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Abstract

We motivate and review the definition of differential privacy, discuss differentially private
statistical estimators, and outline a research agenda.

1 Introduction

In this note we discuss differential privacy in the context of statistics. In the summer of 2002, as
we began the effort that eventually yielded differential privacy, our principal motivating scenario
was a statistical database, in which the trusted and trustworthy curator (in our minds, the Census
Bureau) gathers sensitive information from a large number of respondents (the sample), with the
goal of learning and releasing to the public statistical facts about the underlying population. The
difficulty, of course, is to release statistical information without compromising the privacy of the
individual respondents.

We initially only thought in terms of a noninteractive setting, in which the curator computes and
publishes some statistics, and the data are not used further. Privacy concerns may affect the precise
answers released by the curator, or even the set of statistics released. Note that since the data
will never be used again the curator can destroy the data once the statistics have been published.
Alternatively, one might consider an interactive setting, in which the curator sits between the users
and the database. Queries posed by the users, and/or the responses to these queries, may be modified
by the curator in order to protect the privacy of the respondents. The data cannot be destroyed,
and the curator must remain present throughout the lifetime of the database. Intuitively, however,
interactive curators may be able to provide better accuracy, since they only need to answer the
questions actually of interest, rather than to provide answers to all possible questions. Results on
counting queries, that is, queries of the form “How many rows in the database satisfy property P?”
provably exhibit such a separation. It is possible to get much more accurate answers if the number
of queries is sublinear in the size of the dataset [11, 21, 22].

There was a rich literature on this problem from the satistics community and a markedly smaller
literature from such diverse branches of computer science as algorithms, database theory, and cryp-
tography. Privacy definitions were not a strong feature of these efforts, being either absent or
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insufficiently comprehensive. Ignorant of Dalenius’ 1977 paper [8], and motivated by semantic se-
curity [32], we tried to achieve a specific mathematical interpretation of the phrase “access to the
statistical database does not help the adversary to compromise the privacy of any individual,” where
we had a very specific notion of compromise. We were unable to prove the statement in the presence
of arbitrary auxiliary information [5]. Ultimately, it became clear that this general goal cannot be
achieved [13, 19]. The intuition is easily conveyed by the following parable.

Suppose we have a statistical database that teaches average heights of population subgroups, and
suppose further that it is infeasible to learn this information (perhaps for financial reasons) any
other way (say, by conducting a new study). Consider the auxiliary information “Terry Gross is
two inches shorter than the average Lithuanian woman.” Access to the statistical database teaches
Terry Gross’ height. In contrast, someone without access to the database, knowing only the auxiliary
information, learns much less about Terry Gross’ height1.

This brings us to an important observation: Terry Gross did not have to be a member of the database
for the attack described above to be prosecuted against her. This suggests a new notion of privacy:
minimize the increased risk to an individual incurred by joining (or leaving) the database. That
is, shift from comparing an adversary’s prior and posterior views of an individual to comparing the
risk to an individual when included in, versus when not included in, the database. This is called
differential privacy. We now give a formal definition.

1.1 Differential Privacy

In the sequel, the randomized function K is the algorithm applied by the curator when releasing
information. So the input is the data set, and the output is the released information, or transcript.
We do not need to distinguish between the interactive and non-interactive settings (see Remark 2
below).

Think of a database x as a set of rows, each containing one person’s data. For example if each person’s
data is a vector of d real numbers, then x ∈

(
{0, 1}d

)n, where n is the number of individuals in the
database. We say databases x and x′ differ in at most one element if one is a subset of the other
and the larger database contains just one additional row.

Definition 1 ([13, 18]). A randomized function K gives ε-differential privacy if for all data sets x
and x′ differing on at most one element, and all S ⊆ Range(K),

Pr[K(x) ∈ S] ≤ exp(ε)× Pr[K(x′) ∈ S], (1)

where the probability space in each case is over the coin flips of the mechanism K.

For appropriate ε, a mechanism K satisfying this definition addresses all concerns that any partic-
ipant might have about the leakage of her personal information: even if the participant were to
remove her data from the data set, no outputs (and thus no consequences of outputs) would become
significantly more or less likely. For example, if the database were to be consulted by an insurance
provider before deciding whether or not to insure a given individual, then the presence or absence of
that individual’s data in the database will not significantly affect her chance of receiving coverage.
Differential privacy is therefore an ad omnia guarantee, as opposed to an ad hoc definition that
provides guarantees only against a specific set of attacks or concerns.

1A rigorous impossibility result generalizes and formalizes this argument, extending to essentially any notion of
privacy compromise. The heart of the attack uses extracted randomness from the statistical database as a one-time
pad for conveying the privacy compromise to the adversary/user [13, 19].
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Differential privacy is also a very rigid guarantee, since it is independent of the computational power
and auxiliary information available to the adversary/user. We can imagine relaxing the assumption
that the adversary has unbounded computational power, and we discuss below the extremely useful
relaxation to (ε, δ)-differential privacy. Reslience to arbitrary auxiliary information, however, seems
essential. While the height parable is contrived, examples such as the linkage attacks on the HMO [57]
and Netflix prize [45, 46] data sets and the more subtle break of token-based hashing of query logs [39]
show the power and diversity of auxiliary information.

Remark 2. 1. Privacy comes from uncertainty, and differentially private mechanisms provide that
uncertainty by randomizing; the probability space is always over coin flips of the mechanism,
and never over the sampling of the data. In this way it is similar in spirit to randomized
response, in which with some known probability the respondent lies. The take-away point
here is that privacy comes from the process; there is no such thing as “good” outputs or “bad”
outputs, from a privacy perspective (utility is a different story).

2. In differential privacy the guarantee about distances between distributions is multiplicative (as
opposed to an additive guarantee such as a bound on the total variation distance between
distributions). This rules out “solutions” in which a small subset of the dataset is randomly
selected and released for publication. In such an approach, any given individual is at low
risk for privacy compromise, but such a lottery always has a victim whose data is revealed
completely. Differential privacy precludes such victimization by guaranteeing that no output
reveals any single person’s data with certainty. See [18, 30] for discussion.

3. In a differentially private mechanism, every possible output has non-zero probability on every
input or zero probability on every input. This should be compared with the literature on cell
suppression, in which a single datum can determine whether a cell is suppressed or released.

4. The parameter ε is public. The choice of ε is essentially a social question. We tend to think
of ε as, say, 0.01, 0.1, or in some cases, ln 2 or ln 3.

5. Definition 1 extends to group privacy as well (and to the case in which an individual contributes
more than a single row to the database): changing a group of k rows in the data set induces
a change of at most a multiplicative ekε in the corresponding output distribution.

6. Differential privacy applies equally well to an interactive process, in which an adversary adap-
tively questions the curator about the data. The probability K(S) then depends on the ad-
versary’s strategy, so the definition becomes more delicate. However, one can prove that if
the algorithm used to answer each question is ε-differentially private, and the adversary asks q
questions, then the resulting process is qε-differentially private, no matter what the adversary’s
strategy is.

A Natural Relaxation of Differential Privacy Better accuracy (a smaller magnitude of added
noise) and generally more flexibility can often be achieved by relaxing the definition.

Definition 3. A randomized function K gives (ε, δ)-differential privacy if for all data sets x and x′

differing on at most one element, and all S ⊆ Range(K),

Pr[K(x) ∈ S] ≤ exp(ε)× Pr[K(x′) ∈ S] + δ, (2)

where the probability space in each case is over the coin flips of the mechanism K.

The relaxation is useful even when δ = δ(n) ∈ ν(n), that is, δ is a negligible function of the size of
the dataset, where negligible means that it grows more slowly than the inverse of any polynomial.
However, the definition makes sense for any value of δ (see [31] for a related relaxation).
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2 Achieving Differential Privacy in Statistical Databases

We now describe an interactive mechanism K, due to Dwork, McSherry, Nissim, and Smith [18],
that achieves differential privacy for all real-valued queries. A query is a function mapping databases
to (vectors of) real numbers. For example, the query “Count P” counts the number of rows in the
database having property P .

When the query is a function f , and the database is X, the true answer is the value f(X). The K
mechanism adds appropriately chosen random noise to the true answer to produce what we call the
response. The idea of preserving privacy by responding with a noisy version of the true answer is
not new, but this approach is delicate. For example, if the noise is symmetric about the origin and
the same question is asked many times, the responses may be averaged, cancelling out the noise2.
We must take such factors into account.

Let D be the set of all possible databases, so that x ∈ D.

Definition 4. For f : D → Rd, the sensitivity of f is

∆f = max
x,x′
‖f(x)− f(x′)‖1 (3)

for all x, x′ differing in at most one element.

In particular, when d = 1 the sensitivity of f is the maximum difference between the values that the
function f may take on a pair of databases that differ in only one element. For now, let us focus on
the case d = 1.

For many types of queries, ∆f will be quite small. In particular, the simple counting queries
discussed above (“How many rows have property P?”) have ∆f = 1. The mechanism K works
best – i.e., introduces the least noise – when ∆f is small. Note that sensitivity is a property of the
function alone, and is independent of the database. The sensitivity essentially captures how great
a difference (between the value of f on two databases differing in a single element) must be hidden
by the additive noise generated by the curator.

On query function f , and database x, the privacy mechanism K computes f(x) and adds noise with
a scaled symmetric exponential distribution with standard deviation

√
2∆f/ε. In this distribution,

denoted Lap(∆f/ε), the mass at y is proportional to exp(−|y|(ε/∆f)).3 Decreasing ε, a publicly
known parameter, flattens out this curve, yielding larger expected noise magnitude. For any given ε,
functions f with high sensitivity yield flatter curves, again yielding higher expected noise magnitudes.

Remark 5. Note that the magnitude of the noise is independent of the size of the data set. Thus,
the distortion vanishes as a function of n, the number of records in the data set.

The proof that K yields ε-differential privacy on the single query function f is straightforward.
Consider any subset S ⊆ Range(K), and let x, x′ be any pair of databases differing in at most one
element. When the database is x, the probability mass at any r ∈ Range(K) is proportional to
exp(−|f(x) − r|(ε/∆f)), and similarly when the database is x′. Applying the triangle inequality
in the exponent we get a ratio of at most exp(−|f(x)− f(x′)|(ε/∆f)). By definition of sensitivity,
|f(x)− f(x′)| ≤ ∆f , and so the ratio is bounded by exp(−ε), yielding ε-differential privacy.

2One may attempt to defend against this by having the curator record queries and their responses so that if a
query is issued more than once the response can be replayed. This is not generally very useful, however. One reason
is that if the query language is sufficiently rich, then semantic equivalence of two syntactically different queries is
undecidable. Even if the query language is not so rich, this defense may be specious: the attacks demonstrated by
Dinur and Nissim [11] pose completely random and unrelated queries.

3The probability density function of Lap(b) is pb(y) = 1
2b

exp(− |y|
b

), and the variance is 2b2.
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For any (adaptively chosen) query sequence f1, . . . , f`, ε-differential privacy can be achieved by
running K with noise distribution Lap(

∑
i ∆fi/ε) on each query. In other words, the quality of each

answer deteriorates with the sum of the sensitivities of the queries. Interestingly, viewing the query
sequence as a single query it is sometimes possible to do better than this. The precise formulation
of the statement requires some care, due to the potentially adaptive choice of queries. For a full
treatment, see [18]. We state the theorem here for the non-adaptive case, viewing the (fixed) sequence
of queries f1, f2, . . . , f` as a single query f whose output arity (that is, the dimension of its output)
is the sum of the output arities of the fi.

Theorem 6. For f : D → Rd, the mechanism Kf that adds independently generated noise with
distribution Lap(∆f/ε) to each of the d output terms satisfies ε-differential privacy.

We can think of K as a differentially private interface between the analyst and the data. This suggests
a line of research: finding algorithms that require few, insensentitive, queries for standard datamining
tasks. As an example, see [3], which shows how to compute singular value decompositions, find
the ID3 decision tree, carry out k-means clusterings, learn association rules, and run any learning
algorithm defined in the statistical query learning model using only a relatively small number of
counting queries. See also the more recent work on contingency tables (and OLAP cubes) [2].
This last proceeds by first changing to the Fourier domain, noting that low-order marginals require
only the first few Fourier coefficients; then noise is added to the (required) Fourier coefficients, and
the results are mapped back to the standard domain. This achieves consistency among released
marginals. Additional work is required to ensure integrality and non-negativity, if this is desired. In
fact, this technique gives differentially private synthetic data containing all the information needed
for constructing the specified contingency tables.

A second general privacy mechanism, due to McSherry and Talwar, shows how to obtain differen-
tial privacy when the output of the query is not necessarily a real number or even chosen from a
continuous distribution [43]. This has led to some remarkable results, including the first collusion-
resistant auction mechanism [43], algorithms for private learning [36], and an existence proof for
small synthetic data sets giving relatively accurate answers to counting queries from a given concept
class with low VC dimension [4] (in general there is no efficient algorithm for finding the synthetic
data set [20]).

Another line of research, relevant to the material in this paper and initiated by Nissim, Raskhod-
nikova, and Smith [47], explores the possibility of adding noise calibrated to the local sensitivity,
rather than the (global) sensitivity discussed above. The local sensitivity of a function f on a data
set x is the maximum, over all x′ differing from x in at most one element, of |f(x)− f(x′)|. Clearly,
for many estimators, such as the sample median, the local sensitivity is frequently much smaller
than the worst-case, or global, sensitivity defined in 4. On the other hand, it is not hard to show
that simply replacing worst-case sensitivity with local sensitivity is problematic; the noise parameter
must change smoothly; see [47].

3 Differential Privacy and Statistics

Initially, work on differential privacy (and its immediate precursor, which actually implied (ε, ν(n))-
differential privacy) concentrated on datamining tasks. Here we describe some very recent applica-
tions to more traditional statistical inference. Specifically, we first discuss point estimates for general
parametric models; we then turn to nonparametric estimation of scale, location, and the coefficients
of linear regression.
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3.1 Differential Privacy and Maximum Likelihood Estimation

One of us (Smith) recently showed that, for every “well behaved” parametric model, there exists
a differentially private point estimator which behaves much like the maximum likelihood estimate
(MLE) [54]. This result exhibits a large class of settings in which the perturbation added for
differential privacy is provably negligible compared to the sampling error inherent in estimation
(such a result had been previously proved only for specific settings [21]).

Specifically, one can combine the sample-and-aggregate technique of Nissim et al. [47] with the
bias-corrected MLE from classical statistics to obtain an estimator that satisfies differential privacy
and is asymptotically efficient, meaning that the averaged squared error of the estimator is (1 +
o(1))/(nI(θ)), where n is the number of samples in the input, I(θ) denotes the Fisher information
of f at θ (defined below) and o(1) denotes a function that tends to zero as n tends to infinity. The
estimator from [54] satisfies ε-differential privacy, where limn→∞ ε = 0.

This estimator’s average error is optimal even among estimators with no confidentiality constraints.
In a precise sense, then, differential privacy comes at no asymptotic cost to accuracy for parametric
point estimates.

3.1.1 Definitions

Consider a parameter estimation problem defined by a model f(x; θ) where θ is a real-valued vector
in a bounded space Θ ⊆ Rp of diameter Λ, and x takes values in a D (typically, either a real vector
space or a finite, discrete set). The assumption of bounded diameter is made for convenience and
to allow for cleaner final theorems. We will generally use capital letters (X, T , etc.) to refer to
random variables or processes. Their lower case counterparts refer to fixed, deterministic values of
these random objects (i.e. scalars, vectors, or functions).

Given i.i.d. random variables X = (X1, ..., Xn) drawn according to the distribution f(·; θ), we
would like to estimate θ using an estimator t that takes as input the data x as well an additional,
independent source of randomness R (used, in our case, for perturbation):

θ → X → t(X,R) = T (X)
↑
R

Even for a fixed input x = (x1, ..., xn) ∈ Dn, the estimator T (x) = t(x,R) is a random variable
distributed in the parameter space Rp. For example, it might consist of a deterministic function
value that is perturbed using additive random noise, or it might consist of a sample from a posterior
distribution constructed based on x. We will use the capital letter X to denote the random variable,
and lower case x to denote a specific value in Dn. Thus, the random variable T (X) is generated
from two sources of randomness: the samples X and the random bits used by T .

The MLE and Efficiency Many methods exist to measure the quality of a point estimator T .
Here, we consider the expected squared deviation from the real parameter θ. For a one-dimensional
parameter (p = 1), this can be written:

JT (θ) def= Eθ
(
(T (X)− θ)2

)
The notation Eθ (...) refers to the fact that X is drawn i.i.d. according to f(·; θ). 4 Recall that the

4Following the convention in statistics, we use the subscript to indicate parameters that are fixed, rather than
random variables over which the expectation is taken.
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bias of an estimator T is Eθ (T (X)− θ); an estimator is unbiased if its bias is 0 for all θ. If T (X)
is unbiased, then JT (θ) is simply the variance VarθT (X). Note that all these notions are equally
well-defined for a randomized estimator T (x) = t(x,R). The expectation is then also taken over the
choice of R, e.g. JT (θ) = Eθ

(
(t(X,R)− θ)2

)
.

(Mean squared error can be defined analogously for higher-dimensional parameter vectors. For
simplicity we focus here on the one-dimensional case. The development of a higher-dimensional
analogue is identical as long as the dimension is constant with respect to n.)

The maximum likelihood estimator θ̂mle(x) returns a value θ̂ that maximizes the likelihood function
L(θ) =

∏
i f(xi; θ), if such a maximum exists. It is a classic result that, for well-behaved parametric

families, the θ̂mle exists with high probability (over the choice of X) and is asymptotically normal,
centered around the true value θ. Moreover, its expected square error is given by the inverse of
Fisher information at θ,

If (θ) def= Eθ
([

∂
∂θ ln(f(X1; θ))

]2)
.

Lemma 7. Under appropriate regularity conditions, the MLE converges in distribution (denoted
L−→) to a Gaussian centered at θ, that is

√
n·(θ̂mle−θ)

L−→ N
(

0, 1
If (θ)

)
. Moreover, Jθ̂mle

(θ) = 1+o(1)
nIf (θ) ,

where o(1) denotes a function of n that tends to zero as n tends to infinity.

The MLE has optimal expected squared error among unbiased estimators. An estimator T is called
asymptotically efficient for a model f(·; ·) if it matches the MLE’s squared error, that is, for all

θ ∈ Θ, JT (θ) ≤ 1 + o(1)
nIf (θ)

.

Bias Correction The asymptotic efficiency of the MLE implies that its bias, bmle(θ) def= Eθ
(
θ̂mle − θ

)
,

goes to zero more quickly than 1/
√
n. However, in our main result, we will need an estimator with

much lower bias (since we will apply the estimator to small subsets of the data). This can be ob-
tained via a (standard) process known as bias correction (see, for example, discussions in Cox and
Hinkley [7], Firth [28], and Li [41]).

Lemma 8. Under appropriate regularity conditions, there is a point estimator θ̂bc (called the bias-
corrected MLE) that converges at the same rate as the MLE but with lower bias, namely,

√
n · (θ̂bc − θ)

L−→ N(0, 1
If (θ) ) and bbc

def= Eθ
(
θ̂bc − θ

)
= O(n−3/2) .

3.1.2 A Private, Efficient Estimator

We can now state our main result:

Theorem 9. Under appropriate regularity conditions, there exists a (randomized) estimator T ∗
which is asymptotically efficient and ε-differentially private, where limn→∞ ε = 0.

More precisely, the construction takes as input the parameter ε and produces an estimator T ∗ with
mean squared error 1

nIf (θ) (1 +O(n−1/5ε−6/5)). Thus, as long as ε goes to 0 more slowly than n−1/6,
the estimator will be asymptotically efficient.

The idea is to apply the “sample-and-aggregate” method of [47], similar in spirit to the parametric
bootstrap. The procedure is quite general and can be instantiated in several variants. We present a
particular version which is sufficient to prove our main theorem.
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Figure 1: The estimator T ∗. When the number of blocks k is ω(
√
n) and o(n2/3), and ε is not too

small, T ∗ is asymptotically efficient (Lemma 11).

The estimator T ∗ takes the data x as well as a parameter ε > 0 (which measures information leakage)
and a positive integer k (to be determined later). The algorithm breaks the input into k blocks of
n/k points each, computes the (bias-corrected) MLE on each block, and releases the average of
these estimates plus some small additive perturbation. The procedure is given in Algorithm 1 and
illustrated in Figure 1.

Algorithm 1 On input x = (x1, ..., xn) ∈ Dn, ε > 0 and k ∈ N:
1: Arbitrarily divide the input x into k disjoint sets B1, ..., Bk of t = n

k points.
We call these k sets the blocks of the input.

2: for each block Bj = {x(j−1)t+1, ..., xjt}, do
3: Apply the bias corrected MLE θ̂bc to obtain an estimate zj = θ̂bc(x(j−1)t+1, ..., xjt).
4: end for
5: Compute the average estimate: z̄ = 1

k

∑k
j=1 zj .

6: Draw a random observation R from a double-exponential (Laplace) distribution with standard
deviation

√
2 · Λ/(kε), that is, draw Y ∼ Lap

(
Λ
kε

)
where Lap(λ) is the distribution on R with

density h(y) = 1
2λe

y/λ. (Recall that Λ is the diameter of the parameter space Θ.)
7: Output T ∗ = z̄ +R.

The resulting estimator has the form

T ∗(x) def=

(
1
k

k∑
i=1

θ̂bc
(
x(i−1)t+1, ..., xit

))
+ Lap

(
Λ
kε

)
(4)

The following lemmas capture the privacy and utility (respectively) properties of T ∗ that imply
Theorem 9. Proofs can be found in [54].

Lemma 10 ([3, 47]). For any choice of the number of blocks k, the estimator T ∗ is ε- differentially
private.

Lemma 11. Under the regularity conditions of Lemma 8, if ε = ω( 1
6√n ) and k is set appropriately,

the estimator T ∗ is asymptotically unbiased, normal and efficient, that is
√
n · T ∗(X) L−→ N(θ,

1
If (θ)

) if X = X1, ..., Xn ∼ f(·, θ) are i.i.d.
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3.1.3 Discussion

As noted above, Theorem 9 holds for any parametric model where the dimension of the parameter
p, is small with respect to n. This covers a number of important settings in classical statistics.
One easy example is the set of exponential models (including Gaussian, exponential and loglinear
distributions). In fact, a simpler proof of Theorem 9 can be derived for exponential families by adding
noise to their sufficient statistics (using Theorem 6) and computing the MLE based on the perturbed
statistics. Finite mixtures of exponential models (e..g a mixture of 3 Gaussians in the plane) provide
a more interesting set of examples to which Theorem 9 applies. These are parametric models for
which no exact sufficient statistics exist short of the entire data set, and so simple perturbative
approaches seem inappropriate.

The technique used to prove Theorem 9 can also be generalized to other settings. For example,
it can be applied to any statistical functional which is asymptotically normal and for which bias
correction is possible. Bias correction, in turn, relies only on the bias function itself being smooth.
Such functionals include so-called M -estimators quite generally, such as the median or Huber’s
ψ-estimator.

Finally, many of the assumptions can be relaxed significantly. For example, a bounded parameter
space is not necessary, but the “aggregation” function in the construction above, namely the average,
must be replaced with a more robust variant. These details are beyond the scope of this paper.

3.2 Differential Privacy and Robust Statistics

Privacy-preserving data analysis would appear to be connected to robust statistics, the subfield of
statistics that attempts to cope with both small errors due, for example, to rounding errors in
measurements), as well as a few arbitrarily wild errors occuring, say, from data entry failures (see
the books [35] and [34]). In consequence, in a robust analysis the specific data for any one individual
should not greatly affect the outcome of the analysis, as this “data” might in fact be completely
erroneous. This is consonant with the requirements of differential privacy: the data of any one
person should not significantly affect the probability distribution on outputs. This suggests robust
statistical estimators, or procedures, might form a starting point for designing accurate differentially
private statistical estimators [55]. Dwork and Lei [15] have found this to be the case. They obtained
(ε, ν(n))-differentially private algorithms for the interquartile distance, the median, and regression,
with distortion vanishing in n.

One difficulty in applying the robust methods is that in robust statistics the assumption is that there
exists an underlying distribution that is “close to” the distribution from which the data are drawn,
that is, that the real life distribution is a contamination of a “nice” underlying distribution, and
that mutual dependence is limited. The resulting claims of insensitivity (robustness) are therefore
probabilistic in nature even when the data are drawn iid from the nicest possible distribution. On
the other hand, to apply Theorem 6, calibrating noise to sensitivity in order to achieve differential
privacy even in the worst case, one must cope with worst-case sensitivity.

This is not merely a definitional mismatch. Robust estimators are designed to work in the neigh-
borhood of a specific distribution; many such estimators (for example, the median) have high global
sensitivity in the worst case. Dwork and Lei address this mismatch by including explicit, differen-
tially private, tests of the sensitivity of the estimator on the given data set.

If the responses indicate high sensitivity, the algorithm outputs “NR” (for “No Reply”), and halts5.

5High local sensitivity for a given data set may be an indication that the statistic in question is not informative
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Since this decision is made based on the outcome of a differentially private test, no information is
leaked by the decision itself – unlike the case with query auditing, where refusal to answer can itself
be disclosive [38, 37]. They therefore need to show that on “nice” distributions the algorithm is very
unlikely to halt.

Below, we describe three representative problems which have received extensive attention in the
literature on robust statistics.

Scale. For data on the real line, a measure of scale attempts to quantify length of the interval
over which the data is spread. Estimates of scale are often used as parameters for further processing
of the data (say, to eliminate outliers). A common measure of scale for Gaussian-looking data is
(square root of) the sample variance. This measure is extremely sensitive to the movement of a few
points, however. The interquartile distance, IQR, defined as the difference between the third and
first quartiles of the data, is commonly used to estimate scale more robustly. Dwork and Lei give
differentially private estimates of the IQR. Their algorithm S has the following two properties:

1. If X = (X1, ..., Xn), Xi
iid∼ F , where F is differentiable with positive derivatives at both the

lower and upper quartiles, then

P (S(X) = NR) = O(n−ε lnn), and S(X) P→ IQR(F ).

2. Under the conditions described in 1 above, for any α > 0,

P
(
S(X) ∈ [n−αIQR(X), nαIQR(X)]

)
≥ 1−O(n−αε lnn).

Location. The algorithm first checks for scale using the interquartile algorithm described above.
Using this as an input, the algorithm has the following property:

Under the conditions in 1 above and if F is differentiable with positive derivatives at the
median, then

P (M(X) = NR) = O(n−ε lnn), and M(X) P→ m(F ), as n→∞ ,

where m(F ) denotes F−1(1/2).

Assuming an answer is returned, the distortion is on the order of n−1/3s, where s is the (given or
estimated) scale.

Regression. The linear regression model is

Y = XTβ + ε,

where Y ∈ R1, X,β ∈ Rp, P (||X|| > 0) = 1 , and ε ∈ R1 is independent of X and its distribution
is continuous and symmetric about 0. The dataset X = {(xi, yi)ni=1} consists of n iid samples from

for the given data set, and there is no point in insisting on an outcome. As an example, suppose we are seeking the
inter-quartile range of a data set in order to estimate scale. If the computed inter-quartile range is highly sensitive,
for example, if deleting a single sample would wildly change the statistic, then it is not an interesting statistic for
this data set – it is certainly not telling us about the data set as a whole – and there is little point in pressing for an
answer.
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the joint distribution of (X,Y ), and the inference task is to estimate β. (Note: Here X is a random
variable identically distributed to each of the rows of the database X.)

Dwork and Lei adapt the most B-robust regression algorithm of [34],

β̂ = arg min
β
fX(β), where fX(β) =

n∑
i=1

|yi − xTi β|/||xi||. (5)

Let ε̃ = X−1~ε, where ~ε = {ε1, . . . , εp}T is a vector that consists of p i.i.d copies of ε, and X =
(X1, . . . , Xp)

T is a matrix that consists of p i.i.d copies of X (assume that X is invertible with
probability 1, which is just requiring that the design matrix be of full rank with probability 1).

Dwork and Lei show that if

(i) For all 1 ≤ d ≤ p, ε̃d has continuous and positive density and

(ii) f(β) is twice continuously differentiable, and E(XXT /‖X‖) is positive definite,

then
P (R(X) = NR) = O(n−c lnn) and R(X) P→ β∗,

where β∗ is the true value of regression coefficient in the model.

Propose-Test-Release Paradigm. Very roughly, Dwork and Lei’s general approach is to propose
a bound on the local sensitivity, test in a privacy-preserving fashion if the bound is sufficiently high,
and, if so, to release the quantity of interest with noise calibrated to the proposed bound. It is the
statistical setting that enables them to propose a realistic bound on the variability of the estimator,
and utility is only required in this setting. Dwork and Lei abstracted this Propose-Test-Release
paradigm and prove composition theorems that capture the ways in which their algorithms are used
in combination, specifically,

1. Cascading: running a protocol multiple times until a reply is obtained;

2. Subroutine Calls: using the output of one algorithm as the input to another

3. Parallel Composition: running an algorithm multiple times, independently, for example in
estimating data scale along multiple axes.

The Propose-Test-Release framework is a “quick and dirty” alternative to the elegant work of Nissim,
Raskhodnikova, and Smith [47], the first to exploit low local sensitivity to improve accuracy in
favorable cases.

4 What We Want to Learn

We discuss several directions for future research.

Noise Reduction for Counting Queries. Counting queries have sensitivity 1 (in the sense of
Definition 4), and it is known that, using binomial noise with variance o(n), one can answer a
sublinear (in n) number of counting queries while maintaining (ε, ν(n))-differential privacy [21]. In
which settings is this an unacceptably high amount of distortion? What are the statistical analyses
that this precludes?

11



Noise Reduction for General Queries. There are now three approaches to exploiting low local
sensitivity to reduce the degree of distortion when mathematically justifiable: the general technique
of [47], the subsample-and-aggregate technique of [47], and the propose-test-release framework of [15].
One possibility, suggested in [17] in the context of contingency table release, is to not perturb answers
to, or count against (mathematical) sensitivity, queries against (socially) insensitive data? These is
fraught with difficulty, since sometimes information that is not sensitive can be linked to sensitive
data. Are there other techniques? Mironov, Pandey, Reingold, and Vadhan have recently found an
example of a cryptographic protocol (as opposed to statistical database implementation) in which
moving to computational differential privacy permits much smaller distortion [44]. This means that
privacy is guaranteed only against adversaries with limited computing time (as is security in modern
cryptography). Typically, one considers an adversary whose computing time is bounded by some
polynomial in a security parameter (separate from the “privacy” parameter ε). Mironov and Pandey
show a simple computationally differentially private protocol for computing the inner product of two
binary vectors (each party holds one of the vectors) with an additive error depending only on the
privacy and the security parameters. Meeting the same goal without computational limitations on
the adversary is an open question.

What does it mean not to provide differential privacy? One version of this is quantitative:
Failure to provide ε-differential privacy might result in 2ε-differential privacy. How bad is this?
Can this suggest a useful weakening? How meaningful is simple Finite Differential Privacy, that
is, the ability to rule out any response for which there exists any database on which this response
cannot be generated, so that every response is at least consistent with every database (possibly
together with some very bizarre coin flip sequences)? How much residual uncertainty is enough?
Even beyond this and the relaxation to (ε, δ)-differential privacy, is there something as general as
differential privacy, that takes into account arbitrary auxiliary information, but is somehow weaker
while remaining meaningful? If not, what types of auxiliary information are sufficiently general so
as to be realistic? The notion of composition attacks in statistical databases [30] provides a simple
litmus test for reasonability: the class of auxiliary information considered in a definition should be
rich enough to encompass independent releases of private information about related databases; for
example, an individual’s information should not be compromised if they visit two hospitals that
independently publish information about their respective patient populations.

What does it mean for statistical distributional assumptions to be false? The utility
guarantees discussed in this paper rely on assumptions about the distribution of points in the
database. Specifically, the data are assumed to be sampled independently from some member of
a parameterized family of distributions (or from some distribution “close” to some member of the
family). This type of assumption is common in parametric statistics, but is not always appropriate;
the response of classical statistics has been to develop nonparametric techniques for situations which
fall outside the basic conceptual framework. What are the implications of these techniques for private
data analysis? Histogram-based estimators fit naturally into the sensitivity framework described at
the beginning of this paper, but kernel estimators, nearest-neighbor classifiers and other, similar
tools seem to require a very different perspective in order to be adapted to private data analysis.

(ε, δ)-differential privacy for non-negligible δ? When n is large, 1/n2 is very small; perhaps
such a relaxation is reasonable. Is it powerful? Can we find easy algorithms for things that seem
difficult if we require negligible δ? See [31] for related work.
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Differentially private algorithms for additional statistical tasks. We have shown that many
parametric statistical estimators can incorporate differential privacy with little loss of accuracy. We
would like to see a library of differentially private versions of the algorithms in R and SAS. What
can and cannot be made differentially private? We believe that in addition to providing useful tools,
the endeavor would shed light provide guidance for future theoretical work.

Differential privacy for social networks. How can we construct differentially private versions
of the measurements that social scientists perform on social networks? This requires careful thought
about the robustness of statistics such as the diameter or degree distribution of a graph (the di-
ameter, for example, is extremely sensitive to one or two wrong data points). More fundamentally,
differential privacy is based on a clear notion of what data is about a given person (in this paper, the
corresponding row of the data set). Social network data is inherently about pairs or larger groups
of people. What are good notions of privacy for such data?

Synthetic data. There has been interest in using synthetic data for protecting privacy ever since
Rubin first proposed that imputation might be helpful in this context [50]. Recent examples in-
clude [31, 48]. Differentially private synthetic data sets can be computed efficiently in some contexts,
viz., the work on contingency tables discussed above [2] and The powerful impossibility results of
Dinur and Nissim et sequelae show that introducing error substantially smaller than that introduced
in [4] leads to blatant non-privacy. McSherry has proposed looking for low-sensitivity methods of
generating low-quality synthetic sets just for the purpose of guiding the data analyst in posing
queries in an interactive setting. We find this an intriguing possibility.
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