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The Passivity Paradigm

Passivity is one of the most physically appealing concepts in systems theory and has
been used as a fundamental tool in the development of control tools for linear and
nonlinear systems.

For robots and other mechanical systems, passivity is related to energy dissipation and
so leads to natural results on stability and tracking.

In this talk we will discuss some uses of passivity-based control theory to two classes
of systems that are receiving considerable current attention

1. networked control systems and

2. hybrid control systems

We will discuss applications of these ideas to

1. Teleoperation over the Internet and

2. Bipedal Locomotion
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Background

Passivity concepts have been well documented and so will not be repeated here. We
just give a few basic definitions to start. Consider a dynamical system represented by
the state model

ẋ = f(x, u)

y = h(x, u)

where f is locally Lipschitz, h is continuous, f(0, 0) = 0, h(0, 0) = 0 and the system has
the same number of inputs and outputs. The above system is said to be

passive if Ṡ ≤ uT y for all (x, u) ∈ Rn × Rp

strictly passive if Ṡ ≤ uT y − ϕ(x) for ϕ > 0

input strictly passive if Ṡ ≤ uT y − uT ψ(u) for uT ψ(u) > 0

output strictly passive if Ṡ ≤ uT y − yT ρ(y) for yT ρ(y) > 0

for some C1 semidefinite scalar function S : Rn → R called the Storage Function.
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Passivity Based Control

U Y�
For example, a passive system Σ is stabilized by output feedback

u = −ky

since then we have

Ṡ ≤ −kyT y = −k||y||2 ≤ 0

Under some additional (detectability-like) conditions asymptotic stability follows
(LaSalle’s Invariance Principle).

• Generally the convergence is to an invariant manifold

• Parallel and feedback interconnections of passive systems are passive
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Networked Control Systems

Networked Control Systems (NCS) are currently of great interest for many applica-
tions. We present here a new passivity based architecture for a particular class of
Networked Control Systems, namely Bilateral Teleoperators.

Our new architecture overcomes several difficulties associated with previous
approaches, such as

• Lack of position tracking (drift)
• Poor transparency
• Sensitivity to parameter uncertainty
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The Passivity Paradigm

Within the Passivity framework for networked systems one may incorporate:

• Time Varying Delay [cf: Lozano, R., Chopra, N., and Spong, M.W., “Passivation of
Force Reflecting Bilateral Teleoperators with Time Varying Delay,”
Mechatronics’02, Entschede, Netherlands, June 24-26, 2002]

• Discrete-Time Formulation, Packet Loss, Data Interpolation [cf: Berestesky, P.,
Chopra, N., and Spong, M.W., “Discrete Time Passivity in Bilateral Teleoperation
over the Internet”, IEEE International Conference on Robotics and Automation,
New Orleans, LA, April 26-May 1, 2004]

• Multi-Agent Coordination and Manipulation [cf: Lee, D., and Spong, M.W., “Passive
Bilateral Teleoperation of Multiple Cooperative Robots with Delayed
Communication,” in preparation]

Due to time constraints I will only discuss the new passivity architecture in:
Chopra, N., Spong, M.W., and Lozano, R., “Adaptive Coordination Control of Bilateral
Teleoperators with Time Delay,” in preparation.

which addresses issues of transparency, position drift, and parameter uncertainty.
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The Traditional Architecture

A bilateral teleoperator can be modeled as an interconnection of n-port networks. By
designing control laws which impose the passivity property on each of the network
blocks, passivity of the interconnection may be guaranteed.
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The communication subsystem introduces a time delay, T , and is made passive by the
well-known scattering transformation approach [cf: Anderson and Spong, 1989] where
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Passivity of Master and Slave Robots

The master and the slave robots are Lagrangian systems and are modeled as

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) = τm

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) = τs

The well-known passivity property of the robot dynamics follows from the choice of
storage functions, for i = m, s,

Si(qi, q̇i) =
1

2
q̇T
i Mi(qi)q̇i + Gi(qi)

where Gi is the potential energy. It is easy to verify, using the skew-symmetry property
of robot dynamics that

Ṡi = q̇T
i τi

and hence the master dynamics are passive with τi, q̇i as input-output pairs.
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A New Coordination Architecture

In order to develop an effective coordination strategy within the passivity framework,
the following goals need to be accomplished

• A feedback control law for the master and the slave manipulator that renders the
manipulator dynamics passive with respect to an output containing both position
and velocity information

• A passive coordination control law which uses this output from the master and the
slave to kinematically lock the motion of the two mechanical systems

• An adaptation mechanism to account for unknown parameters

All of these objectives may be achieved within the framework of passivity-based control.
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The Control Algorithm

In order to achieve these design objectives, the master and slave torques are given,
for i = m, s as

τi = −M̂i(qi)λq̇i − Ĉi(qi, q̇i)λqi + ĝi(qi) + τ̄i

where

• τ̄m, τ̄s are the additional motor torques required for coordination control,

• “hats” represented estimated quantities and

• λ is a constant positive definite diagonal matrix.
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It is easy to verify using linearity in the parameters that the master and slave dynamics
reduce to

Mmṙm + Cmrm = Ymθ̃m + Fh + τ̄m

Msṙs + Csrs = Ysθ̃s + τ̄s − Fe

where θ̃m = θm − θ̂m, θ̃s = θs − θ̂s are the parameter estimation errors and

rm = q̇m + λqm

rs = q̇s + λqs

The new master and slave dynamics are passive with (τ̃m, rm) and (τ̃s, rs) as the input-

output pairs.
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Define the coordinating torques Fsd and Fmd as

Fsd = Ks(rsd − rs) = τ̄s

Fmd = Km(rm − rmd) = −τ̄m

where the gains Ks, Km are constant positive definite diagonal matrices.
Define the coordination errors between the master and slave robots as

em(t) = qm(t − T ) − qs(t)

es(t) = qs(t − T ) − qm(t)

Driving the coordination errors to the origin ensures that the master/slave system behave
as a kinematically locked system.
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We now concentrate on the communications and again use the scattering or the wave-
variable transformation to passify the communication block.
The proposed architecture is

Within this architecture, we use the scatttering transformation as follows

um = 1
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2b
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Main Result

We choose parameter update laws according to

˙̂
θm = ΓY T

m rm

˙̂
θs = ΛY T

s rs

where Γ and Λ are constant positive definite matrices.

Theorem 1 Consider the nonlinear bilateral teleoperation system
described above. Then all signals are bounded and the master and
slave coordination errors are globally convergent to zero.
Furthermore, in steady state with ėi, ei = 0 (i = m, s), the master and
the slave velocities converge to the origin.
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Proof

Proof: The proof relies on the Storage/Lyapunov function
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Simulations

We simulated the schemes on a single-degree of freedom bilateral
teleoperator, with the master and slave dynamics given as

Mmq̈m = Fh + τm

Msq̈s = τs − Fe

The master robot was commanded to execute a step position change.
The delay was 0.4s RTT and there was an initial error of 0.8 units
between the master and the slave robot.
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Position Tracking
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Force Tracking

Next we investigate the force tracking (transparency) of the new architecture.
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The master and the slave joint positions during contact with the environment(left).

The reflected torque to the master Fmd tracks the environmental torque Fe(right)
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Passive Walking and Passivity Based Control

We next turn the attention of the Passivity Paradigm to the control of bipedal loco-
motion – a particular class of Hybrid Nonlinear Systems.

• It is well known that locomotion of mechanisms is achievable passively → i.e.,
without actuation

• McGeer, T., “Passive Dynamic Walking,” International Journal of Robotics
Research, 1990.

• Goswami, et.al., “A Study of the Passive Gait of a Compass-like Biped Robot:
Symmetry and Chaos,” International Journal of Robotics Research, 1998.

• Such mechanisms can exhibit stable walking down a constant incline, turning
gravitational potential energy into kinetic energy of motion.

• 3D Walker of Collins, Wisse, & Ruina
• videos courtesy of Martijn Wisse, Delft University of Technology,

http://mms.tudelft.nl/Dbl/
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How Does This Work?

Walking involves the interaction among

—Kinetic Energy

—Potential Energy

—Impacts

Impacts (foot/ground, knee strike) cause jumps in velocity → a loss of Kinetic Energy
A passive limit cycle results when the loss of kinetic energy equals the change in
potential energy during the step.
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The Compass Gait Biped
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Properties of Passive Gaits

In this Compass Gait example:

• The limit cycle is extremely sensitive to slope angle

• As the slope is increased period doubling bifurcations leading to
eventual chaos occur

• The basin of attraction of the limit cycle is very small

These issues can be addressed by the addition of feedback control.
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Dynamics

Let Q represent the configuration space of the robot and let h(q) = 0 repre-
sent the constraint surface (e.g. ground surface). The change in velocity at
impact is given as a projection

q̇(t+) = Pq(q̇(t−))

onto {v ∈ TqQ|dh(q) · v = 0}. The dynamics of a general biped can be therefore be
written as a hybrid nonlinear system

d
dt

∂L
∂q̇

− ∂L
∂q

= u, for h(q(t−)) 6= 0

q(t+) = q(t−) for h(q(t−)) = 0
q̇(t+) = Pq(q̇(t−))

where L is the Lagrangian (Kinetic minus Potential energy)
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Slope Changing Action

The key observation to address the sensitivity of the limit cycle to
the ground slope is to recognize that the act of changing the
ground slope at the stance leg can be represented by a Group
Action, Φ, of the rotation group SO(3) on the configuration space
of the robot. For A ∈ SO(3), ΦA : Q → Q.

Pictorally, the action is shown below

θ

X̃

Ỹ

X X

Y Y
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Invariance Properties

We have the following (Spong, Bullo, IEEE Transactions on Automatic
Control, submitted, August, 2003)

Proposition

• The kinetic energy K is invariant under the slope changing action Φ, i.e., for all
A ∈ SO(3)

K(q, q̇) = K ◦ ΦA(q, q̇) = K(ΦA(q), TqΦA(q̇))

• The velocity changes at impacts, q̇+ = Pq(q̇−), are invariant under the slope
changing action.
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Controlled Symmetries

A Symmetry in a mechanical system arises when the Lagrangian is invariant under a
group action Φ, i.e.

L(q, q̇) = L(ΦA(q), TqΦA(q̇)) for all A ∈ SO(3)

Symmetries give rise to conserved quantities, for example, translational symmetry gives
rise to conservation of momentum, etc.

Definition Controlled Symmetry
We say that an Euler-Lagrange system has a Controlled Symmetry with respect to a
group action Φ if, for every A ∈ SO(3) there exists an admissible control input uA(t)

such that

L(t, q, q̇) − uA(t) = L(t, ΦA(q), TqΦA(q̇))
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Passivity Based Control

Let E(q, q̇) = K + V be the total energy of the robot and Eref a (constant) reference
energy (for example, the energy along a limit cycle trajectory).
For A ∈ SO(3) define the Storage Function

S =
1

2
(E ◦ Φ − Eref )2

Then

Ṡ = (E ◦ Φ − Eref )q̇T

[

u −
∂

∂q

(

V(q) − V(ΦA(q))
)

]

If we define the control input u as u = uA + ũ, where

uA =
∂

∂q

(

V(q) − V(ΦA(q))
)
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Then

Ṡ = (E ◦ Φ − Eref )q̇T ũ = yT ũ

where

y = q̇(E ◦ Φ − Eref )

defines a passive output.
It follows (Spong, Bullo, 2003) that for ũ = 0, the control uA defines a Controlled
Symmetry.

Theorem: Suppose there exists a passive gait on one ground slope, represented by
A0 ∈ SO(3), and let A ∈ SO(3) represent any other slope. Then the control input
uAT A0

generates a walking gait on slope A. Moreover the basin of attraction of the
passive gait is mapped to the basin of attraction of the controlled gait.
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Examples and Simulations

Finding Passive Limit Cycles
Passive Limit Cycles are investigated via the Poincaré Map.

Xk+1 = P (Xk)

where Xk is the vector of joint positions and velocities at the beginning of step k.
The limit cycle is thus a fixed point of the Poincaré Map. Any initial condition in the basin
of attraction of a stable limit cycle for one slope can be used to initialize a controlled gait
on any other slope.
The video shows walking on level ground.
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Extension to Biped with Torso

The next video shows a biped with a torso walking on level ground

How is this done?
A PD-type control is used to stablize the torso in the inverted position.
The resulting system is analyzed via the Poincaré map to find a stable
limit cycle. The details are omitted.
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Passivity Based Control

• Having made the passive limit cycles slope invariant via potential energy shaping
we now investigate total energy shaping for robustness.

• Improving the rate of convergence to the limit cycle and increasing the basin of
attraction are needed for robustness to external disturbances, changes in ground
slope, etc.

• We now consider the design of the control input ũ in

u = uA + ū

• In other words we consider the system

L(t, ΦA(q), TqΦA(q̇)) = ū
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With the Storage Function S as before

S =
1

2
(E ◦ Φ − Eref )2

We saw that

Ṡ = (E ◦ Φ − Eref )q̇ũ = yT u

if we choose the additional control ū according to

ū = −ky = −kq̇(E − Eref )

we obtain

Ṡ = −ky2 = −k||q̇||2S
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• Thus S(t) converges exponentially toward zero during each stepa

• At impacts, S will experience a jump discontinuity. If the value of S at impact k + 1

is less than it’s value at impact k it follows that E(t) converges to Eref .

•
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