Markov Chains

Outline

- Stochastic Processes and Markov Property
- Markov Chains
- Chapman-Kolmogorov Equations
- Classification of States
- Invariant Measures, Time Averages, Limiting Probabilities
Stochastic Processes and Markov Property

- **Stochastic Process**
 - Discrete-time: \(\{ X_n : n \geq 0 \} \), integer number \(n \) indexed random variables
 - Continuous-time: \(\{ X(t) : t \geq 0 \} \), real number \(t \) indexed random variables
 - Discrete state-space if each \(X_n \) or \(X(t) \) has a countable range
 - Continuous state-space if each \(X_n \) or \(X(t) \) has an uncountable range
 - Ex: Markov chains have discrete-time and discrete state-space

- **Markov Property**: Future conditioned on the present is independent of the past
Markov Chains

- **Markov Chain**: Discrete time, discrete state space Markovian stochastic process.
 - Often described by its transition matrix \(P \)

- **Ex**: Moods \{Cooperative, Judgmental, Oppositional\} of a person as Markov chain

- **Ex**: A random walk process has state space of integers \(\ldots, -2, -1, 0, 1, 2, \ldots \). For a fixed probability \(0 \leq p \leq 1 \), the process either moves forward or backward:
 - \(P(X_{n+1} = i + 1 | X_n = i) = 1 - P(X_{n+1} = i - 1 | X_n = i) \)
 - The transition matrix has infinite dimensions and is sparse

<table>
<thead>
<tr>
<th></th>
<th>...</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>-2</td>
<td>...</td>
<td>0</td>
<td>(p)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>1(- p)</td>
<td>0</td>
<td>(p)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1(- p)</td>
<td>0</td>
<td>(p)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1(- p)</td>
<td>0</td>
<td>(p)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1(- p)</td>
<td>0</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Chapman-Kolmogorov Equations

- Probability of going from state x to state y in n steps
 \[p_{x,y}^{<n>} = P(X_{k+n} = y | X_k = x) \]

- To go from x to y in $n + m$ steps, go through state z in the nth step
 \[p_{x,y}^{<n+m>} = \sum_{z \in \mathcal{X}} p_{x,z}^{<n>} p_{z,y}^{<m>} \]

- Using transition matrices
 \[p^{n+m} = p^n p^m \]
Classification of States: Communication

- State \(y \) is accessible from state \(x \) if \(p_{x,y}^{\leq n} > 0 \) for some \(n \).
- Contrapositive: If state \(y \) is not accessible from \(x \), then \(p_{x,y}^{\leq n} = 0 \) for all \(n \).

\[
P(\text{Reaching } y \text{ ever } | \text{ Starting in } x) = \sum_{n=0}^{\infty} p_{x,y}^{\leq n} = 0
\]

- States \((x, y)\) communicate if \(y \) is accessible from \(x \) and \(x \) is accessible from \(y \)
- Ex: Communication is a relation on \((\mathcal{X} \times \mathcal{X})\). This relation is reflexive, symmetric and transitive. Hence, it is an equivalence relation.
- The communication relation splits \(\mathcal{X} \) into equivalence classes: Each class includes the set of states that communicate with each other.
- Ex: The transition matrix below on the left creates classes \{1,4\}, \{2\}, \{3,5\}. We can define an aggregate state Markov chain whose states are these classes as below in the middle. The new chain is likely to end up in \{1,4\} below on the right.
Classification of States: Periodicity

- Ex: The transition matrix below on the left creates classes \{1,2,4\} and \{3,5\}. These classes are not accessible from each other, so the chain decomposes into two chains, with transition matrices on the right.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

- An irreducible Markov chain has only one class of states. A reducible Markov chains as two examples above illustrate either eventually moves into a class or can be decomposed. In view of these, limiting probability of a state in an irreducible chain is considered. Irreducibility does not guarantee the presence of limiting probabilities.

- Ex: A Markov chain with two states \(\mathcal{X} = \{x, y\}\) such that \(p_{x,y} = p_{y,x} = 1\). Starting in state \(x\), we can ask for \(p_{x,x}^{<n>}\). This probability has a simple but periodic structure: It is 1 when \(n\) is even; 0 otherwise. The limit of \(p_{x,x}^{<n>}\) does not exist as \(n\) approached infinity.

- To talk about limiting probabilities, we need to rule out periodicity. Period \(d(x)\) of state \(x\) is the greatest common divisor (gcd) of all the integers in \(\{n \geq 1: p_{x,x}^{<n>} > 0\}\).

\[
d(x) = gcd\{n \geq 1: p_{x,x}^{<n>} > 0\}.
\]
Markov Chain Examples with Different Periods

<table>
<thead>
<tr>
<th>States</th>
<th>Period 2</th>
<th>Period 3</th>
<th>Period 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$gcd{2,4,\ldots}$</td>
<td>$gcd{3,6,\ldots}$</td>
<td>$gcd{4,8,\ldots}$</td>
</tr>
<tr>
<td>3</td>
<td>$gcd{2,3,\ldots}$</td>
<td>$gcd{2,3,\ldots}$</td>
<td>$gcd{3,4,\ldots}$</td>
</tr>
<tr>
<td>4</td>
<td>$gcd{2,4,6,\ldots}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All possible transitions with 2 communicating states \Rightarrow The same period
Period is a Class Property

- Period of any two states in the same class are the same.
 - Sufficient to consider classes with at least three states
 - Consider x, y such that $p_{x,y}^{n} > 0$ and $p_{y,x}^{m} > 0$ for some m and n.
 - Such m, n exist because x, y are in the same class
 » Period of state x, $d(x) = \gcd\{s \geq 1 : p_{x,x}^{s} > 0\}$
 » By definition of m, n and for any s with $p_{x,x}^{s} > 0$.
 - $p_{y,y}^{n+m} \geq p_{y,x}^{n} p_{x,y}^{m} > 0$ and $p_{y,y}^{n+s+m} \geq p_{y,x}^{n} p_{x,x}^{s} p_{x,y}^{m} > 0$
 - Such $s \geq 1$ exists because x communicates with other (third) states in its class
 » $d(y)$ divides both $n + m$ and $n + s + m$, so $d(y)$ divides every s with $p_{x,x}^{s} > 0$.
 » Hence, $d(y)$ divides $d(x)$.
 - Repeat the argument by changing the roles of x, y to obtain $d(y)$ divides $d(x)$.
 - Periods $d(x)$ and $d(y)$ divide each other, so they must be equal.
Classification of States: Recurrence

- A state is called **recurrent** if the chain returns to the state in finite steps with probability 1.
 - The first time state visits state y after starting at state x is a random variable $\tau_{x,y}$:
 $$\tau_{x,y} = \min\{n \geq 1: X_n = y \text{ and } X_0 = x\}$$
 - This variable is also called the hitting time
 - Recurrent state x iff $P(\tau_{x,x} < \infty) = 1$; Otherwise, transient state.

- A recurrent state has only finite value of hitting time.
- A **positive recurrent** state has $E(\tau_{x,x}) < \infty$. Positive recurrence \Rightarrow recurrence.
 - Ex: Heavy tail hitting time distributions, e.g., Pareto, can have infinite expected value.

- Ex: Starting with $X_0 = x$, let N_x be the number times the chain is in x:
 $$N_x = 1_{X_0=x} + 1_{X_1=x} + 1_{X_2=x} + \cdots$$
 - We have
 $$E(N_x | X_0 = x) = E\left(\sum_{n=0}^{\infty} 1_{X_n=x} | X_0 = x\right) = \sum_{n=0}^{\infty} E(1_{X_n=x} | X_0 = x) = \sum_{n=0}^{\infty} p_x^{<n>}$$
 The last term is more operational as it is based on transition probabilities.
Recurrence Related Derivations

- The expected value, of the number of times the chain is in \(x \), \(E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{<n>} \) can also be written as

\[
E(N_x|X_0 = x) = \frac{1}{1 - P(\tau_{x,x} < \infty)}
\]

- Note that to be in state \(x \) at time \(n \geq 1 \), the chain must come to state \(x \) for the first time in time \(k \) for \(k = 1 \ldots n \). This probabilistic reasoning yields

\[
p_{x,x}^{<n>} = \sum_{k=1}^{n} P(\tau_{x,x} = k)p_{x,x}^{<n-k>}
\]

- On the other hand,

\[
\sum_{n=0}^{\infty} p_{x,x}^{<n>} - 1 = \sum_{n=1}^{\infty} p_{x,x}^{<n>} = \sum_{n=1}^{\infty} \sum_{k=1}^{n} P(\tau_{x,x} = k)p_{x,x}^{<n-k>}
\]

\[
= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} P(\tau_{x,x} = k)p_{x,x}^{<n-k>} = \sum_{k=0}^{\infty} P(\tau_{x,x} = k) \sum_{n=k}^{\infty} p_{x,x}^{<n-k>}
\]

\[
= \sum_{k=0}^{\infty} P(\tau_{x,x} = k) \sum_{n=0}^{\infty} p_{x,x}^{<n>} = P(\tau_{x,x} < \infty) \sum_{n=0}^{\infty} p_{x,x}^{<n>}
\]

- Hence, \(E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{<n>} = \frac{1}{1 - P(\tau_{x,x} < \infty)} \).

- If \(P(\tau_{x,x} < \infty) = 1 \), the state \(x \) is **recurrent** and \(E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{<n>} = \infty \).

- If \(P(\tau_{x,x} < \infty) < 1 \), the state \(x \) is **transient** and \(E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{<n>} < \infty \).
Invariant Measures

- Invariant measure ρ, possibly infinite dimensional, column vector with $\rho \geq 0$ satisfying $\rho^T = \rho^T P$
 - Viewing transition matrix P as an operator, the invariant measure is the fixed point of the operator; successive applications of the operator does not move the invariant measure.
 - Invariant measure is not unique: ρ invariant $\Rightarrow 2\rho$ invariant
 - Towards uniqueness, normalize the invariant measure:
 - $\pi = \frac{\rho}{\rho^T 1}$ for $\rho^T 1 < \infty$, where 1 is a column vector of ones.
 - Invariant probability measure π satisfies
 - Invariance: $\pi^T = \pi^T P$
 - Normalization: $\pi^T 1 = 1$
 - Nonnegativity: $\pi \geq 0$
- Ex: Consider a 4-state Markov Chain with

\[
P = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

- This chain has invariant measures $\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]$, $[1, 1, 1, 1]$, $[2, 2, 2, 2]$ or $[a, a, a, a]$ for $a \geq 0$
- Among these, the only invariant probability is $\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]$
Invariant Measure and Time Averages

Ex: Consider a 4-state Markov Chain with

\[
P = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1/2 & 1/2 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

- This chain has invariant measures \([2/7, 2/7, 1/7, 2/7]\), \([2, 2, 1, 2]\), \([4, 4, 2, 4]\) or \([2a, 2a, a, 2a]\) for \(a \geq 0\)
- Among these, the only invariant probability is \([2/7, 2/7, 1/7, 2/7]\) as

\[
\begin{bmatrix} 2 & 2 & 1 & 2 \\ 7 & 7 & 1/7 & 2/7 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 & 2 \\ 7 & 7 & 1/7 & 2/7 \end{bmatrix}
\]

- Consider two cycles, triangle and square, defined as
- Think of the Markov Chain as \(\frac{1}{2}\)triangle + \(\frac{1}{2}\)square.
- In the triangle, the chain takes 3 steps to come back.
- In the square, it takes 4 steps.
- In 7 steps, the chain returns to state 1 by visiting \(\{1, 2, 4\}\) twice and \(\{3\}\) once on average
- \(E(\tau_{1,1}) = 3.5 = \frac{1}{2}3 + \frac{1}{2}4\) and \(E(\sum_{n=0}^{\tau_{1,1}} 1_{X_n=1}|X_0 = 1) = E(\sum_{n=0}^{\tau_{1,1}} 1_{X_n=2}|X_0 = 1) = E(\sum_{n=0}^{\tau_{1,1}} 1_{X_n=4}|X_0 = 1) = 1\), whereas \(E(\sum_{n=0}^{\tau_{1,1}} 1_{X_3=1}|X_0 = 1) = 0.5\).
- An invariant measure turns out to be the expected number of visits to a particular state: \([1, 1, \frac{1}{2}, 1]\)
- The invariant probability is \([\frac{1}{3.5}, \frac{1}{3.5}, 0.5, \frac{1}{3.5}] = [\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}]\)
Invariant Measure, Time Average & Limiting Probability

- In the previous example, time averages are 1/3.5, 1/3.5, 1/7, 1/3.5 represent the percentage of time the chain stays in states 1, 2, 3, 4.
- In general, time average random variable is not over single cycle but over N steps for $N \to \infty$:
 \[
 \lim_{N \to \infty} \frac{\sum_{n=0}^{N} 1_{X_n = x}}{N}
 \]
- Consistency Result: An irreducible and positive recurrent Markov chain X_n has
 - The unique invariant probability π, and
 - Time average converges to this invariant probability almost surely $\frac{\sum_{n=0}^{N} 1_{X_n = x}}{N} \to a.s. \pi_x$
- The consistency result implies that we do not have to separately search for invariance probability and time averages; it suffices to find one of these. But the result is not operational.
- Towards an operational method, let us introduce limiting probability
 \[
 \pi_y = \lim_{n \to \infty} p_{x,y}^{<n>}
 \]
- Note the limiting probability is independent of the initial state x; possible only in an aperiodic chain
- Crude methodology: Keep multiplying the transition matrix by itself to obtain P^n until its rows converge to each other so that any one of the rows can be taken as the limiting probability.
- Issues with the crude methodology:
 - No assurance of convergence
 - No relation between limiting probability, time average and invariant measure
Main Result

Invariant Measure $=$ Time Average $=$ Limiting Probability

Main Result: For an irreducible Markov chain with a period of 1, if an invariant probability measure π exists, i.e., a solution to $\pi^T = \pi^T P$, $\pi^T 1 = 1$, $\pi \geq 0$ then

- the Markov chain is positive recurrent,
- π is unique,
- π is also the limiting probability,
- for each state x, $\pi_x > 0$.

- Since irreducible & positive recurrent chains have time average \rightarrow as invariant measure, π computed above is also the time average

- All we have to check is 1) irreducible, 2) aperiodic 3) solution to $\pi^T = \pi^T P$, $\pi^T 1 = 1$, $\pi \geq 0$.

- The solution to $\pi^T = \pi^T P$, $\pi^T 1 = 1$, $\pi \geq 0$ is $1^T (I - P + [\|])^{-1}$, where I is the identity matrix and $[\|]$ is the matrix of ones, both of these matrices have the same size as the transition matrix P.
 - To obtain this, $\pi^T = \pi^T P$ implies $\pi^T (I - P) = 0$.
 - Hence, $\pi^T (I - P + [\|]) = 0^T + \pi^T 1 = 1^T$, where 0 is the column vector of only 0s.
 - When the Markov chain is irreducible $(I - P + [\|])$ can be shown to have the inverse $(I - P + [\|])^{-1}$, so

$$\pi^T = 1^T (I - P + [\|])^{-1}$$
Limiting Probability Example

- Ex: Consider a 4-state Markov Chain with
 \[P = \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
 0 & 0 & 0 & 1 \\
 1 & 0 & 0 & 0
 \end{bmatrix} \]

- The chain is irreducible and aperiodic, main result applies

- \(I - P + \mathbb{I} = \begin{bmatrix}
 2 & 0 & 1 & 1 \\
 1 & 2 & \frac{1}{2} & \frac{1}{2} \\
 1 & 1 & 2 & 0 \\
 0 & 1 & 1 & 2
 \end{bmatrix} \), in R “IP1=rbind(c(2,0,1,1),c(1,2,1/2,1/2),c(1,1,2,0),c(0,1,1,2)).

- \((I - P + \mathbb{I})^{-1} = \begin{bmatrix}
 6.5 & 3 & -2 & -4 \\
 -3.5 & 7 & 0 & 0 \\
 -1.5 & -5 & 8 & 2 \\
 2.5 & -1 & -4 & 6
 \end{bmatrix} \), in R “solve(IP1)

- \(1^T (I - P + \mathbb{I})^{-1} = \begin{bmatrix}
 \frac{4}{14}, \frac{4}{14}, \frac{2}{14}, \frac{4}{14}
 \end{bmatrix} = \begin{bmatrix}
 \frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}
 \end{bmatrix} \), in R “c(1,1,1,1) %*% solve(IP1)

- On the other hand, \(P^n \) rows convergence to \(\begin{bmatrix}
 \frac{4}{14}, \frac{4}{14}, \frac{2}{14}, \frac{4}{14}
 \end{bmatrix} \):

 \[P^{15} = \begin{bmatrix}
 3.9375 & 5.2500 & 1.7500 & 3.0625 \\
 3.0625 & 3.9375 & 2.6250 & 4.3750 \\
 3.5000 & 2.6250 & 2.6250 & 5.2500
 \end{bmatrix} \]

 \[P^{30} = \begin{bmatrix}
 3.84 & 4.05 & 2.10 & 4.01 \\
 4.02 & 3.84 & 2.02 & 4.12 \\
 4.18 & 3.86 & 1.91 & 4.05
 \end{bmatrix} \]

 \[P^{60} = \begin{bmatrix}
 4.00 & 4.00 & 2.00 & 4.00 \\
 4.00 & 4.00 & 2.00 & 4.00 \\
 4.00 & 4.00 & 2.00 & 4.00
 \end{bmatrix} \]
Summary

- Stochastic Processes and Markov Property
- Markov Chains
- Chapman-Kolmogorov Equations
- Classification of States
- Invariant Measures, Time Averages, Limiting Probabilities