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The Passivity Paradigm

In this talk we will discuss some uses of passivity-based control to two classes of
systems that are receiving considerable current attention

1. hybrid control systems and

2. networked control systems

We will discuss applications of these ideas to

1. Bipedal Locomotion and

2. Teleoperation over Communication Networks

Passivity concepts have been well documented and so will not be repeated here due to
time constraints. We just give one brief observation to start.
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Background

Consider a dynamical system represented by the state model

ẋ = f(x, u)

y = h(x, u)

where f is locally Lipschitz, h is continuous, f(0, 0) = 0, h(0, 0) = 0 and the system has
the same number of inputs and outputs.

The system is said to be Passive if there exists a C1 positive semidefinite scalar function
S : Rn → R called the Storage Function such that

Ṡ ≤ yT u for all (x, u) ∈ Rn × Rp
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Passivity Based Control

U Y�
Such a passive system Σ is stabilizable by output feedback

u = −ky

since then we have

Ṡ ≤ −kyT y = −k||y||2 ≤ 0

Under some additional (detectability) conditions asymptotic stability follows.

• Parallel and feedback interconnections of passive systems are passive

• Generally the convergence is to a manifold (LaSalle’s Invariance Principle)
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Passive Walking and Passivity Based Control

We first turn the attention of the Passivity Paradigm to the control of bipedal loco-
motion – a particular class of Hybrid Nonlinear Systems.

• It is well known that locomotion of mechanisms is achievable passively → i.e.,
without actuation

• 3D Walker of Collins, Wisse, & Ruina
• video courtesy of Martijn Wisse, Delft University of Technology,

http://mms.tudelft.nl/Dbl/
• Impacts (foot/ground, knee strike) cause jumps in velocity → a loss of Kinetic

Energy. A passive limit cycle results when the loss of kinetic energy equals the
change in potential energy during the step.
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Limit Cycle of the Compass Gait Biped
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• Dynamics

Let Q represent the configuration space of the robot and let h(q) = 0 repre-
sent the constraint surface (e.g. ground surface). The change in velocity at
impact is given as a projection

q̇(t+) = Pq(q̇(t−))

onto {v ∈ TqQ|dh(q) · v = 0}. The dynamics of a general biped can be therefore be
written as a hybrid nonlinear system

L(t, q, q̇) = u, for h(q(t−)) 6= 0

q(t+) = q(t−) for h(q(t−)) = 0
q̇(t+) = Pq(q̇(t−))

where the operator L(t, q, q̇) = d
dt

∂L
∂q̇

− ∂L
∂q

and L is the Lagrangian (Kinetic minus

Potential energy)
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Slope Changing Action

A passive limit cycle, when it exists, is extremely sensitive to the ground slope and
has a narrow basin of attraction (and of course little disturbance rejection capability
since there is no control)

In order to walk on level ground (or other slopes) and increase the basin of
attraction, etc. active control is required

The key observation to address the sensitivity of the limit cycle to the ground slope is to
recognize that the act of changing the ground slope at the stance leg can be
represented by a Group Action, Φ, of the rotation group SO(3) on the
configuration space of the robot. For A ∈ SO(3), ΦA : Q → Q.

Pictorally, the action is shown below (For details see Spong, Bullo, IEEE TAC 2004,
under review)

θ

X̃

Ỹ

X X

Y Y
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Controlled Symmetries

A Symmetry in a mechanical system arises when the Lagrangian is invariant under a
group action Φ, i.e.

L(q, q̇) = L(ΦA(q), TqΦA(q̇)) for all A ∈ G (a Lie Group)

Symmetries give rise to conserved quantities, for example, translational symmetry gives
rise to conservation of momentum, etc.

Definition Controlled Symmetry
We say that an Euler-Lagrange system has a Controlled Symmetry with respect to a
group action Φ if, for every A ∈ G, there exists an admissible control input uA(t) such
that

L(t, q, q̇) − uA(t) = L(t, ΦA(q), TqΦA(q̇))

M.W. Spong, UIUC – p.8/27



Passivity Based Control

Let E(q, q̇) = K+V be the total energy of the robot and Eref a reference energy (for
example, the energy along a limit cycle trajectory).

For A ∈ SO(3) define the Storage Function

S =
1

2
(E ◦ ΦA − Eref )2

Then

Ṡ = (E ◦ ΦA − Eref )q̇T

[

u −
∂

∂q

(

V(q) − V ◦ ΦA(q)
)

]

If we define the control input u as u = uA + ũ, where

uA =
∂

∂q

(

V(q) − V ◦ ΦA(q)
)
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Then

Ṡ = (E ◦ ΦA − Eref )q̇T ũ = yT ũ

where

y = q̇(E ◦ ΦA − Eref )

defines a passive output.

It can be shown (Spong, Bullo, 2004) that for ũ = 0, the control uA

defines a Controlled Symmetry and Eref is an invariant manifold.
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Main Result #1

Theorem: Suppose there exists a passive gait on one ground slope, repre-
sented by A0 ∈ SO(3), and let A ∈ SO(3) represent any other slope. Then
the control input uAT A0

generates a walking gait on slope A. Moreover the
basin of attraction of the passive gait is mapped to the basin of attraction of
the controlled gait.

This video shows a biped with a torso walking on level ground
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Passivity Based Control

• Having made the passive limit cycles slope invariant via potential energy shaping
we now investigate total energy shaping for robustness.

• Improving the rate of convergence to the limit cycle and increasing the basin of
attraction are needed for robustness to external disturbances, changes in ground
slope, etc.

• We now consider the design of the control input ũ in

u = uA + ū

• In other words we consider the system

L(t, ΦA(q), TqΦA(q̇)) = ū
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With the Storage Function S as before

S =
1

2
(E ◦ ΦA − Eref )2

We saw that

Ṡ = (E ◦ ΦA − Eref )q̇ũ = yT ũ

if we choose the additional control ū according to

ū = −ky = −kq̇(E ◦ ΦA − Eref )

we obtain

Ṡ = −ky2 = −k||q̇||2S
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• Thus S(t) converges exponentially toward zero during each stepa

• At impacts, S will experience a jump discontinuity. If the value of S at impact k + 1

is less than it’s value at impact k it follows that E(t) converges to Eref .

•
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aassuming q̇ is bounded away from zero
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Networked Control Systems

Networked Control Systems (NCS) are currently of great interest for many applica-
tions. We present here a new passivity based architecture for a particular class of
Networked Control Systems, namely Bilateral Teleoperators.

Our new architecture overcomes several difficulties associated with previous
approaches, such as

• Lack of position tracking (drift)
• Poor transparency
• Sensitivity to parameter uncertainty
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The Passivity Paradigm

Within the Passivity framework for networked systems one may incorporate:

• Time Varying Delay [cf: Lozano, R., Chopra, N., and Spong, M.W., “Passivation of
Force Reflecting Bilateral Teleoperators with Time Varying Delay,”
Mechatronics’02, Entschede, Netherlands, June 24-26, 2002]

• Discrete-Time Formulation, Packet Loss, Data Interpolation [cf: Berestesky, P.,
Chopra, N., and Spong, M.W., “Discrete Time Passivity in Bilateral Teleoperation
over the Internet”, IEEE International Conference on Robotics and Automation,
New Orleans, LA, April 26-May 1, 2004]

• Multi-Agent Coordination and Manipulation [cf: Lee, D., and Spong, M.W., “Passive
Bilateral Teleoperation of Multiple Cooperative Robots with Delayed
Communication,” in preparation]

Due to time constraints I will only discuss the new passivity architecture in:
Chopra, N., Spong, M.W., and Lozano, R., “Adaptive Coordination Control of Bilateral
Teleoperators with Time Delay,” in preparation.

which addresses issues of transparency, position drift, and parameter uncertainty.
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The Traditional Architecture

A bilateral teleoperator can be modeled as an interconnection of n-port networks. By
designing control laws which impose the passivity property on each of the network
blocks, passivity of the interconnection may be guaranteed.

MEDIUM

COMMUNICATION
SLAVEMASTER F F

VV

The communication subsystem introduces a time delay, T , and is made passive by the
well-known scattering transformation approach [cf: Anderson and Spong, 1989] where
the scattering variables

um = 1
√

2b
(Fmd + ẋmd) vm = 1

√

2b
(Fmd − ẋmd)

us = 1
√

2b
(Fsd + ẋsd) vs = 1

√

2b
(Fsd − ẋsd)

are transmitted across the delay line instead of the original velocities and forces.
Delay

Transf.
Scattering

Transf.
Scattering SLAVEMASTER

ẋm

Fm vs Fs FeFh

ẋm um ẋsd ẋsus
T

T

vm

M.W. Spong, UIUC – p.17/27



Passivity of Master and Slave Robots

The master and the slave robots are Lagrangian systems and are modeled as

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) = τm

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) = τs

The well-known passivity property of the robot dynamics follows from the choice of
storage functions, for i = m, s,

Si(qi, q̇i) =
1

2
q̇T
i Mi(qi)q̇i + Gi(qi)

where Gi is the potential energy. It is easy to verify, using the skew-symmetry property
of robot dynamics that

Ṡi = q̇T
i τi

and hence the master dynamics are passive with τi, q̇i as input-output pairs.
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The Control Algorithm

In order to achieve these design objectives, the master and slave torques are given,
for i = m, s as

τi = −M̂i(qi)λq̇i − Ĉi(qi, q̇i)λqi + ĝi(qi) + τ̄i

where

• τ̄m, τ̄s are the additional motor torques required for coordination control,

• “hats” represented estimated quantities and

• λ is a constant positive definite diagonal matrix.
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It is easy to verify using linearity in the parameters that the master and slave dynamics
reduce to

Mmṙm + Cmrm = Ymθ̃m + Fh + τ̄m

Msṙs + Csrs = Ysθ̃s + τ̄s − Fe

where θ̃m = θm − θ̂m, θ̃s = θs − θ̂s are the parameter estimation errors and

rm = q̇m + λqm

rs = q̇s + λqs

The new master and slave dynamics are passive with (τ̃m, rm) and (τ̃s, rs) as the input-

output pairs.
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Define the coordinating torques Fsd and Fmd as

Fsd = Ks(rsd − rs) = τ̄s

Fmd = Km(rm − rmd) = −τ̄m

where the gains Ks, Km are constant positive definite diagonal matrices.
Define the coordination errors between the master and slave robots as

em(t) = qm(t − T ) − qs(t)

es(t) = qs(t − T ) − qm(t)

Driving the coordination errors to the origin ensures that the master/slave system behave
as a kinematically locked system.
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We now concentrate on the communications and again use the scattering or the wave-
variable transformation to passify the communication block.
The proposed architecture is

Within this architecture, we use the scatttering transformation as follows

um = 1
√

2b
(Fmd + brmd) vm = 1

√

2b
(Fmd − brmd)

us = 1
√

2b
(Fsd + brsd) vs = 1

√

2b
(Fsd − brsd)

M.W. Spong, UIUC – p.22/27



Main Result

We choose parameter update laws according to

˙̂
θm = ΓY T

m
rm

˙̂
θs = ΛY T

s
rs

where Γ and Λ are constant positive definite matrices.

Theorem 1 Consider the nonlinear bilateral teleoperation system
described above. Then all signals are bounded and the master and
slave coordination errors are globally convergent to zero.
Furthermore, in steady state with ėi, ei = 0 (i = m, s), the master and
the slave velocities converge to the origin.
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Proof

Proof: The proof relies on the Storage/Lyapunov function

S =
1

2
r
T
mMmrm +

1

2
r
T
s Msrs + e

T
mK1em + e

T
s K2es

+θ̃
T
mΓ−1

θ̃m + θ̃
T
s Γ−1

θ̃s +

∫ t

0

(F T
e rs − F

T

h
rm)dτ

+

∫ t

0

(F T

md
rrd − F

T

sd
rsd)dτ

The term
∫ t

0
(F T

md
rrd − F T

sd
rsd)dτ is positive as a result of the scattering transformation.

The term
∫ t

0
(F T

e rs − F T
h

rm)dτ as long as the human/environment subsystems are
passive.

M.W. Spong, UIUC – p.24/27



Simulations

We simulated the schemes on a single-degree of freedom bilateral
teleoperator, with the master and slave dynamics given as

Mmq̈m = Fh + τm

Msq̈s = τs − Fe

The master robot was commanded to execute a step position change.
The delay was 0.4s RTT and there was an initial error of 0.8 units
between the master and the slave robot.
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Position Tracking
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The new architecture (left) ensures convergence of the tracking error
to zero even after an initial offset.
The traditional architecture (right) cannot ensure position tracking after
an initial position offset
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Force Tracking

Next we investigate the force tracking (transparency) of the new architecture.

The master and the slave joint positions during contact with the environment(left).

The reflected torque to the master Fmd tracks the environmental torque Fe(right)
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