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Abstract

Standard methods for generating adversarial ex-
amples for neural networks do not consistently
fool neural network classifiers in the physical
world due to a combination of viewpoint shifts,
camera noise, and other natural transformations,
limiting their relevance to real-world systems. We
demonstrate the existence of robust 3D adversar-
ial objects, and we present the first algorithm for
synthesizing examples that are adversarial over a
chosen distribution of transformations. We syn-
thesize two-dimensional adversarial images that
are robust to noise, distortion, and affine trans-
formation. We apply our algorithm to complex
three-dimensional objects, using 3D-printing to
manufacture the first physical adversarial objects.
Our results demonstrate the existence of 3D ad-
versarial objects in the physical world.

1. Introduction

The existence of adversarial examples for neural net-
works (Szegedy et al., 2013; Biggio et al., 2013) was initially
largely a theoretical concern. Recent work has demonstrated
the applicability of adversarial examples in the physical
world, showing that adversarial examples on a printed page
remain adversarial when captured using a cell phone cam-
era in an approximately axis-aligned setting (Kurakin et al.,
2016). But while minute, carefully-crafted perturbations
can cause targeted misclassification in neural networks, ad-
versarial examples produced using standard techniques fail
to fool classifiers in the physical world when the examples
are captured over varying viewpoints and affected by natural
phenomena such as lighting and camera noise (Luo et al.,
2016; Lu et al., 2017). These results indicate that real-world
systems may not be at risk in practice because adversarial
examples generated using standard techniques are not robust
in the physical world.
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classified as turtle classified as rifle
classified as other

Figure 1. Randomly sampled poses of a 3D-printed turtle adver-
sarially perturbed to classify as a rifle at every viewpoint2. An
unperturbed model is classified correctly as a turtle nearly 100%
of the time.

We show that neural network-based classifiers are vulner-
able to physical-world adversarial examples that remain
adversarial over a different viewpoints. We introduce a new
algorithm for synthesizing adversarial examples that are
robust over a chosen distribution of transformations, which
we apply for reliably producing robust adversarial images as
well as physical-world adversarial objects. Figure 1 shows
an example of an adversarial object constructed using our
approach, where a 3D-printed turtle is consistently classi-
fied as rifle (a target class that was selected at random) by
an ImageNet classifier. In this paper, we demonstrate the
efficacy and generality of our method, demonstrating con-
clusively that adversarial examples are a practical concern
in real-world systems.

1.1. Challenges

Methods for transforming ordinary two-dimensional images
into adversarial examples, including techniques such as the
L-BFGS attack (Szegedy et al., 2013), FGSM (Goodfel-
low et al., 2015), and the CW attack (Carlini & Wagner,
2017c), are well-known. While adversarial examples gener-
ated through these techniques can transfer to the physical
world (Kurakin et al., 2016), the techniques have limited
success in affecting real-world systems where the input may
be transformed before being fed to the classifier. Prior work
has shown that adversarial examples generated using these
standard techniques often lose their adversarial nature once

2See https://youtu.be/YXy6oX1iNoA for a video
where every frame is fed through the ImageNet classifier: the turtle
is consistently classified as a rifle.

ar
X

iv
:1

70
7.

07
39

7v
3 

 [c
s.C

V
]  

7 
Ju

n 
20

18



Synthesizing Robust Adversarial Examples

subjected to minor transformations (Luo et al., 2016; Lu
et al., 2017).

Prior techniques attempting to synthesize adversarial exam-
ples robust over any chosen distribution of transformations
in the physical world have had limited success (Evtimov
et al., 2017). While some progress has been made, concur-
rent efforts have demonstrated a small number of data points
on nonstandard classifiers, and only in the two-dimensional
case, with no clear generalization to three dimensions (fur-
ther discussed in Section 4).

Prior work has focused on generating two-dimensional ad-
versarial examples, even for the physical world (Sharif et al.,
2016; Evtimov et al., 2017), where “viewpoints” can be
approximated by an affine transformations of an original
image. However, 3D objects must remain adversarial in
the face of complex transformations not applicable to 2D
physical-world objects, such as 3D rotation and perspective
projection.

1.2. Contributions

We demonstrate the existence of robust adversarial examples
and adversarial objects in the physical world. We propose a
general-purpose algorithm for reliably constructing adver-
sarial examples robust over a chosen distribution of transfor-
mations, and we demonstrate the efficacy of this algorithm
in both the 2D and 3D case. We succeed in computing and
fabricating physical-world 3D adversarial objects that are
robust over a large, realistic distribution of 3D viewpoints,
demonstrating that the algorithm successfully produces ad-
versarial three-dimensional objects that are adversarial in
the physical world. Specifically, our contributions are as
follows:

• We develop Expectation Over Transformation (EOT),
the first algorithm that produces robust adversarial ex-
amples: single adversarial examples that are simulta-
neously adversarial over an entire distribution of trans-
formations.

• We consider the problem of constructing 3D adversar-
ial examples under the EOT framework, viewing the
3D rendering process as part of the transformation, and
we show that the approach successfully synthesizes
adversarial objects.

• We fabricate the first 3D physical-world adversarial ob-
jects and show that they fool classifiers in the physical
world, demonstrating the efficacy of our approach end-
to-end and showing the existence of robust physical-
world adversarial objects.

2. Approach

First, we present the Expectation Over Transformation
(EOT) algorithm, a general framework allowing for the
construction of adversarial examples that remain adversar-
ial over a chosen transformation distribution T . We then
describe our end-to-end approach for generating adversarial
objects using a specialized application of EOT in conjunc-
tion with differentiating through the 3D rendering process.

2.1. Expectation Over Transformation

When constructing adversarial examples in the white-box
case (that is, with access to a classifier and its gradient), we
know in advance a set of possible classes Y and a space
of valid inputs X to the classifier; we have access to the
function P (y|x) and its gradient rxP (y|x), for any class
y 2 Y and input x 2 X . In the standard case, adversarial
examples are produced by maximizing the log-likelihood of
the target class yt over a ✏-radius ball around the original
image (which we represent as a vector of d pixels each in
[0, 1]):

argmax
x0

logP (yt|x0)

subject to ||x0 � x||p < ✏

x0 2 [0, 1]d

This approach has been shown to be effective at generating
adversarial examples. However, prior work has shown that
these adversarial examples fail to remain adversarial under
image transformations that occur in the real world, such as
angle and viewpoint changes (Luo et al., 2016; Lu et al.,
2017).

To address this issue, we introduce Expectation Over

Transformation (EOT). The key insight behind EOT is to
model such perturbations within the optimization procedure.
Rather than optimizing the log-likelihood of a single ex-
ample, EOT uses a chosen distribution T of transformation
functions t taking an input x0 controlled by the adversary
to the “true” input t(x0) perceived by the classifier. Fur-
thermore, rather than simply taking the norm of x0 � x
to constrain the solution space, given a distance function
d(·, ·), EOT instead aims to constrain the expected effective
distance between the adversarial and original inputs, which
we define as:

� = Et⇠T [d(t(x
0), t(x))]

We use this new definition because we want to minimize the
(expected) perceived distance as seen by the classifier. This
is especially important in cases where t(x) has a different
domain and codomain, e.g. when x is a texture and t(x) is a
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rendering corresponding to the texture, we care to minimize
the visual difference between t(x0) and t(x) rather than
minimizing the distance in texture space.

Thus, we have the following optimization problem:

argmax
x0

Et⇠T [logP (yt|t(x0))]

subject to Et⇠T [d(t(x
0), t(x))] < ✏

x 2 [0, 1]d

In practice, the distribution T can model perceptual dis-
tortions such as random rotation, translation, or addition
of noise. However, the method generalizes beyond simple
transformations; transformations in T can perform opera-
tions such as 3D rendering of a texture.

We maximize the objective via stochastic gradient descent.
We approximate the gradient of the expected value through
sampling transformations independently at each gradient
descent step and differentiating through the transformation.

2.2. Choosing a distribution of transformations

Given its ability to synthesize robust adversarial examples,
we use the EOT framework for generating 2D examples, 3D
models, and ultimately physical-world adversarial objects.
Within the framework, however, there is a great deal of free-
dom in the actual method by which examples are generated,
including choice of T , distance metric, and optimization
method.

2.2.1. 2D CASE

In the 2D case, we choose T to approximate a realistic
space of possible distortions involved in printing out an
image and taking a natural picture of it. This amounts to a
set of random transformations of the form t(x) = Ax+ b,
which are more thoroughly described in Section 3. These
random transformations are easy to differentiate, allowing
for a straightforward application of EOT.

2.2.2. 3D CASE

We note that the domain and codomain of t 2 T need not
be the same. To synthesize 3D adversarial examples, we
consider textures (color patterns) x corresponding to some
chosen 3D object (shape), and we choose a distribution of
transformation functions t(x) that take a texture and render
a pose of the 3D object with the texture x applied. The
transformation functions map a texture to a rendering of an
object, simulating functions including rendering, lighting,
rotation, translation, and perspective projection of the object.
Finding textures that are adversarial over a realistic distribu-
tion of poses allows for transfer of adversarial examples to
the physical world.

To solve this optimization problem, EOT requires the ability
to differentiate though the 3D rendering function with re-
spect to the texture. Given a particular pose and choices for
all other transformation parameters, a simple 3D rendering
process can be modeled as a matrix multiplication and addi-
tion: every pixel in the rendering is some linear combination
of pixels in the texture (plus some constant term). Given a
particular choice of parameters, the rendering of a texture x
can be written as Mx+ b for some coordinate map M and
background b.

Standard 3D renderers, as part of the rendering pipeline,
compute the texture-space coordinates corresponding to on-
screen coordinates; we modify an existing renderer to return
this information. Then, instead of differentiating through
the renderer, we compute and then differentiate through
Mx+ b. We must re-compute M and b using the renderer
for each pose, because EOT samples new poses at each
gradient descent step.

2.3. Optimizing the objective

Once EOT has been parameterized, i.e. once a distribution T
is chosen, the issue of actually optimizing the induced objec-
tive function remains. Rather than solving the constrained
optimization problem given above, we use the Lagrangian-
relaxed form of the problem, as Carlini & Wagner (2017c)
do in the standard single-viewpoint case:

argmax
x0

⇣
Et⇠T [logP (yt|t(x0))]

��Et⇠T [d(t(x
0), t(x)])

⌘

In order to encourage visual imperceptibility of the gen-
erated images, we set d(x0, x) to be the `2 norm in the
LAB color space, a perceptually uniform color space where
Euclidean distance roughly corresponds with perceptual dis-
tance (McLaren, 1976). Using distance in LAB space as a
proxy for human perceptual distance is a standard technique
in computer vision. Note that the Et⇠T [||LAB(t(x0)) �
LAB(t(x))||2] can be sampled and estimated in conjunc-
tion with E[P (yt|t(x))]; in general, the Lagrangian formu-
lation gives EOT the ability to constrain the search space (in
our case, using LAB distance) without computing a complex
projection. Our optimization, then, is:

argmax
x0

Et⇠T

h
logP (yt|t(x0))

��||LAB(t(x0))� LAB(t(x))||2
i

We use projected gradient descent to maximize the objective,
and clip to the set of valid inputs (e.g. [0, 1] for images).
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3. Evaluation

First, we describe our procedure for quantitatively evaluat-
ing the efficacy of EOT for generating 2D, 3D, and physical-
world adversarial examples. Then, we show that we can
reliably produce transformation-tolerant adversarial exam-
ples in both the 2D and 3D case. We show that we can
synthesize and fabricate 3D adversarial objects, even those
with complex shapes, in the physical world: these adver-
sarial objects remain adversarial regardless of viewpoint,
camera noise, and other similar real-world factors. Finally,
we present a qualitative analysis of our results and discuss
some challenges in applying EOT in the physical world.

3.1. Procedure

In our experiments, we use TensorFlow’s standard pre-
trained InceptionV3 classifier (Szegedy et al., 2015) which
has 78.0% top-1 accuracy on ImageNet. In all of our ex-
periments, we use randomly chosen target classes, and we
use EOT to synthesize adversarial examples over a chosen
distribution. We measure the `2 distance per pixel between
the original and adversarial example (in LAB space), and we
also measure classification accuracy (percent of randomly
sampled viewpoints classified as the true class) and adver-
sariality (percent of randomly sampled viewpoints classified
as the adversarial class) for both the original and adver-
sarial example. When working in simulation, we evaluate
over a large number of transformations sampled randomly
from the distribution; in the physical world, we evaluate
over a large number of manually-captured images of our
adversarial objects taken over different viewpoints.

Given a source object x, a set of correct classes
{y1, . . . , yn}, a target class yadv 62 {y1, . . . , yn}, and a
robust adversarial example x0, we quantify the effectiveness
of the adversarial example over a distribution of transfor-
mations T as follows. Let C(x, y) be a function indicating
whether the image x was classified as the class y:

C(x, y) =

(
1 if x is classified as y
0 otherwise

We quantify the effectiveness of a robust adversarial exam-
ple by measuring adversariality, which we define as:

Et⇠T [C(t(x0), yadv)]

This is equal to the probability that the example is classified
as the target class for a transformation sampled from the
distribution T . We approximate the expectation by sampling
a large number of values from the distribution at test time.

Original:
Persian

cat

97% /
0%

99% /
0%

19% /
0%

95% /
0%

Adv:
jacamar

0% /
91%

0% /
96%

0% /
83%

0% /
97%

Figure 2. A 2D adversarial example showing classifier confidence
in true / adversarial classes over randomly sampled poses.

3.2. Robust 2D adversarial examples

In the 2D case, we consider the distribution of transforma-
tions that includes rescaling, rotation, lightening or dark-
ening by an additive factor, adding Gaussian noise, and
translation of the image.

We take the first 1000 images in the ImageNet validation set,
randomly choose a target class for each image, and use EOT
to synthesize an adversarial example that is robust over the
chosen distribution. We use a fixed � in our Lagrangian to
constrain visual similarity. For each adversarial example, we
evaluate over 1000 random transformations sampled from
the distribution at evaluation time. Table 1 summarizes the
results. The adversarial examples have a mean adversariality
of 96.4%, showing that our approach is highly effective in
producing robust adversarial examples. Figure 2 shows one
synthesized adversarial example. See the appendix for more
examples.

3.3. Robust 3D adversarial examples

We produce 3D adversarial examples by modeling the 3D
rendering as a transformation under EOT. Given a textured
3D object, we optimize the texture such that the rendering
is adversarial from any viewpoint. We consider a distribu-
tion that incorporates different camera distances, lighting
conditions, translation and rotation of the object, and solid
background colors. We approximate the expectation over
transformation by taking the mean loss over batches of size
40; furthermore, due to the computational expense of com-
puting new poses, we reuse up to 80% of the batch at each
iteration, but enforce that each batch contain at least 8 new
poses. As previously mentioned, the parameters of the dis-
tribution we use is specified in the appendix, sampled as
independent continuous random variables (that are uniform
except for Gaussian noise). We searched over several �
values in our Lagrangian for each example / target class
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Images
Classification Accuracy Adversariality `2

mean stdev mean stdev mean

Original 70.0% 36.4% 0.01% 0.3% 0
Adversarial 0.9% 2.0% 96.4% 4.4% 5.6⇥ 10�5

Table 1. Evaluation of 1000 2D adversarial examples with random targets. We evaluate each example over 1000 randomly sampled
transformations to calculate classification accuracy and adversariality (percent classified as the adversarial class).

Original:
turtle

97% /
0%

96% /
0%

96% /
0%

20% /
0%

Adv:
jigsaw
puzzle 0% /

100%
0% /
99%

0% /
99%

0% /
83%

Figure 3. A 3D adversarial example showing classifier confidence
in true / adversarial classes over randomly sampled poses.

pair. In our final evaluation, we used the example with the
smallest � that still maintained ¿90% adversariality over
100 held out, random transformations.

We consider 10 3D models, obtained from 3D asset sites,
that represent different ImageNet classes: barrel, baseball,
dog, orange, turtle, clownfish, sofa, teddy bear, car, and taxi.

We choose 20 random target classes per 3D model, and use
EOT to synthesize adversarial textures for the 3D models
with minimal parameter search (four pre-chosen � values
were tested across each (3D model, target) pair). For each
of the 200 adversarial examples, we sample 100 random
transformations from the distribution at evaluation time.
Table 2 summarizes results, and Figure 3 shows renderings
of drawn samples, along with classification probabilities.
See the appendix for more examples.

The adversarial objects have a mean adversariality of 83.4%
with a long left tail, showing that EOT usually produces
highly adversarial objects. See the appendix for a plot of
the distribution of adversariality over the 200 examples.

3.4. Physical adversarial examples

In the case of the physical world, we cannot capture the
“true” distribution unless we perfectly model all physical
phenomena. Therefore, we must approximate the distribu-
tion and perform EOT over the proxy distribution. We find

classified as turtle classified as rifle
classified as other

classified as baseball classified as espresso
classified as other

Figure 4. A sample of photos of unperturbed 3D prints. The
unperturbed 3D-printed objects are consistently classified as the
true class.

that this works well in practice: we produce objects that
are optimized for the proxy distribution, and we find that
they generalize to the “true” physical-world distribution and
remain adversarial.

Beyond modeling the 3D rendering process, we need to
model physical-world phenomena such as lighting effects
and camera noise. Furthermore, we need to model the 3D
printing process: in our case, we use commercially available
full-color 3D printing. With the 3D printing technology
we use, we find that color accuracy varies between prints,
so we model printing errors as well. We approximate all
of these phenomena by a distribution of transformations
under EOT: in addition to the transformations considered
for 3D in simulation, we consider camera noise, additive and
multiplicative lighting, and per-channel color inaccuracies.

We evaluate physical adversarial examples over two 3D-
printed objects: one of a turtle (where we consider any of the
5 turtle classes in ImageNet as the “true” class), and one of
a baseball. The unperturbed 3D-printed objects are correctly
classified as the true class with 100% accuracy over a large
number of samples. Figure 4 shows example photographs
of unperturbed objects, along with their classifications.

We choose target classes for each of the 3D models at ran-
dom — “rifle” for the turtle, and “espresso” for the baseball
— and we use EOT to synthesize adversarial examples. We
evaluate the performance of our two 3D-printed adversarial
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Images
Classification Accuracy Adversariality `2

mean stdev mean stdev mean

Original 68.8% 31.2% 0.01% 0.1% 0
Adversarial 1.1% 3.1% 83.4% 21.7% 5.9⇥ 10�3

Table 2. Evaluation of 200 3D adversarial examples with random targets. We evaluate each example over 100 randomly sampled poses to
calculate classification accuracy and adversariality (percent classified as the adversarial class).

Object Adversarial Misclassified Correct

Turtle 82% 16% 2%
Baseball 59% 31% 10%

Table 3. Quantitative analysis of the two adversarial objects, over
100 photos of each object over a wide distribution of viewpoints.
Both objects are classified as the adversarial target class in the
majority of viewpoints.

objects by taking 100 photos of each object over a variety
of viewpoints3. Figure 5 shows a random sample of these
images, along with their classifications. Table 3 gives a
quantitative analysis over all images, showing that our 3D-
printed adversarial objects are strongly adversarial over a
wide distribution of transformations. See the appendix for
more examples.

3.5. Discussion

Our quantitative analysis demonstrates the efficacy of EOT
and confirms the existence of robust physical-world adver-
sarial examples and objects. Now, we present a qualitative
analysis of the results.

Perturbation budget. The perturbation required to pro-
duce successful adversarial examples depends on the dis-
tribution of transformations that is chosen. Generally, the
larger the distribution, the larger the perturbation required.
For example, making an adversarial example robust to rota-
tion of up to 30� requires less perturbation than making an
example robust to rotation, translation, and rescaling. Simi-
larly, constructing robust 3D adversarial examples generally
requires a larger perturbation to the underlying texture than
required for constructing 2D adversarial examples.

Modeling perception. The EOT algorithm as presented
in Section 2 presents a general method to construct adver-
sarial examples over a chosen perceptual distribution, but
notably gives no guarantees for observations of the image

3Although the viewpoints were simply the result of walking
around the objects, moving them up/down, etc., we do not call
them “random” since they were not in fact generated numerically or
sampled from a concrete distribution, in contrast with the rendered
3D examples.

classified as turtle classified as rifle
classified as other

classified as baseball classified as espresso
classified as other

Figure 5. Random sample of photographs of the two 3D-printed

adversarial objects. The 3D-printed adversarial objects are
strongly adversarial over a wide distribution of viewpoints.
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Figure 6. Three pictures of the same adversarial turtle (all clas-
sified as “rifle”), demonstrating the need for a wide distribution
and the efficacy of EOT in finding examples robust across wide
distributions of physical-world effects like lighting.

outside of the chosen distribution. In constructing physical-
world adversarial objects, we use a crude approximation
of the rendering and capture process, and this succeeds in
ensuring robustness in a diverse set of environments; see,
for example, Figure 6, which shows the same adversarial tur-
tle in vastly different lighting conditions. When a stronger
guarantee is needed, a domain expert may opt to model
the perceptual distribution more precisely in order to better
constrain the search space.

Error in printing. We find significant error in the color
accuracy of even state of the art commercially available
color 3D printing; Figure 7 shows a comparison of a 3D-
printed model along with a printout of the model’s texture,
printed on a standard laser color printer. Still, by modeling
this color error as part of the distribution of transformations
in a coarse-grained manner, EOT was able to overcome
the problem and produce robust physical-world adversarial
objects. We predict that we could have produced adversarial
examples with smaller `2 perturbation with a higher-fidelity
printing process or a more fine-grained model incorporating
the printer’s color gamut.

Semantically relevant misclassification. Interestingly,
for the majority of viewpoints where the adversarial tar-
get class is not the top-1 predicted class, the classifier also
fails to correctly predict the source class. Instead, we find
that the classifier often classifies the object as an object
that is semantically similar to the adversarial target; while
generating the adversarial turtle to be classified as a rifle,
for example, the second most popular class (after “rifle”)
was “revolver,” followed by “holster” and then “assault rifle.”
Similarly, when generating the baseball to be classified as
an espresso, the example was often classified as “coffee” or
“bakery.”

Breaking defenses. The existence of robust adversarial
examples implies that defenses based on randomly trans-
forming the input are not secure: adversarial examples gen-
erated using EOT can circumvent these defenses. Athalye
et al. (2018) investigates this further and circumvents several
published defenses by applying Expectation over Transfor-
mation.

Figure 7. A side-by-side comparison of a 3D-printed model (left)
along with a printout of the corresponding texture, printed on a
standard laser color printer (center) and the original digital texture
(right), showing significant error in color accuracy in printing.

Limitations. There are two possible failure cases of the
EOT algorithm. As with any adversarial attack, if the at-
tacker is constrained to too small of a `p ball, EOT will be
unable to create an adversarial example. Another case is
when the distribution of transformations the attacker chooses
is too “large”. As a simple example, it is impossible to make
an adversarial example robust to the function that randomly
perturbs each pixel value to the interval [0, 1] uniformly at
random.

Imperceptibility. Note that we consider a “targeted ad-
versarial example” to be an input that has been perturbed
to misclassify as a selected class, is within the `p constraint
bound imposed, and can be still clearly identified as the orig-
inal class. While many of the generated examples are truly
imperceptible from their corresponding original inputs, oth-
ers exhibit noticeable perturbations. In all cases, however,
the visual constraint (`2 metric) maintains identifiability as
the original class.

4. Related Work

4.1. Adversarial examples

State of the art neural networks are vulnerable to adver-
sarial examples (Szegedy et al., 2013; Biggio et al., 2013).
Researchers have proposed a number of methods for syn-
thesizing adversarial examples in the white-box setting
(with access to the gradient of the classifier), including L-
BFGS (Szegedy et al., 2013), the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015), Jacobian-based Saliency
Map Attack (JSMA) (Papernot et al., 2016b), a Lagrangian
relaxation formulation (Carlini & Wagner, 2017c), and
DeepFool (Moosavi-Dezfooli et al., 2015), all for what we
call the single-viewpoint case where the adversary directly
controls the input to the neural network. Projected Gradient
Descent (PGD) can be seen as a universal first-order adver-
sary (Madry et al., 2017). A number of approaches find
adversarial examples in the black-box setting, with some
relying on the transferability phenomena and making use of
substitute models (Papernot et al., 2017; 2016a) and others
applying black-box gradient estimation (Chen et al., 2017).

Moosavi-Dezfooli et al. (2017) show the existence of uni-
versal (image-agnostic) adversarial perturbations, small per-
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turbation vectors that can be applied to any image to induce
misclassification. Their work solves a different problem
than we do: they propose an algorithm that finds pertur-
bations that are universal over images; in our work, we
give an algorithm that finds a perturbation to a single im-
age or object that is universal over a chosen distribution of
transformations. In preliminary experiments, we found that
universal adversarial perturbations, like standard adversarial
perturbations to single images, are not inherently robust to
transformation.

4.2. Defenses

Some progress has been made in defending against adver-
sarial examples in the white-box setting, but a complete so-
lution has not yet been found. Many proposed defenses (Pa-
pernot et al., 2016c; Hendrik Metzen et al., 2017; Hendrycks
& Gimpel, 2017; Meng & Chen, 2017; Zantedeschi et al.,
2017; Buckman et al., 2018; Ma et al., 2018; Guo et al.,
2018; Dhillon et al., 2018; Xie et al., 2018; Song et al.,
2018; Samangouei et al., 2018) have been found to be vul-
nerable to iterative optimization-based attacks (Carlini &
Wagner, 2016; 2017c;b;a; Athalye et al., 2018).

Some of these defenses that can be viewed as “input trans-
formation” defenses are circumvented through application
of EOT.

4.3. Physical-world adversarial examples

In the first work on physical-world adversarial examples, Ku-
rakin et al. (2016) demonstrate the transferability of FGSM-
generated adversarial misclassification on a printed page.
In their setup, a photo is taken of a printed image with QR
code guides, and the resultant image is warped, cropped, and
resized to become a square of the same size as the source im-
age before classifying it. Their results show the existence of
2D physical-world adversarial examples for approximately
axis-aligned views, demonstrating that adversarial pertur-
bations produced using FGSM can transfer to the physical
world and are robust to camera noise, rescaling, and lighting
effects. Kurakin et al. (2016) do not synthesize targeted
physical-world adversarial examples, they do not evaluate
other real-world 2D transformations such as rotation, skew,
translation, or zoom, and their approach does not translate
to the 3D case.

Sharif et al. (2016) develop a real-world adversarial attack
on a state-of-the-art face recognition algorithm, where ad-
versarial eyeglass frames cause targeted misclassification
in portrait photos. The algorithm produces robust pertur-
bations through optimizing over a fixed set of inputs: the
attacker collects a set of images and finds a perturbation
that minimizes cross entropy loss over the set. The algo-
rithm solves a different problem than we do in our work: it
produces adversarial perturbations universal over portrait

photos taken head-on from a single viewpoint, while EOT
produces 2D/3D adversarial examples robust over transfor-
mations. Their approach also includes a mechanism for
enhancing perturbations’ printability using a color map to
address the limited color gamut and color inaccuracy of the
printer. Note that this differs from our approach in achieving
printability: rather than creating a color map, we find an
adversarial example that is robust to color inaccuracy. Our
approach has the advantage of working in settings where
color accuracy varies between prints, as was the case with
our 3D-printer.

Concurrently to our work, Evtimov et al. (2017) proposed
a method for generating robust physical-world adversarial
examples in the 2D case by optimizing over a fixed set
of manually-captured images. However, the approach is
limited to the 2D case, with no clear translation to 3D, where
there is no simple mapping between what the adversary
controls (the texture) and the observed input to the classifier
(an image). Furthermore, the approach requires the taking
and preprocessing of a large number of photos in order to
produce each adversarial example, which may be expensive
or even infeasible for many objects.

Brown et al. (2016) apply our EOT algorithm to produce
an “adversarial patch”, a small image patch that can be
applied to any scene to cause targeted misclassification in
the physical world.

Real-world adversarial examples have also been demon-
strated in contexts other than image classification/detection,
such as speech-to-text (Carlini et al., 2016).

5. Conclusion

Our work demonstrates the existence of robust adversarial
examples, adversarial inputs that remain adversarial over a
chosen distribution of transformations. By introducing EOT,
a general-purpose algorithm for creating robust adversar-
ial examples, and by modeling 3D rendering and printing
within the framework of EOT, we succeed in fabricating
three-dimensional adversarial objects. With access only to
low-cost commercially available 3D printing technology,
we successfully print physical adversarial objects that are
classified as a chosen target class over a variety of angles,
viewpoints, and lighting conditions by a standard ImageNet
classifier. Our results suggest that adversarial examples and
objects are a practical concern for real world systems, even
when the examples are viewed from a variety of angles and
viewpoints.
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A. Distributions of Transformations

Under the EOT framework, we must choose a distribution of transformations, and the optimization produces an adversarial
example that is robust under the distribution of transformations. Here, we give the specific parameters we chose in the 2D
(Table 4), 3D (Table 5), and physical-world case (Table 6).

B. Robust 2D Adversarial Examples

We give a random sample out of our 1000 2D adversarial examples in Figures 8 and 9.

C. Robust 3D Adversarial Examples

We give a random sample out of our 200 3D adversarial examples in Figures 10 and 11 and 12. We give a histogram of
adversariality (percent classified as the adversarial class) over all 200 examples in Figure 13.

D. Physical Adversarial Examples

Figure 14 gives all 100 photographs of our adversarial 3D-printed turtle, and Figure 15 gives all 100 photographs of our
adversarial 3D-printed baseball.

Transformation Minimum Maximum

Scale 0.9 1.4
Rotation �22.5� 22.5�

Lighten / Darken �0.05 0.05
Gaussian Noise (stdev) 0.0 0.1
Translation any in-bounds

Table 4. Distribution of transformations for the 2D case, where each parameter is sampled uniformly at random from the specified range.

Transformation Minimum Maximum

Camera distance 2.5 3.0
X/Y translation �0.05 0.05
Rotation any
Background (0.1, 0.1, 0.1) (1.0, 1.0, 1.0)

Table 5. Distribution of transformations for the 3D case when working in simulation, where each parameter is sampled uniformly at
random from the specified range.

Transformation Minimum Maximum

Camera distance 2.5 3.0
X/Y translation �0.05 0.05
Rotation any
Background (0.1, 0.1, 0.1) (1.0, 1.0, 1.0)
Lighten / Darken (additive) �0.15 0.15
Lighten / Darken (multiplicative) 0.5 2.0
Per-channel (additive) �0.15 0.15
Per-channel (multiplicative) 0.7 1.3
Gaussian Noise (stdev) 0.0 0.1

Table 6. Distribution of transformations for the physical-world 3D case, approximating rendering, physical-world phenomena, and
printing error.
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Original: European
fire salamander P (true): 93%

P (adv): 0%
P (true): 91%
P (adv): 0%

P (true): 93%
P (adv): 0%

P (true): 93%
P (adv): 0%

Adv: guacamole P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 96%

P (true): 0%
P (adv): 95%

Original: caldron P (true): 75%
P (adv): 0%

P (true): 83%
P (adv): 0%

P (true): 54%
P (adv): 0%

P (true): 80%
P (adv): 0%

Adv: velvet P (true): 0%
P (adv): 94%

P (true): 0%
P (adv): 94%

P (true): 1%
P (adv): 91%

P (true): 0%
P (adv): 100%

Original: altar P (true): 87%
P (adv): 0%

P (true): 38%
P (adv): 0%

P (true): 59%
P (adv): 0%

P (true): 2%
P (adv): 0%

Adv: African
elephant

P (true): 0%
P (adv): 93%

P (true): 0%
P (adv): 87%

P (true): 3%
P (adv): 73%

P (true): 0%
P (adv): 92%

Figure 8. A random sample of 2D adversarial examples.
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Original: barrel

P (true): 96%
P (adv): 0%

P (true): 99%
P (adv): 0%

P (true): 96%
P (adv): 0%

P (true): 97%
P (adv): 0%

Adv: guillotine

P (true): 1%
P (adv): 10%

P (true): 0%
P (adv): 95%

P (true): 0%
P (adv): 91%

P (true): 3%
P (adv): 4%

Original: baseball

P (true): 100%
P (adv): 0%

P (true): 100%
P (adv): 0%

P (true): 100%
P (adv): 0%

P (true): 100%
P (adv): 0%

Adv: green lizard

P (true): 0%
P (adv): 66%

P (true): 0%
P (adv): 94%

P (true): 0%
P (adv): 87%

P (true): 0%
P (adv): 94%

Original: turtle

P (true): 94%
P (adv): 0%

P (true): 98%
P (adv): 0%

P (true): 90%
P (adv): 0%

P (true): 97%
P (adv): 0%

Adv: Bouvier des
Flandres

P (true): 1%
P (adv): 1%

P (true): 0%
P (adv): 6%

P (true): 0%
P (adv): 21%

P (true): 0%
P (adv): 84%

Figure 10. A random sample of 3D adversarial examples.
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Original: barracouta P (true): 91%
P (adv): 0%

P (true): 95%
P (adv): 0%

P (true): 92%
P (adv): 0%

P (true): 92%
P (adv): 0%

Adv: tick P (true): 0%
P (adv): 88%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 95%

Original: tiger cat P (true): 85%
P (adv): 0%

P (true): 91%
P (adv): 0%

P (true): 69%
P (adv): 0%

P (true): 96%
P (adv): 0%

Adv: tiger P (true): 32%
P (adv): 54%

P (true): 11%
P (adv): 84%

P (true): 59%
P (adv): 22%

P (true): 14%
P (adv): 79%

Original: speedboat
P (true): 14%
P (adv): 0%

P (true): 1%
P (adv): 0%

P (true): 1%
P (adv): 0%

P (true): 1%
P (adv): 0%

Adv: crossword
puzzle P (true): 3%

P (adv): 91%
P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

Figure 9. A random sample of 2D adversarial examples.
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Original: baseball

P (true): 100%
P (adv): 0%

P (true): 100%
P (adv): 0%

P (true): 100%
P (adv): 0%

P (true): 100%
P (adv): 0%

Adv: Airedale

P (true): 0%
P (adv): 94%

P (true): 0%
P (adv): 6%

P (true): 0%
P (adv): 96%

P (true): 0%
P (adv): 18%

Original: orange

P (true): 73%
P (adv): 0%

P (true): 29%
P (adv): 0%

P (true): 20%
P (adv): 0%

P (true): 85%
P (adv): 0%

Adv: power drill

P (true): 0%
P (adv): 89%

P (true): 4%
P (adv): 75%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 84%

Original: dog

P (true): 1%
P (adv): 0%

P (true): 32%
P (adv): 0%

P (true): 12%
P (adv): 0%

P (true): 0%
P (adv): 0%

Adv: bittern

P (true): 0%
P (adv): 97%

P (true): 0%
P (adv): 91%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 97%

Figure 11. A random sample of 3D adversarial examples.
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Original: teddybear

P (true): 90%
P (adv): 0%

P (true): 1%
P (adv): 0%

P (true): 98%
P (adv): 0%

P (true): 5%
P (adv): 0%

Adv: sock

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 99%

P (true): 0%
P (adv): 98%

P (true): 0%
P (adv): 99%

Original: clownfish

P (true): 46%
P (adv): 0%

P (true): 14%
P (adv): 0%

P (true): 2%
P (adv): 0%

P (true): 65%
P (adv): 0%

Adv: panpipe

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 1%

P (true): 0%
P (adv): 12%

P (true): 0%
P (adv): 0%

Original: sofa

P (true): 15%
P (adv): 0%

P (true): 73%
P (adv): 0%

P (true): 1%
P (adv): 0%

P (true): 70%
P (adv): 0%

Adv: sturgeon

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

P (true): 0%
P (adv): 100%

Figure 12. A random sample of 3D adversarial examples.
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Figure 13. A histogram of adversariality (percent of 100 samples classified as the adversarial class) across the 200 3D adversarial
examples.
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classified as turtle classified as rifle classified as other

Figure 14. All 100 photographs of our physical-world 3D adversarial turtle.
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classified as baseball classified as espresso classified as other

Figure 15. All 100 photographs of our physical-world 3D adversarial baseball.


