
Efficient Similarity Search over Encrypted Data

Mehmet Kuzu, Saiful Islam, Murat Kantarcioglu

Introduction

Similarity Searchable Encryption Protocols

Problem Formulation

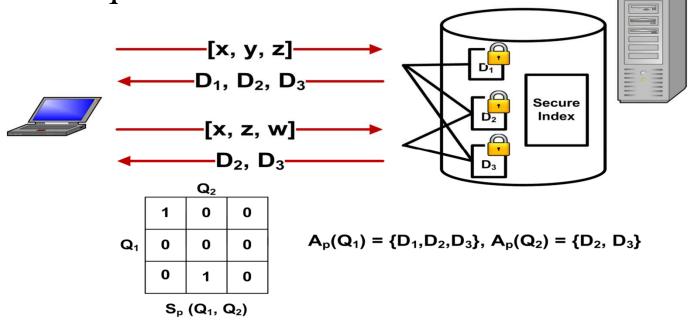
- BuildIndex(K, D): Extract feature set for each data item in D and form secure index I with key K.
- Trapdoor (K, f): Generate a trapdoor for a specific feature f with key K and output T.
- Search(I,T): Perform search on I with trapdoor of feature f (T) and output encrypted collection C:

 $C_{j} \in C \ if \ \exists (f_{i} \in F_{j}) \ [dist(f_{i}, f) \leq \alpha] \\ C_{j} \notin C \ if \ \forall (f_{i} \in F_{j}) \ [dist(f_{i}, f) \geq \beta]$

Locality Sensitive Hashing

• Family of functions is said to be (r_1, r_2, p_1, p_2) sensitive if for any x, y \in F and for any h \in H.

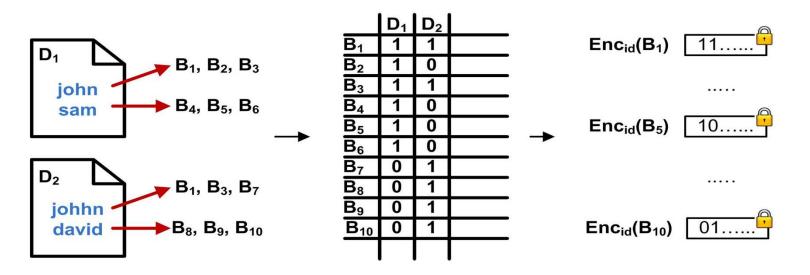
• if
$$dist(x, y) \le r_1$$
, then $Pr[h(x) = h(y)] \ge p_1$


• if
$$dist(x,y) \ge r_2$$
, then $Pr[h(x) = h(y)] \le p_2$

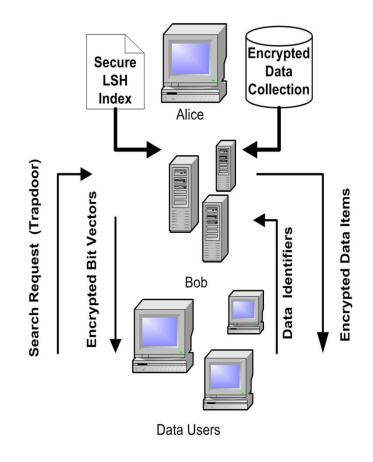
• A composite function g: $(g_1, ..., g_{\lambda})$ can be formed to push p_1 closer to 1 and p_2 closer to 0 by adjusting the LSH parameters (k, λ) .

Security Goals

- Access Pattern (A_p) : Identifiers of data items that are in the result set of a specific query.
- Similarity Pattern (S_p): Relative similarity among distinct queries.



Secure LSH Index


• Content of any bucket B_k is a bit vector (V_{B_k}) :

 $V_{B_k}[id(D_z)] = 1 \quad if \ g_i(f_j) = B_k \ for \ g_i \in g, \ f_j \in D_z$ $V_{B_k}[id(D_z)] = 0 \qquad otherwise$

• $[Enc_{id}(B_k), Enc_{payload}(V_{B_k})] \in I.$

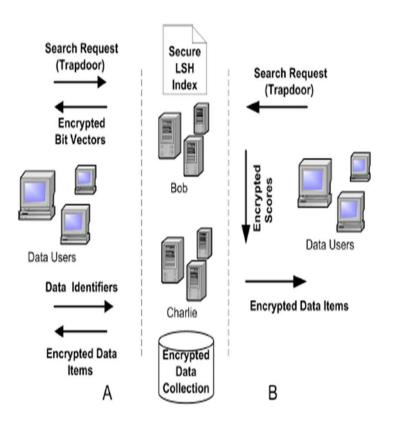
Secure Search Scheme

Shared Information

- K_{coll}: Secret key of data collection encryption
- K_{id}, K_{payload}: Secret keys of index construction
- ρ: Metric space translation function
- g: Locality sensitive function

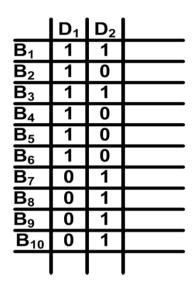
Secure Search Scheme

• Trapdoor Construction for feature f_i : $T_{f_i} = \{Enc_{id}(g_1(\rho(f_i))), ..., Enc_{id}(g_\lambda(\rho(f_i)))\}$


> joohn \rightarrow B₁, B₂, B₈₇ -Enc_{id}(B₁), Enc_{id}(B₂), Enc_{id}(B₈₇) \rightarrow Enc_{payload}(B₁) Enc_{payload}(B₂) Enc_{payload}(B₈₇) D_1, D_2 B_1 1 1 B_2 1 0 B_{87} 0 0 score 2 1

FEARLESS engineering

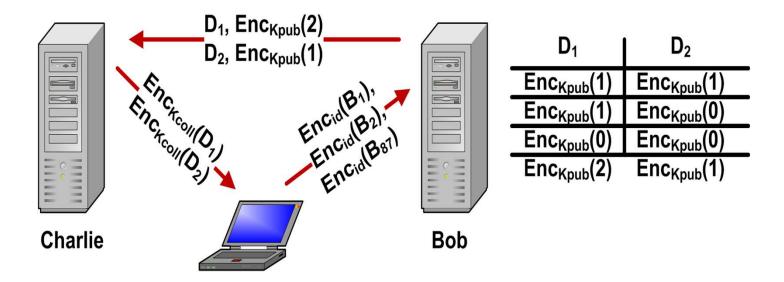
Multi-Server Setting



- Basic search scheme reveals similarity and access patterns.
- It is desirable to separate leaked information to mitigate potential attacks.
- Multi-server setting enables lighter clients.

One Round Search Scheme

This scheme is built on Paillier encryption that is semantically secure and additive homomorphic. *if* (π_S, σ_{VS}) ∈ I, then (π_S, [e_{S1}, ..., e_{Sℓ}]) ∈ I' *e_{Sk}* = Enc_{Kpub}(1) *if* V_s[*id*(D_j)] = 1 *e_{Sk}* = Enc_{Kpub}(0) otherwise

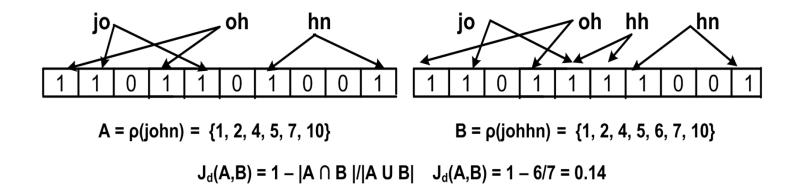


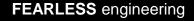
1		
B ₁	Enc _{Kpub} (1)	Enc _{Kpub} (1)
B ₂	Enc _{Kpub} (1)	Enc _{Kpub} (0)
B_3	Enc _{Kpub} (1)	Enc _{Kpub} (1)
B ₄	Enc _{Kpub} (1)	Enc _{Kpub} (0)
B_5	Enc _{Kpub} (1)	Enc _{Kpub} (0)
B_6	Enc _{Kpub} (1)	Enc _{Kpub} (0)
B 7	Enc _{Kpub} (0)	Enc _{Kpub} (1)
B ₈	Enc _{Kpub} (0)	Enc _{Kpub} (1)
B ₉	Enc _{Kpub} (0)	Enc _{Kpub} (1)
B ₁₀	Enc _{Kpub} (0)	Enc _{Kpub} (1)

One Round Search Scheme

• Bob performs homomorphic addition on the payloads of trapdoor components.

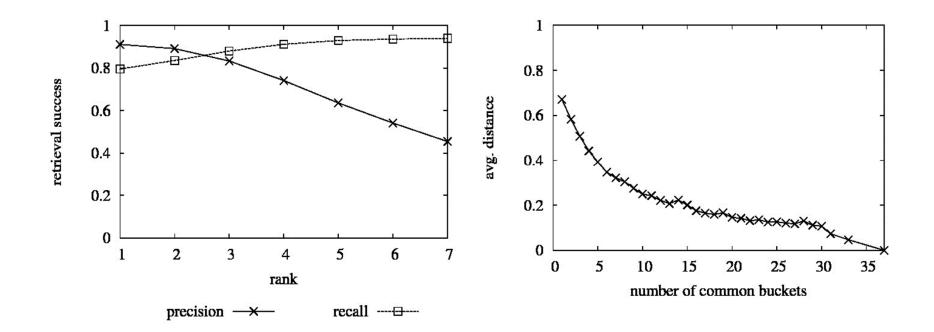
$$\begin{split} \omega_{score(i)} &= e_{t_1(i)} \odot \dots \odot e_{t_{\lambda}(i)} \\ (i, \omega_{score(i)}) \text{ pairs are sent to Charlie} \end{split}$$


Error Aware Keyword Search


- Typographical errors are common both in the queries and data sources.
- In this context, data items be the documents, features be the words in the document and query feature be a keyword.
- Bloom filter encoding enables efficient space translation for approximate string matching.

Error Aware Keyword Search

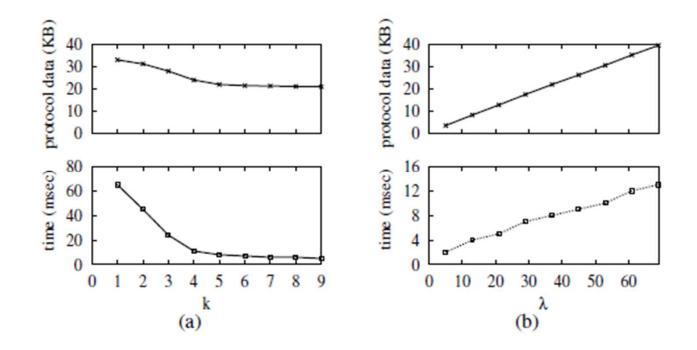
 Elegant locality sensitive family has been designed for Jaccard distance (MinHash) that is [r₁, r₂,1-r₁, 1-r₂] sensitive.

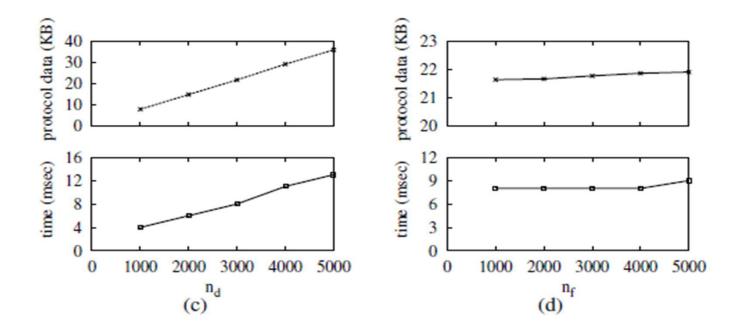


Experimental Setup

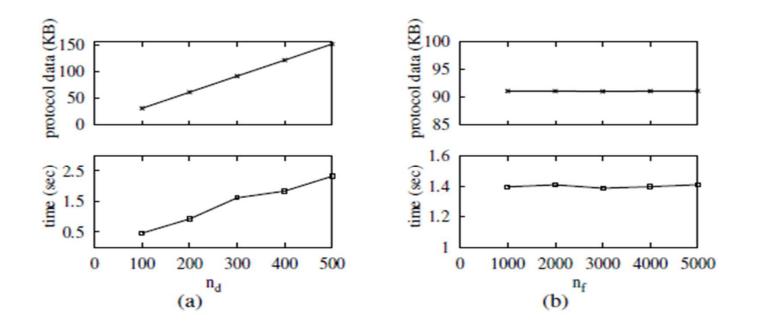
- A sample corpus of 5000 emails is constructed from publicly available Enron e-mail dataset.
- Words in e-mails are embedded into 500 bit Bloom filter with 15 hash functions.
- (0.45, 0.8, 0.85, 0.01)-sensitive family is formed from MinHash to tolerate typos. Common typos are introduced into the queries %25 of the time.
- Default Parameters: (Number of documents: 5000, Number of features: 5000, k:5, λ : 37).

Retrieval Evaluation


• Ranking limits retrieval of irrelevant items.


Performance Evaluation (Single Server)

• Increase in k and decrease in λ have similar effects. Decrease in λ leads smaller trapdoors.


Performance Evaluation (Single Server)

• With increasing n_d, matching documents and the size of transferred bit vectors becomes larger.

Performance Evaluation (Multi-Server)

• Transfer of homomorphic addition results between servers is the main bottleneck.

Conclusion

- We proposed LSH based secure index and search scheme to enable fast similarity search over encrypted data.
- We provided a rigorous security definition and proved the security of the scheme to ensure confidentiality of the sensitive data.
- Efficiency of the proposed scheme is verified with empirical analysis.

THANKS ...!

QUESTIONS?

FEARLESS engineering

