processes and Markov Property
- Markov Chains
- Chapman-Kolmogorov Equations
- Classification of States
- Invariant Measures, Time Averages, Limiting Probabilities
Stochastic Processes and Markov Property

- **Stochastic Process**
 - Discrete-time: \(\{X_n : n \geq 0\} \), integer number \(n \) indexed random variables
 - Continuous-time: \(\{X(t) : t \geq 0\} \), real number \(t \) indexed random variables
 - Discrete state-space if each \(X_n \) or \(X(t) \) has a countable range
 - Continuous state-space if each \(X_n \) or \(X(t) \) has an uncountable range
 - Ex: Markov chains have discrete-time and discrete state-space

- **Markov Property**: Future conditioned on the present is independent of the past
Markov Chains

- Markov Chain: Discrete time, discrete state space Markovian stochastic process.
 - Often described by its transition matrix P

- Ex: Moods \{Cooperative, Judgmental, Oppositional\} of a person as Markov chain

- Ex: A random walk process has state space of integers $\ldots, -2, -1, 0, 1, 2, \ldots$. For a fixed probability $0 \leq p \leq 1$, the process either moves forward or backward:
 - $P(X_{n+1} = i + 1|X_n = i) = 1 - P(X_{n+1} = i - 1|X_n = i)$
 - The transition matrix has infinite dimensions and is sparse

\[
\begin{array}{ccccccc}
\text{...} & \text{-2} & \text{-1} & 0 & 1 & 2 & \text{...} \\
\text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\text{-2} & \text{...} & 0 & p & 0 & \text{...} & \text{...} \\
\text{-1} & 0 & 1-p & 0 & p & 0 & \text{...} & \text{...} \\
0 & 0 & 1-p & 0 & p & 0 & \text{...} & \text{...} \\
1 & 0 & 1-p & 0 & p & 0 & \text{...} & \text{...} \\
2 & 0 & 1-p & 0 & \text{...} & \text{...} & \text{...} & \text{...} \\
\text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} & \text{...} \\
\end{array}
\]
Chapman-Kolmogorov Equations

- Probability of going from state x to state y in n steps
 \[p_{x,y}^{<n>} = P(X_{k+n} = y | X_k = x) \]

- To go from x to y in $n + m$ steps, go through state z in the nth step
 \[p_{x,y}^{<n+m>} = \sum_{z \in \mathcal{X}} p_{x,z}^{<n>} p_{z,y}^{<m>} \]

- Using transition matrices
 \[p^{n+m} = p^n p^m \]
Classification of States: Communication

- State \(y \) is accessible from state \(x \) if \(p_{x,y}^{<n>} > 0 \) for some \(n \).

- Contrapositive: If state \(y \) is not accessible from \(x \), then \(p_{x,y}^{<n>} = 0 \) for all \(n \).

\[
P(\text{Reaching } y \text{ ever } | \text{ Starting in } x) = \sum_{n=0}^{\infty} p_{x,y}^{<n>} = 0
\]

- States \((x, y)\) communicate if \(y \) is accessible from \(x \) and \(x \) is accessible from \(y \)

- Ex: Communication is a relation on \((\mathcal{X} \times \mathcal{X})\). This relation is reflexive, symmetric and transitive. Hence, it is an equivalence relation.

- The communication relation splits \(\mathcal{X} \) into equivalence classes: Each class includes the set of states that communicate with each other.

- Ex: The transition matrix below on the left creates classes \(\{1, 4\}, \{2\}, \{3, 5\} \). We can define an aggregate state Markov chain whose states are these classes as below in the middle. The new chain is likely to end up in \(\{1, 4\} \) below on the right.

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & + & + & + & + \\
2 & + & + & + & + \\
3 & + & + & + & + \\
4 & + & + & + & + \\
5 & + & + & + & + \\
\end{array}
\]

\[
\begin{array}{ccccc}
1,4 & 2 & 3,5 \\
1,4 & + & + & + & + \\
2 & + & + & + & + \\
3,5 & + & + & + & + \\
\end{array}
\]

\{1,4\} \rightarrow \{2\} \rightarrow \{3,5\}
Classification of States: Periodicity

- Ex: The transition matrix below on the left creates classes \{1,2,4\} and \{3,5\}. These classes are not accessible from each other, so the chain decomposes into two chains, with transition matrices on the right.

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
1 & + & + & & & \\
2 & + & & & & \\
3 & & & + & & \\
4 & + & & & & \\
5 & & & & + & \\
\end{array}
\begin{array}{cccc}
1 & 2 & 4 & \\
1 & + & + & \\
2 & + & & \\
4 & + & & \\
\end{array}
\begin{array}{ccc}
3 & 5 & \\
3 & + & \\
5 & + & \\
\end{array}
\]

- An irreducible Markov chain has only one class of states. A reducible Markov chains as two examples above illustrate either eventually moves into a class or can be decomposed. In view of these, limiting probability of a state in an irreducible chain is considered. Irreducibility does not guarantee the presence of limiting probabilities.

- Ex: A Markov chain with two states \(\mathcal{X} = \{x, y\} \) such that \(p_{x,y} = p_{y,x} = 1 \). Starting in state \(x \), we can ask for \(p_{x,x}^{<n>} \). This probability has a simple but periodic structure: It is 1 when \(n \) is even; 0 otherwise. The limit of \(p_{x,x}^{<n>} \) does not exist as \(n \) approached infinity.

- To talk about limiting probabilities, we need to rule out periodicity. Period \(d(x) \) of state \(x \) is the greatest common divisor (gcd) of all the integers in \(\{n \geq 1: p_{x,x}^{<n>} > 0\} \).

\[
d(x) = \gcd\{n \geq 1: p_{x,x}^{<n>} > 0\}.
\]
Markov Chain Examples with Different Periods

2 States
- Period 2 = \(\text{gcd}\{2,4,\ldots\} \)

3 States
- Period 3 = \(\text{gcd}\{3,6,\ldots\} \)
- Period 1 = \(\text{gcd}\{2,3,\ldots\} \)

4 States
- Period 4 = \(\text{gcd}\{4,8,\ldots\} \)
- Period 1 = \(\text{gcd}\{4,7,\ldots\} \)

Many States
All possible transitions with 2 communicating states \Rightarrow The same period

Period 2 = \(\text{gcd}\{2,4,6\ldots\} \)
Period is a Class Property

- Period of any two states in the same class are the same.
 - For classes with two states only, see the last page
 - Consider classes with at least three states
 - Consider x, y such that $p_{x,y}^{<m>} > 0$ and $p_{y,x}^{<n>} > 0$ for some m and n.
 - Such m, n exist because x, y are in the same class
 - Period of state x, $d(x) = \gcd\{s \geq 1 : p_{x,x}^{<s>} > 0\}$
 - By definition of m, n and for any s with $p_{x,x}^{<s>} > 0$.
 - $p_{y,y}^{<n+m>} \geq p_{y,x}^{<n>} p_{x,y}^{<m>} > 0$ and $p_{y,y}^{<n+s+m>} \geq p_{y,x}^{<n>} p_{x,x}^{<s>} p_{x,y}^{<m>} > 0$
 - Such $s \geq 1$ exists because x communicates with another (third) state z in its class
 - $d(y)$ divides both $n + m$ and $n + s + m$
 - $d(y)$ divides every s with $p_{x,x}^{<s>} > 0$
 - $d(y)$ divides \gcd of such s
 - Hence, $d(y)$ divides $d(x)$.
 - Repeat by changing the roles
 - $x \leftrightarrow y \Rightarrow d(y)$ divides $d(x)$.
 - Periods $d(x)$ and $d(y)$ divide each other \Rightarrow they must be equal.
Classification of States: Recurrence

◆ A state is called recurrent if the chain returns to the state in finite steps with probability 1.
 - The first time state visits state \(y \) after starting at state \(x \) is a random variable \(\tau_{x,y} \):
 \[\tau_{x,y} = \min\{n \geq 1 : X_n = y \text{ and } X_0 = x\} \]
 - This variable is also called the hitting time
 - Recurrent state \(x \) iff \(P(\tau_{x,x} < \infty) = 1 \); Otherwise, transient state.

◆ A recurrent state has only finite value of hitting time.

◆ A positive recurrent state has \(E(\tau_{x,x}) < \infty \). Positive recurrence \(\Rightarrow \) recurrence.
 - Ex: Heavy tail hitting time distributions, e.g., Pareto, can have infinite expected value.

◆ Ex: Starting with \(X_0 = x \), let \(N_x \) be the number times the chain is in \(x \):
 \[N_x = 1_{X_0=x} + 1_{X_1=x} + 1_{X_2=x} + \cdots \]
 - We have
 \[E(N_x \mid X_0 = x) = E \left(\sum_{n=0}^{\infty} 1_{X_n=x} \mid X_0 = x \right) = \sum_{n=0}^{\infty} E(1_{X_n=x} \mid X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{<n>} \]
 The last term is more operational as it is based on transition probabilities.
Recurrence Related Derivations

◆ The expected value, of the number of times the chain is in x, $E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{<n>}$
can also be written as

$$E(N_x|X_0 = x) = \frac{1}{1 - P(\tau_{x,x} < \infty)}$$

– Note that to be in state x at time $n \geq 1$, the chain must come to state x for the first time in time k for $k = 1 \ldots n$. This probabilistic reasoning yields

$$p_{x,x}^{<n>} = \sum_{k=1}^{n} P(\tau_{x,x} = k)p_{x,x}^{<n-k>}$$

– On the other hand,

$$\sum_{n=0}^{\infty} p_{x,x}^{<n>} - 1 = \sum_{n=1}^{\infty} p_{x,x}^{<n>} = \sum_{n=1}^{\infty} \sum_{k=1}^{n} P(\tau_{x,x} = k)p_{x,x}^{<n-k>} = \sum_{n=1}^{\infty} P(\tau_{x,x} = k) \sum_{n=k}^{\infty} p_{x,x}^{<n-k>} = \sum_{k=0}^{\infty} P(\tau_{x,x} = k) \sum_{n=0}^{\infty} p_{x,x}^{<n>} = P(\tau_{x,x} < \infty) \sum_{n=0}^{\infty} p_{x,x}^{<n>}$$

– Hence, $E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{<n>} = \frac{1}{1 - P(\tau_{x,x} < \infty)}$.

◆ If $P(\tau_{x,x} < \infty) = 1$, the state x is recurrent and $E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{<n>} = \infty$.

◆ If $P(\tau_{x,x} < \infty) < 1$, the state x is transient and $E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{<n>} < \infty$.
Infinite Hitting Time

- \(P(\tau_{x,x} < \infty) < 1 \iff P(\tau_{x,x} = \infty) > 0 \)

Example:
- \(P(\tau_{1,1} = \infty) = \frac{1}{2} \) and \(P(\tau_{1,1} = 2) = \frac{1}{2} \)
- \(N_1: \) Number of times to visit state 1

 - \(N_1 = 1 \) wp \(\frac{1}{2} \), \(N_1 = 2 \) wp \(\left(\frac{1}{2}\right)^2 \)

 - \(N_1 = k \) wp \(\left(\frac{1}{2}\right)^k \)

- \(E(N_1) = 2 = \frac{1}{1 - \frac{1}{2}} = \frac{1}{1 - P(\tau_{1,1} < \infty)} \)

- \(\sum_{k=0}^{\infty} P(\tau_{1,1} = k) \)?

 - \(\lim_{n \to \infty} \sum_{k=0}^{n} P(\tau_{1,1} = k) = 0 + \frac{1}{2} + 0 + 0 + \ldots = \frac{1}{2} \)

 - \(P(\tau_{1,1} = \infty) + \lim_{n \to \infty} \sum_{k=0}^{n} P(\tau_{1,1} = k) = \frac{1}{2} + \frac{1}{2} = 1 \)
Invariant Measures

- Invariant measure ρ, possibly infinite dimensional, column vector with $\rho \geq 0$ satisfying
 $$\rho^T = \rho^T P$$

 - Viewing transition matrix P as an operator, the invariant measure is the fixed point of the operator; successive applications of the operator does not move the invariant measure.
 - Invariant measure is not unique: ρ invariant $\Rightarrow 2\rho$ invariant
 - Towards uniqueness, normalize the invariant measure:
 - $\pi = \frac{\rho}{\rho^T \mathbf{1}}$ for $\rho^T \mathbf{1} < \infty$, where $\mathbf{1}$ is a column vector of ones.

- Invariant probability measure π satisfies
 » Invariance: $\pi^T = \pi^T P$
 » Normalization: $\pi^T \mathbf{1} = 1$
 » Nonnegativity: $\pi \geq 0$

- Ex: Consider a 4-state Markov Chain with

$$P = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{bmatrix}$$

 - This chain has invariant measures $\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]$, $[1, 1, 1, 1]$, $[2, 2, 2, 2]$ or $[a, a, a, a]$ for $a \geq 0$
 - Among these, the only invariant probability is $\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]$
Invariant Measure and Time Averages

- Ex: Consider a 4-state Markov Chain with
 \[P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \]

- This chain has invariant measures \[\left[\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7} \right], \left[2, 2, 1, 2 \right], \left[4, 4, 2, 4 \right] \text{ or } \left[2a, 2a, a, 2a \right] \] for \(a \geq 0 \)

- Among these, the only invariant probability is \[\left[\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7} \right] \] as
 \[\left[\begin{array}{cccc} 2 & 2 & 1 & 2 \\ 2/7 & 2/7 & 2/7 & 2/7 \end{array} \right] = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right] \left[\begin{array}{cccc} 2 & 2 & 1 & 2 \\ 2/7 & 2/7 & 2/7 & 2/7 \end{array} \right] \]

- Consider two cycles, triangle and square, defined as
 - Think of the Markov Chain as \(\frac{1}{2} \text{triangle} + \frac{1}{2} \text{square} \).
 - In the triangle, the chain takes 3 steps to come back.
 - In the square, it takes 4 steps.
 - In 7 steps, the chain returns to state 1 by visiting \{1,2,4\} twice and \{3\} once on average

 - \(E(\tau_{1,1}) = 3.5 = \frac{1}{2} \times 3 + \frac{1}{2} \times 4 \) and \(E(\sum_{n=0}^{\tau_{1,1}} 1_{X_n=1}|X_0=1) = E(\sum_{n=0}^{\tau_{1,1}} 1_{X_n=2}|X_0=1) = E(\sum_{n=0}^{\tau_{1,1}} 1_{X_n=4}|X_0=1) = 1 \), whereas \(E(\sum_{n=0}^{\tau_{1,1}} 1_{X_n=3}|X_0=1) = 0.5 \).

 - An invariant measure turns out to be the expected number of visits to a particular state: \(\left[1, 1, \frac{1}{2}, 1 \right] \)
 - The invariant probability is \[\left[\frac{1}{3.5}, \frac{1}{3.5}, \frac{1}{3.5}, \frac{1}{3.5} \right] = \left[\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7} \right] \]
Invariant Measure, Time Average & Limiting Probability

◆ In the previous example, time averages are 1/3.5, 1/3.5, 1/7, 1/3.5 represent the percentage of time the chain stays in states 1, 2, 3, 4.

◆ In general, time average random variable is not over single cycle but over N steps for $N \to \infty$:

$$\lim_{N \to \infty} \frac{\sum_{n=0}^{N} 1_{X_n = x}}{N}$$

◆ Consistency Result: An irreducible and positive recurrent Markov chain X_n has
 – The unique invariant probability π, and
 – Time average converges to this invariant probability almost surely $\frac{\sum_{n=0}^{N} 1_{X_n = x}}{N} \to a.s. \pi_x$

◆ The consistency result implies that we do not have to separately search for invariance probability and time averages; it suffices to find one of these. But the result is not operational.

◆ Towards an operational method, let us introduce limiting probability

$$\pi_y = \lim_{n \to \infty} p_{x,y}^{<n>}$$

◆ Note the limiting probability is independent of the initial state x; possible only in an aperiodic chain

◆ Crude methodology: Keep multiplying the transition matrix by itself to obtain P^n until its rows converge to each other so that any one of the rows can be taken as the limiting probability.

◆ Issues with the crude methodology:
 – No assurance of convergence
 – No relation between limiting probability, time average and invariant measure
Main Result
Invariant Measure = Time Average = Limiting Probability

Main Result: For an irreducible Markov chain with a period of 1, if an invariant probability measure π exists, i.e., a solution to $\pi^T = \pi^T P$, $\pi^T 1 = 1$, $\pi \geq 0$ then

– the Markov chain is positive recurrent,
– π is unique,
– π is also the limiting probability,
– for each state x, $\pi_x > 0$.

◆ Since irreducible & positive recurrent chains have time average $\rightarrow as$ invariant measure, π computed above is also the time average

◆ All we have to check is 1) irreducible, 2) aperiodic 3) solution to $\pi^T = \pi^T P$, $\pi^T 1 = 1$, $\pi \geq 0$.

◆ The solution to $\pi^T = \pi^T P$, $\pi^T 1 = 1$, $\pi \geq 0$ is $1^T (I - P + \|)^{-1}$, where I is the identity matrix and $\|$ is the matrix of ones, both of these matrices have the same size as the transition matrix P.

– To obtain this, $\pi^T = \pi^T P$ implies $\pi^T (I - P) = 0$.
– Hence, $\pi^T (I - P + \|) = 0^T + \pi^T 1 = 1^T$, where 0 is the column vector of only 0s.
– When the Markov chain is irreducible $(I - P + \|)$ can be shown to have the inverse $(I - P + \|)^{-1}$, so

$$\pi^T = 1^T (I - P + \|)^{-1}$$
Limiting Probability Example

- Ex: Consider a 4-state Markov Chain with

\[
P = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1/2 & 1/2 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

- The chain is irreducible and aperiodic, main result applies

\[
(I - P + \mathbb{I})^{-1} = \begin{bmatrix}
2 & 0 & 1 & 1 \\
1 & 2 & 1/2 & 1/2 \\
1 & 1 & 2 & 0 \\
0 & 1 & 2 & 1
\end{bmatrix}, \text{ in R } \texttt{"IP1=rbind(c(2,0,1,1),c(1,2,1/2,1/2),c(1,1,2,0),c(0,1,1,2))"}.
\]

\[
(I - P + \mathbb{I})^{-1} = \begin{bmatrix}
6.5 & 3 & -2 & -4 \\
-3.5 & 7 & 0 & 0 \\
-1.5 & -5 & 8 & 2 \\
2.5 & -1 & -4 & 6
\end{bmatrix}, \text{ in R } \texttt{"solve(IP1)"}
\]

\[
1^T (I - P + \mathbb{I})^{-1} = \begin{bmatrix}
4/14, 4/14, 2/14, 4/14
\end{bmatrix}, \text{ in R } \texttt{"c(1,1,1,1) \%\% solve(IP1)"}
\]

- On the other hand, \(P^n \) rows convergence to \(\begin{bmatrix}
4/14, 4/14, 2/14, 4/14
\end{bmatrix} \):

\[
P_{15} = \begin{bmatrix}
3.9375 & 5.2500 & 1.7500 & 3.0625 \\
3.0625 & 3.9375 & 2.6250 & 4.3750 \\
3.5000 & 2.6250 & 2.6250 & 5.2500 \\
5.2500 & 3.5000 & 1.3125 & 3.9375
\end{bmatrix}, \quad P_{30} = \begin{bmatrix}
3.84 & 4.05 & 2.10 & 4.01 \\
4.02 & 3.84 & 2.02 & 4.12 \\
4.18 & 3.86 & 1.91 & 4.05 \\
4.05 & 4.18 & 1.93 & 3.84
\end{bmatrix}
\]

\[
\text{and } P_{60} = \begin{bmatrix}
4.00 & 4.00 & 2.00 & 4.00 \\
4.00 & 4.00 & 2.00 & 4.00 \\
4.00 & 4.00 & 2.00 & 4.00 \\
4.00 & 4.00 & 2.00 & 4.00
\end{bmatrix}
\]
Summary

- Stochastic Processes and Markov Property
- Markov Chains
- Chapman-Kolmogorov Equations
- Classification of States
- Invariant Measures, Time Averages, Limiting Probabilities