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ABSTRACT
The increasing ability to track and collect large amounts of
data with the use of current hardware technology has lead
to an interest in the development of data mining algorithms
which preserve user privacy. A recently proposed technique
addresses the issue of privacy preservation by perturbing the
data and reconstructing distributions at an aggregate level
in order to perform the mining. This method is able to re-
tain privacy while accessing the information implicit in the
original attributes. The distribution reconstruction process
naturally leads to some loss of information which is accept-
able in many practical situations. This paper discusses an
Expectation Maximization (EM) algorithm for distribution
reconstruction which is more e�ective than the currently
available method in terms of the level of information loss.
Speci�cally, we prove that the EM algorithm converges to
the maximum likelihood estimate of the original distribu-
tion based on the perturbed data. We show that when a
large amount of data is available, the EM algorithm pro-
vides robust estimates of the original distribution. We pro-
pose metrics for quanti�cation and measurement of privacy-
preserving data mining algorithms. Thus, this paper pro-
vides the foundations for measurement of the e�ectiveness
of privacy preserving data mining algorithms. Our privacy
metrics illustrate some interesting results on the relative ef-
fectiveness of di�erent perturbing distributions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications|
Data Mining

General Terms
Algorithms, Experimentation, Theory

1. INTRODUCTION
In recent years, the progress of hardware technology has
made it easy to store and process large amounts of transac-
tional information. For example, even simple transactions

of everyday life such as using the phone or credit-cards are
recorded today in an automated way. A large amount of
such information is often speci�c to individual users. De-
pending upon the nature of the information, users may not
be willing to divulge the individual values of records. In
particular, data mining techniques are considered a c hal-
lenge to privacy preservation due to their natural tendency
to use sensitive information about individuals. Some inter-
esting discourses on the nature of privacy in the context of
recent trends in information technology may be found in [3,
5, 10, 11, 12, 13]. This has lead to a considerable amount
of focus on privacy preserving data collection and mining
methods [1, 6, 7, 8, 15]. An innovative approach for privacy
preserving data mining was recently proposed in [1]. This
technique relies on two facts:

� Users are not equally protective of all values in their
records. Thus, users may be willing to provide modi-
�ed values of certain �elds by the use of a (publically
known) perturbing random distribution. This modi-
�ed value may be generated using a custom code or a
browser plug-in.

� Data mining problems do not necessarily require indi-
vidual records, but only distributions. Since the per-
turbing distribution is known, it can be used to recon-
struct aggre gatedistributions, i.e. the probability dis-
tribution of the data set. In many cases, data mining
algorithms can be developed which use the probabil-
ity distributions rather than individual records. An
example of a classi�cation algorithm which uses such
aggregate information is discussed in [1].

Speci�cally, let us consider a set of n original data values
x1 : : : xn. These are modeled in [1] as n independent values,
each drawn from the same data distribution as the random
variable X. In order to create the perturbation, we generate
n independent values y1 : : : yn, each with the same distribu-
tion as the random variable Y . Thus, the perturbed values
of the data are given by z1 = x1 + y1; : : : zn = xn + yn.
In order to protect privacy, only the perturbed values are
provided rather than the original data. Given these values,
and the (publically known) density function fY (y) for Y ,
an iterative algorithm was proposed in [1] to estimate the
density function fX(x) for X. (We shall henceforth refer to
this technique as the AS algorithm.)
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It may be noted that the exact distribution for X is im-
possible to reconstruct for a given data set. The greater
the level of perturbation, the less likely we are to be able
to estimate the data distributions e�ectively. On the other
hand, larger perturbations also lead to a greater amount of
privacy. Thus, there is a trade-o� between loss of informa-
tion and privacy. Furthermore, the exact accuracy level in
estimating the data distribution is sensitive to the recon-
struction algorithm. A given reconstruction algorithm may
not always converge; and even when it converges, there is
no guarantee that it provides a reasonable estimate of the
original distribution. For example, the convergence behav-
ior of the AS algorithm has not been discussed in [1]. In
this paper, we develop an e�ective reconstruction algorithm
which provably converges to the maximum-likelihood esti-
mate of the data distribution. We discuss the quanti�ca-
tion of the information-privacy tradeo�. Furthermore, we
propose theoretically sound metrics to measure information
loss and privacy, thus providing a foundation to quantify the
performance of privacy preserving data mining algorithms.

This paper is organized as follows. In the sections 2 and 3,
we discuss the techniques for quanti�cation of privacy and
information loss for reconstruction algorithms. In section
4, we will derive an expectation maximization algorithm for
distribution reconstruction and show some of its nice con-
vergence properties. The empirical results are presented in
section 5. In section 6, we present the conclusions and sum-
mary.

1.1 Contributions of this paper
In this paper, we develop optimal algorithms and models
based on the interesting perturbation approach proposed in
[1]. We propose a reconstruction algorithm for privacy pre-
serving data mining, which not only converges but does so
to the maximum likelihood estimate of the original distri-
bution. This is the theoretical best that any reconstruction
algorithm can achieve. This e�ectively means that when a
large amount of data is available, the expectation maximiza-
tion algorithm can reconstruct the distribution with little or
almost no information loss.

We examine the problem of quantifying privacy and infor-
mation loss. For example, the method in [1] quanti�es pri-
vacy without taking into account the additional knowledge
that a user may obtain from the reconstructed (aggregate)
distribution. We propose a privacy metric which takes into
account the fact that both the perturbed individual record
and the aggregate distribution are available to the user to
make more accurate guesses about the possible values of
the record. This privacy metric is based on the concept
of mutual information between the original and perturbed
records. Thus, the metrics proposed by this paper also pro-
vide a foundation for testing the e�ectiveness of privacy-
preserving data mining algorithms in the future.

We use these proposed metrics to quantify the e�ects of data
and perturbation parameters. Our empirical results show
some simple trends of privacy-preserving data mining algo-
rithms: (1) With increasing perturbation, the privacy level
increases, but the e�ectiveness of reconstruction algorithms
decreases. This leads to a privacy-information loss trade-
o� curve. (2) With increasing amount of data available,

the EM-reconstruction algorithm is able to approximate the
original distribution to a very high degree of precision (3)
Our metrics also provides somewhat di�erent results to those
presented in [1] about the relative e�ectiveness of di�erent
perturbing distributions.

2. QUANTIFICATION OF PRIVACY
The quantity used to measure privacy should indicate how
closely the original value of an attribute can be estimated.
The work in [1] uses a measure that de�nes privacy as fol-
lows: If the original value can be estimated with c% con�-
dence to lie in the interval [�1; �2], then the interval width
(�2 � �1) de�nes the amount of privacy at c% con�dence
level. For example, if the perturbing additive is uniformly
distributed in an interval of width 2�, then � is the amount
of privacy at con�dence level 50% and 2� is the amount
of privacy at con�dence level 100%. However, this simple
method of determining privacy can be subtly incomplete in
some situations. This can be best explained by the following
example.

Example 1. Consider an attributeX with the density func-
tion fX(x) given by:

fX(x) =

8><>:
0:5 0 6 x 6 1

0:5 4 6 x 6 5

0 otherwise

(1)

Assume that the perturbing additive Y is distributed uni-
formly between [�1; 1]. Then according to the measure pro-
posed in [1], the amount of privacy is 2 at con�dence level
100%.

However, after performing the perturbation and subsequent
reconstruction, the density function fX(x) will be approxi-
mately revealed. Let us assume for a moment that a large
amount of data is available, so that the distribution function
is revealed to a high degree of accuracy. Since the (distribu-
tion of the) perturbing additive is publically known, the two
pieces of information can be combined to determine that
if Z 2 [�1; 2], then X 2 [0; 1]; whereas if Z 2 [3; 6] then
X 2 [4; 5].

Thus, in each case, the value of X can be localized to an
interval of length 1. This means that the actual amount of
privacy o�ered by the perturbing additive Y is at most 1 at
con�dence level 100%. We use the quali�er `at most' since
X can often be localized to an interval of length less than
one. For example, if the value of Z happens to be �0:5, then
the value of X can be localized to an even smaller interval
of [0; 0:5].

This example illustrates that the method suggested in [1]
does not take into account the distribution of original data.
In other words, the (aggregate) reconstruction of the at-
tribute value also provides a certain level of knowledge which
can be used to guess a data value to a higher level of accu-
racy. To accurately quantify privacy, we need a method
which takes such side-information into account.
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A search for the correct measure to quantify privacy turns
out to be quite elusive. The concept of privacy is easiest to
grasp in the context of uniformly distributed random vari-
ables. Intuitively, a random variable distributed uniformly
between [0; 1] has half as much privacy as a random variable
distributed uniformly between [0; 2]. In general, we expect
that if fB(x) = 2fA(2x), then B o�ers half as much privacy
as A. Furthermore, we expect that if a sequence of random
variables An, n = 1; 2; : : : converges to another random vari-
able B, then privacy inherent in An should also converge to
the privacy inherent in B. Ideally, we would like to �nd a
privacy measure that satis�es such intuitive notions.

In this paper, we propose a privacy measure based on the
di�erential entropy of a random variable. The di�erential
entropy h(A) of a random variable A is de�ned as follows:

h(A) = �

Z

A

fA(a) log2 fA(a) da (2)

where 
A is the domain of A. It is well-known that h(A) is
a measure of uncertainty inherent in the value of A [9]. It
can be easily seen that for a random variable U distributed
uniformly between 0 and a, h(U) = log2(a). For a = 1,
h(U) = 0. Thus, random variables with less uncertainty
than a uniform distribution in [0; 1] have negative di�erential
entropy, while random variables with more uncertainty have
positive di�erential entropy.

We propose 2h(A) as a measure of privacy inherent in the
random variable A and denote it by �(A). Thus, a ran-
dom variable U distributed uniformly between 0 and a has
privacy �(U) = 2log2(a) = a. For a general random vari-
able A, �(A) denote the length of the interval, over which a
uniformly distributed random variable has the same uncer-
tainty as A. Thus if �(A) = 2, then A has as much privacy
as a random variable distributed uniformly in an interval
of length 2. This measure also satis�es all intuitive notions
described above.

Now, we will introduce the notion of conditional privacy
which takes into account the additional information avail-
able in the perturbed values. Given a random variable B,
the conditional di�erential entropy of A is de�ned as follows:

h(AjB) = �

Z

A;B

fA;B(a; b) log2 fAjB=b(a) da db (3)

Thus, the average conditional privacy ofA given B is �(AjB) =

2h(AjB). This motivates the following metric P(AjB) for the
conditional privacy loss of A, given B:

P(AjB) = 1� �(AjB)=�(A) = 1� 2h(AjB)=2h(A)

= 1� 2�I(A;B); (4)

where I(A;B) = h(A)�h(AjB) = h(B)�h(BjA). I(A;B) is
also known as the mutual information between the random
variables A and B. Since 2h(AjB)=2h(A) is the ratio of privacy
of A after and before revealing B, P(AjB) is the fraction of
privacy of A which is lost by revealing B.

As an illustration, let us reconsider Example 1 given above.
In this case, the di�erential entropy of X is given by:

h(X) = �

Z

X

fX(x) log2 fX(x) dx

= �

Z 1

0

0:5 log2 0:5 dx�

Z 5

4

0:5 log2 0:5 dx

= 1 (5)

Thus the privacy of X, �(X) = 21 = 2. In other words,
X has as much privacy as a random variable distributed
uniformly in an interval of length 2. The density function
of the perturbed value Z is given by

fZ(z) =

Z 1

�1

fX(�)fY (z � �) d�:

Using fZ(z), we can compute the di�erential entropy h(Z)
of Z. It turns out that h(Z) = 9=4. Therefore, we have:

I(X;Z) = h(Z)� h(ZjX) = 9=4� h(Y ) = 9=4� 1 = 5=4

Here, the substitution h(ZjX) = h(Y ) in the second equality
follows from the fact that X and Y are independent and
Z = X + Y . In the third equality, we have substituted
h(Y ) = log2 2 = 1. Thus the fraction of privacy loss in

this case is P(XjZ) = 1 � 2�5=4 = 0:5796. As a result
after revealing Z, X has privacy �(XjZ) = �(X) � (1 �
P(XjZ)) = 2 � (1:0 � 0:5796) = 0:8408. This value is less
than 1, since X can be localized to an interval of length less
than one for many values of Z.

3. QUANTIFICATION OF INFORMATION
LOSS

Given the perturbed values z1; z2; : : : ; zN , it is (in general)
not possible to reconstruct the original density function fX(x)
with an arbitrary precision. The greater the variance of the
perturbation, the lower the precision in estimating fX(x).

We refer the lack of precision in estimating fX(x) as infor-
mation loss. In this section, we will consider how to quantify
information loss. Note that the work in [1] uses an appli-
cation dependent approach to measure the information loss.
For example, for a classi�cation problem, the inaccuracy in
distribution reconstruction is measured by examining the
e�ects on the misclassi�cation rate.

Let f̂X(x) denote the density function ofX as estimated by a

reconstruction algorithm. We propose the metric I(fX ; f̂X)
to measure the information loss incurred by a reconstruction
algorithm in estimating fX(x):

I(fX ; f̂X) =
1

2
E

"Z

X

���fX(x)� f̂X(x)
��� dx# (6)

Thus the proposed metric equals half the expected value of
L1-norm between the original distribution fX(x) and its es-

timate f̂X(x). Note that information loss I(fX ; f̂X) lies be-

tween 0 and 1; I(fX ; f̂X) = 0 implies perfect reconstruction

of fX(x) and I(fX ; f̂X) = 1 implies that there is no over-

lap between fX(x) and its estimate f̂X(x) (see Figure 3).
The proposed metric is universal in the sense that it can
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Distribution

Original

Estimated
Distribution

A

B

C

D

1

Figure 1: Illustration of the information loss metric: In this case, the estimated distribution is somewhat shifted

from the original distribution. The proposed information loss metric is related to the amount of mismatch between two

distribution in terms of area. Speci�cally, it equals half the sum of the areas denoted above by A, B, C, and D. It is also

equal to 1� �, where � is the area shared by both distributions.

be applied to any reconstruction algorithm since it depends
only on the original density fX(x), and its estimate f̂X(x).
We advocate the use of a universal metric since it is in-
dependent of the particular data mining task at hand, and
therefore facilitates absolute comparisons between disparate
reconstruction algorithms.

4. AN EM ALGORITHM FOR EFFECTIVE
DISTRIBUTION RECONSTRUCTION

Assume that x = fx1; x2; : : : ; xNg are realizations of N in-
dependent and identically distributed random variablesX =
fX1; X2; : : : ;XNg, each with the density function fX(x).
These realizations constitute the original data. Further as-
sume that y = fy1; y2; : : : ; yNg are realizations of N inde-
pendent and identically distributed random variables Y =
fY1; Y2; : : : ; YNg, each with the density function fY (y). These
realizations constitute the perturbations to the original data.
Given the N perturbed values z = fz1; z2; : : : ; zNg, zi =
xi+ yi, and the density function fY (y), we would like to re-
construct fX(x). We denote the perturbed random variables
by Z = fZ1; : : : ; ZNg.

Note that since the function fX(x) is de�ned over a continu-
ous domain, we need to parameterize and discretize it for the
purpose of any numerical estimation method. We assume
that the data domain 
X can be discretized into K inter-
vals 
1; : : : ;
K , where [

K
i=1
i = 
X . Let mi = m(
i) be

the length of the interval 
i. We assume that fX(x) is con-
stant over 
i and the corresponding density function value is
equal to �i. Such a form will restrict fX(x) to a class param-
eterized by the �nite set of parameters � = f�1; �2; : : : ; �Kg.
In order to explicitly denote the parametric dependence of
the density function on � we will use the notation fX;�(x)
for the density function of X. Under these assumptions, we
have

fX;�(x) =

KX
i=1

�iI
i(x);

where I
i(x) = 1 if x 2 
i and 0 otherwise. Since fX;�(x)

is a density, it follows that
PK
i=1 �im(
i) = 1. By choos-

ing K large enough, density functions of the form discussed
above can approximate any density function with arbitrary
precision.

After this parameterization, the algorithm will proceed to

estimate �, and thereby determine f̂X;�(x). Letb� = f�̂1; �̂2; : : : ; �̂Kg

be the estimate of these parameters produced by the recon-
struction algorithm.

Given a set of observations Z = z, we would ideally like to
�nd the maximum-likelihood estimate (MLE)b�ML = argmax

�
ln fZ;�(z):

The MLE has many attractive properties such as consis-
tency, asymptotic unbiasedness, and asymptotic minimum
variance among unbiased estimates [14]. However, it is not

always be possible to �nd b�ML directly, and this turns out
to be the case with the fZ; �(z).

In order to achieve this goal, we will derive a reconstruction
algorithm which �ts into the broad framework of Expecta-
tion Maximization (EM) algorithms. The algorithm pro-
ceeds as if a more comprehensive set of data, say D = d is
observable and maximizes ln fD;�(d) over all values of � (M-
step). Since d is in fact unavailable, it replaces ln fD;�(d) by
its conditional expected value given Z = z and the current
estimate of � (E-Step). The D is chosen to make E-step
and M-step easy to compute.

In this paper, we propose the use of X = x as the more
comprehensive set of data. As shown in the next section,
this choice results in a computationally eÆcient algorithm.
More formally, we de�ne a Q function as follows:

Q(�; b�) = E
h
ln fX;�(X)

��� Z = z; b�i (7)

Thus, Q(�; b�) is the expected value of ln fX;�(X) computed
with respect f

XjZ=z;b�, the density of X given Z = z and pa-

rameter vector b�. After the initialization of � to a nominal
value �0, the EM algorithm will iterate over the following
two steps:

1. E-step: Compute Q(�;�k).

2. M-step: Update �k+1 = argmax�Q(�;�
k).

The above discussion provides the general framework of EM
algorithms; the actual details of the E-step and M-steps
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require a derivation which is problem speci�c. Similarly,
the precise convergence properties of an EM algorithm are
rather sensitive to the problem and its corresponding deriva-
tion. In the next subsection, we will derive the EM algo-
rithm for the reconstruction problem and show that the re-
sulting EM-algorithm has desirable convergence properties.

4.1 Derivation of EM Reconstruction Algo-
rithm

Theorem 4.1. The value of Q(�; b�) during the E-step

of the reconstruction algorithm is given by:

Q(�; b�) = KX
i=1

 i(z; b�) ln �i;
where

 i(z; b�) = �̂i

NX
j=1

Pr(Y 2 zj � 
i)

fZ;b�(zj)
;

and � 2 zj � 
i if zj � � 2 
i.

Proof. See appendix.

In the next proposition, we calculate the value of � that

maximizes Q(�; b�).
Theorem 4.2. The value of � which maximizes Q(�; b�)

during the M-step of the reconstruction algorithm is given

by:

�i =
 i(z; b�)
miN

;

where

 i(z; b�) = �̂i

NX
j=1

Pr(Y 2 zj � 
i)

fZ;b�(zj)
:

Proof. Note that
PK
i=1mi�i = 1. Hence, we use the

Lagrange multiplier method to �nd the maxima. We write
down the Lagrange multiplier function as follows:

L(�; �) =
KX
i=1

 i(z; b�) ln �i + �(
KX
j=1

mj�j � 1:0) (8)

The Lagrange constraints for the above function are @L=@�i =
0 and @L=@� = 0. The corresponding conditions are �i =

� i(z;b�)
�mi

and
PK
j=1mj�j = 1:0 respectively. Eliminating

the Lagrange multiplier � from these conditions, we get

�i =
 i(z;b�)

mi
P
K
l=1

 l(z;b�)
.

At this stage, we only need to evaluate the denominator of

the above value for �i. To this e�ect, we note that:

KX
l=1

 l(z; b�) = KX
l=1

�̂l

NX
j=1

Pr(Y 2 zj � 
l)

fZ;b�(zj)

=

NX
j=1

PK
l=1 �̂lPr(Y 2 zj � 
l)

fZ;b�(zj)

=

NX
j=1

fZ;b�(zj)

fZ;b�(zj)
= N (9)

In order to derive (9), we note that the density function of
Z can be obtained by observing that Z = X + Y , and X
and Y are independent. This implies that:

fZ;b�(z) =
Z
fX(�)fY (z � �) d�

=

KX
i=1

Z

i

�̂ifY (z � �) d�

=
KX
i=1

�̂iPr(Y 2 z � 
i) (10)

The result follows.

Now, we are in a position to describe the EM algorithm for
the reconstruction problem.

4.2 EM Reconstruction Algorithm
1. Initialize �0i =

1
K
, i = 1; 2; : : : ;K; k = 0;

2. Update � as follows: �
(k+1)
i =  i(z;�

k)
miN

;

3. k = k + 1;
4. If not termination-criterion then return to Step 2.

The termination criterion for this method is based on how
much �k has changed since the last iteration. The exact
threshold at which the two distributions are deemed to be
almost the same for the purpose of convergence could either
be heuristically set or be based on a more rigorous conditions
such as the one indicated in [4].

4.3 Convergence Properties of EM Reconstruc-
tion Algorithm

Let us denote the log-likelihood function as

L�(�) = log fZ;�(�) =

KX
j=1

log fzj ;�(�j):

Ideally, we would like the sequence generated by the EM

algorithm �0;�1;�2; : : : ; to converge to the MLE b�ML =
argmax� L�(�). Let C be the set f� : 0 6 �i;

PK
i=1mi�i =

1g.

Proposition 4.1. L�(�) is strictly concave and has a

unique global maxima over C.

Proof. It is easy to see that the set C is convex, that is,
if �1;�2 2 C, then, ��1 + (1� �)�2 2 C, for any � 2 [0; 1].
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Since fZj ;�(�j) is a linear function of � (see (10)). Since
log is strictly concave, it follows that log fZj ;�(�j) is also
strictly concave. It is easy to verify that the sum of strictly
concave functions is again strictly concave, and therefore
L�(�) =

PK
i=1 log fZj ;�(�j) is strictly concave. Strictly con-

cave functions can have at most one global maxima over a
convex set [2]. Since C is closed and L�(�) is continuous,
L�(�) has at least one global maxima over C. It follows that
L�(�) has a unique global maxima over C.

In order to prove the convergence of the EM algorithm, we
use a corollary due to Wu [16]. The following theorem para-
phrases this corollary:

Theorem 4.3. Suppose that L�(�) is unimodal in C withb�ML being the only stationary point and that @Q(�; b�)=@�
is continuous in � and b�. Then, any EM sequence f�(k)g

converges to the unique MLE b�ML.
Using this theorem in conjunction with Proposition 4.1, we
can immediately derive the desirable convergence property
of the EM algorithm.

Theorem 4.4. The EM sequence f�(k)g for the recon-

struction algorithm converges to the unique MLE b�ML.
Proof. The unimodality of L�(�) is implied by its strict

concavity. It is easy to see from Theorem 4.1 that Q(�; b�)
has derivatives continuous in both arguments. It follows
that the EM algorithm described above will converge to the
maximum-likelihood estimate.

The above results lead to the following desirable property of
the EM algorithm.

Observation 4.1. When there is a very large number of

data observations, then the EM algorithm provides zero in-

formation loss.

This is because as the number of observations increases,b�ML ) �. Therefore, the original and estimated distribu-
tion become the same (subject to the discretization needed
for any numerical estimation algorithm), resulting in zero in-
formation loss. We will show that for data sets with as few
as 20000 points the EM algorithm is able to provide less than
0:5% information loss for reasonably large perturbations. In
the next section, we will also illustrate the qualitative ad-
vantages of the EM algorithm over the AS algorithm.

5. EMPIRICAL RESULTS
In this section, we present some interesting trends of the
privacy-preserving reconstruction algorithms. It turns out
that the AS algorithm is quite robust, and in an average
case the performance of the AS algorithm is almost com-
petitive to the performance of the EM algorithm. However,
in the worst case scenario, the EM reconstruction algorithm
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Figure 4: Reconstructed Gaussian Distribution (AS
Algorithm)
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Figure 5: Reconstructed Gaussian Distribution (EM
Algorithm)
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Figure 6: Information Loss with Standard Deviation
of Perturbing Distribution
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Figure 7: Privacy Loss with Standard Deviation of
Perturbing Distribution
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Figure 8: The Tradeo� between Information Loss
and Privacy
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is able to reconstruct the data distribution more e�ectively
than the AS algorithm1. In Figures 2 and 3, we have illus-
trated one such case in which we reconstructed a uniform
distribution with the use of AS algorithm and EM algorithm
respectively. In this case, the original data contains 500
points which are uniformly distributed in the range [2; 4].
We added uniformly distributed noise (in the range [�1; 1])
in order to perturb the original data. In Figure 2, we have
shown the reconstructed distribution obtained by the AS
algorithm. The corresponding level of information loss is
13:29%. On the other hand, with the use of the EM algo-
rithm, the information loss level is only 4:9%. The corre-
sponding distribution is illustrated in Figure 3. It is clear
that the EM algorithm outperforms the AS method.

In Figures 4 and 5, we have shown a case in which we re-
constructed a gaussian distribution with the help of the AS
algorithm and the EM algorithm respectively. The origi-
nal gaussian distribution had the same amount of inherent
privacy as the uniformly distributed data in the previous
example. This corresponds to a variance of 2=�e. The per-
turbing distribution is gaussian with variance 1. We gen-
erated a total of N = 500 data points. In the case of the
EM algorithm, we found that the level of information loss
was 17:9%, whereas for the AS algorithm, the level of in-
formation loss was as high as 26:5%. This di�erence shows
up in the Figure 4 as a higher amount of mismatch with the
original distribution as compared to the mismatch produced
by the EM algorithm.

In Figure 6, we plot the information loss with increasing
standard deviation of the perturbing distribution. These
results are presented for four di�erent combinations of the
original and perturbing distribution using the uniform and
gaussian distributions in each case. The variance of the orig-
inal gaussian distribution was 2=�e, whereas the range of the
original distribution was [�1; 1]. This choice of parameters
ensured that the uniform and gaussian distributions had the
same amount of inherent privacy. In each case, there were
N = 500 data points. As expected, the amount of informa-
tion loss grows with the level of perturbation. However, in
order to accurately determine which combination of distri-
butions result in the greatest loss of information at a given
level of privacy loss, we also need to characterize the de-
pendence of privacy loss on the standard deviation of the
perturbing distribution.

The greater amount of loss of information with increased
perturbation (as illustrated by Figure 6) comes at the ad-
vantage of losing less privacy. In Figure 7, we have illus-
trated the decrease in privacy loss with increasing standard
deviation in perturbing distributions. It is clear that the
Figures 6 and 7 can be combined in order to eliminate the
standard deviation dimension. This results in a trade-o�
curve between privacy and information loss. Such curves
are shown in Figure 8. One advantage of such curves is
that we can use them to compare the relative e�ectiveness
of di�erent combinations of original distributions and per-
turbations in a uniform way, irrespective of the shape and
size of the distributions. One of the interesting observations
from the result of Figure 8 is that the best perturbing dis-

1It turns out that the AS algorithm is actually an approxi-
mation to the EM algorithm.

tribution is sensitive to the original distribution. For exam-
ple, when the original distribution is gaussian, the gaussian
and uniform perturbations are almost equally e�ective. On
the other hand, for uniformly distributed data, the uniform
perturbation is signi�cantly more e�ective than the gaussian
perturbation. These results qualify the heuristic arguments
of [1] which advocate that the gaussian perturbations are
superior for providing the best privacy preservation, since
the exact behavior of the perturbation turns out to be de-
pendent on the original distribution. Our results di�er from
[1] because of a more careful quanti�cation of privacy in our
paper.

In Figure 9, we have shown the behavior of the EM recon-
struction algorithm with increasing number of points in the
data. This curve corresponds to the case when the origi-
nal and perturbing distribution was gaussian. In this case,
the variance of the original and perturbing distribution were
2=�e and 0:8 respectively. We found that when there are a
large number of data points, the amount of information loss
was negligible. This trend was consistent for all possible
combinations of original and perturbing distributions. Re-
call that we demonstrated earlier that the EM Algorithm
produces zero information loss in the asymptotic case when
there are a large number of data points. The graph in Figure
9 is consistent with that result. Given the fact that the pri-
vacy curves are independent of the number of data points,
it follows that for very large data sets, the EM reconstruc-
tion algorithm can provide very high privacy guarantees for
almost no information loss.

6. CONCLUSIONS AND SUMMARY
In this paper, we discussed the design and quanti�cation
of privacy-preserving data mining algorithms. We proposed
an expectation-maximization algorithm which provably con-
verges to the maximum-likelihood estimate of the original
distribution. Thus, the algorithm provides a robust esti-
mate of the original distribution. We laid the foundations
for quanti�cation of privacy gain and information-loss in a
theoretically accurate and method independent way. We
quali�ed the relative e�ectiveness of di�erent perturbing dis-
tributions using these metrics. Our tests also demonstrate
that when the data is large then the expectation maximiza-
tion algorithm can reconstruct the data distribution with
almost zero information loss.
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APPENDIX
A.
In this section, we will provide a detailed proof of Theorem
4.1.

Theorem 4.1. The value of Q(�; b�) during the E-step

of the reconstruction algorithm is given by:

Q(�; b�) = KX
i=1

 i(z; b�) ln �i;
where

 i(z; b�) = �̂i

NX
j=1

Pr(Y 2 zj � 
i)

fZ;b�(zj)
:

Proof. Since X = X1;X2; : : : ; XN are independent, it
follows that:

fX;�(�) =
NY
i=1

fXi;�(�i): (11)

Using (11), we have:

Q(�; b�) = E
h
ln fX;�(X)jZ = z; b�i (12)

=

NX
j=1

E
h
ln fXj ;�(Xj)jZ = z; b�i (13)

=

NX
j=1

E
h
ln fXj ;�(Xj)jZj = zj ; b�i: (14)

In (14), the expected value is computed only with respect to
fXj jZj=zj ;�̂. This simpli�cation results by the independence

of X1; : : : ;XN and Y1; : : : ; YN .

Furthermore, since

fXj jZj=zj ;b�(�) =
fX;Z;b�(�; zj)

fZ;b�(zj)
; (15)

it follows that,

E
h
ln fXj ;�(Xj)jZj = zj ; b�i
=

Z



ln fXi;�(�)
fX;Z;b�(�; zj)

fZ;b�(zj)
d�

=

R


ln
�
fXi;�(�)

�
fX;b�(�)fY (zj � �) d�

fZ;b�(zj)

=

PK
i=1

R


ln
�
fXi;�(�)

�
�̂iI
i(�)fY (zj � �) d�

fZ;b�(zj)
(16)

Here the last equation follows from the assumption that fX
is piecewise constant. Since I
i is 1.0 over 
i and zero
elsewhere,

E
h
ln fXi;�(Xi)jZi;

b�i
=

PK
i=1 �̂i

R

i
ln
�
fXi;�(�)

�
fY (zj � �) d�

fZ;b�(zj)

=

PK
i=1 �̂i

R

i
ln
�
�i
�
fY (zj � �) d�

fZ;b�(zj)

=

PK
i=1 �̂i ln �i

R

i
fY (zj � �) d�

fZ;b�(zj)

=

PK
i=1 �̂i ln �iPr(Y 2 zj � 
i)

fZ;b�(zj)
(17)

Combining (14) and (17), we get the following expression

for Q(�; b�):
Q(�; b�) = NX

j=1

PK
i=1 �̂i ln �iPr(Y 2 zj � 
i)

fZ;b�(zj)
(18)

=

KX
i=1

�̂i ln �i

NX
j=1

Pr(Y 2 zj � 
i)

fZ;b�(zj)
(19)

=

KX
i=1

 i(z; b�) ln �i (20)

where  i(z; b�) = �̂i
PN
j=1

Pr(Y 2zj�
i)

f
Z;b�

(zj)
.
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