Multiparty Computation from Threshold
Homomorphic Encryption

Ronald Cramer Ivan Damgard
Jesper Buus Nielsen
Aarhus University, Dept. of Computer Science, BRICS *

October 31, 2000

Abstract

We introduce a new approach to multiparty computation (MPC) bas-
ing it on homomorphic threshold crypto-systems. We show that given
keys for any sufficiently efficient system of this type, general MPC pro-
tocols for n players can be devised which are secure against an active
adversary that corrupts any minority of the players. The total number of
bits sent is O(nk|C|), where k is the security parameter and |C| is the size
of a (Boolean) circuit computing the function to be securely evaluated.
An earlier proposal by Franklin and Haber with the same complexity was
only secure for passive adversaries, while all earlier protocols with active
security had complexity at least quadratic in n. We give two examples
of threshold cryptosystems that can support our construction and lead
to the claimed complexities.

*Basic Research in Computer Science, Center of the Danish National Research Foundation

Contents

1

2

Introduction

Our Results
2.1 Concurrent Related Work
2.2 Road map to the Paper

An Informal Description

Preliminaries and Notation

4.1 Distribution Ensembles
4.2 X-Protocolso
4.3 The MPC Model

Threshold Homomorphic Encryption

Multiparty Y-protocols

6.1 Generating (almost) Random Strings
6.2 Trapdoor Commitments
6.3 Putting Things Together

General MPC from Threshold Homomorphic Encryption
7.1 Some Sub-Protocols
7.1.1 The PrivateDecrypt Protocol
7.1.2 The ASS (Additive Secret Sharing) Protocol
7.1.3 The Mult Protocol
7.2 The FuncEval; Protocol (Deterministic f)
7.3 The FuncEvals Protocol (Probabilistic f)
7.4 Generalisations

Examples of Threshold Homomorphic Cryptosystems

8.1 Basing it on Paillier’s Cryptosystem
8.1.1 Threshold decryption
8.1.2 Proving multiplications correct
8.1.3 Proving you know a plaintext

8.2 Basingiton QRAand DDH.
8.2.1 Threshold decryption
8.2.2 Proving you know a plaintext
8.2.3 Proving multiplications correct

i

oo O

10

13
13
14
15

19
19
21
24
26
38
38

1 Introduction

The problem of multiparty computation (MPC) dates back to the papers by
Yao [21] and Goldreich et al. [13]. What was proved there was basically that a
collection of n players can efficiently compute the value of an n-input function,
such that everyone learns the correct result, but no other new information.
More precisely, these protocols can be proved secure against a polynomial time
bounded adversary who can corrupt a set of less than n/2 players initially, and
then make them behave as he likes, we say that the adversary is active. Even
so, the adversary should not be able to prevent the correct result from being
computed and should learn nothing more than the result and the inputs of
corrupted players. Because the set of corrupted players is fixed from the start,
such an adversary is called static or non-adaptive.

There are several different proposals on how to define formally the security
of such protocols [18, 2, 4], but common to them all is the idea that security
means that the adversary’s view can be simulated efficiently by a machine that
has access to only those data that the adversary is entitled to know.

Proving correctness of a simulation in the case of [13] requires a complex-
ity assumption, such as existence of trapdoor one-way permutations. This is
because the model of communication considered there is such that the adver-
sary may see every message sent between players, this is sometimes known as
the cryptographic model. Later, unconditionally secure MPC protocols were
proposed by Ben-Or et al. and Chaum et al.[3, 5], in the model where private
channels are assumed between every pair of players. In this paper, however,
we are only interested in the cryptographic model with an active and static
adversary.

Over the years, several protocols have been proposed which, under specific
computational assumptions, improve the efficiency of general MPC, see for
instance [8, 12]. Virtually all proposals have been based on some form of
verifiable secret sharing (VSS), i.e., a protocol allowing a dealer to securely
distribute a secret value s among the players, where the dealer and/or some
of the players may be cheating. The basic paradigm that has been used is to
ensure that all inputs and intermediate values in the computation are VSS’ed,
since this prevents the adversary from causing the protocol to terminate early
or with incorrect results. In all these earlier protocols, the total number of
bits sent was Q(n?k|C|), where n is the number of players, k is a security
parameter, and |C| is the size of a circuit computing the desired function.
Here, C' may be a Boolean circuit, or an arithmetic circuit over a finite field,
depending on the protocol. We note that all complexities mentioned here
and in the next section are for computing deterministic functions. Handling
probabilistic functions introduces some overhead for generating secure random
bits, but this will be the same for all protocols we mention here, and so does

not affect any comparisons we make.

In [11] Franklin and Haber propose a protocol for passive adversaries which
achieves complexity O(nk|C|). This protocol is not based on VSS (there is no
need since the adversary is passive) but instead on a so called joint encryption
scheme, where a ciphertext can only be decrypted with the help of all players,
but still the length of an encryption is independent of the number of players.

2 Our Results

In this paper, we present a new approach to building multiparty computation
protocols with active security, namely we start from any secure threshold
encryption scheme with certain extra homomorphic properties. This allows us
to avoid the need to VSS all values handled in the computation, and therefore
leads to more efficient protocols, as detailed below.

The MPC protocols we construct here can be proved secure against an
active and static adversary who corrupts any minority of the players. Like
the protocol of [11], our construction requires once and for all an initial phase
where keys for the threshold cryptosystem are set up. This can be done by a
trusted party, or by any general purpose MPC. We stress, however, that unlike
some earlier proposals for preprocessing in MPC, the complexity of this phase
does not depend on the number or the size of computations to be done later.
It is even possible to do a computation only for some subset of the players that
participated in the first phase, provided the subset is large enough compared
to the threshold that the cryptosystem was set up to handle. Moreover, since
supplying input values to the computation consists essentially of just sending
encryptions of these values, we can easily handle scenarios where one (large)
group of players supply inputs, whereas a different (smaller) group of players
does the actual computation. This will be secure, even from the point of view
of the input suppliers since our protocol automatically ensures that correctness
of the computation is publicly verifiable.

In the following we therefore focus on the complexity of the actual compu-
tation. In our protocol the computation can be done only by broadcasting a
number of messages, no encryption is needed to set up private channels. The
complexities we state are therefore simply the number of bits broadcast. This
does not invalidate comparison with earlier protocols because first, the same
measure was used in [11] and second, the earlier protocols with active security
have complexity quadratic in n even if one only counts the bits broadcast.
Our protocol has complexity O(nk|C|) bits and requires O(d) rounds, where
d is the depth of C. To the best of our knowledge, this is the most efficient
general MPC protocol proposed to date for active adversaries.

Here, C' is an arithmetic circuit over a ring R determined by the crypto-
system used, e.g., R = Z,, for an RSA modulus n, or R = GF(2¥). While

such circuits can simulate any Boolean circuit with a small constant factor
overhead, this also opens the possibility of building an ad-hoc circuit over R
for the desired function, possibly exploiting the fact that with a large R, we
can manipulate many bits in one arithmetic operation.

The protocols can be executed and proved secure without relying on the
random oracle model. Using the random oracle model, we can obtain the same
asymptotic communication and round complexities, but with smaller hidden
constants.

The complexities given here assume existence of sufficiently efficient thresh-
old cryptosystems. We give two examples of such systems with the right prop-
erties. One is based on Paillier’s cryptosystem [19], the other one is a variant
of Franklin and Haber’s cryptosystem [11], which is secure assuming that
both the quadratic residuosity assumption and the decisional Diffie-Hellman
assumption are true (this is essentially the same assumption as the one made
in [11]). While the first example is known (from [9] and independently in [10]),
the second is new and may be of independent interest.

Franklin and Haber in [11] left as an open problem to study the com-
munication requirements for active adversaries. We can now say that under
the same assumption as theirs, protection against active adversaries comes
essentially for free.

2.1 Concurrent Related Work

In concurrent independent work, Jacobson and Juels[17] use an idea somewhat
related to ours, the so called mix-and-match approach which is also based on
threshold encryption (with extra algebraic properties, similar to, but different
from the ones we use). Beyond this, the techniques are completely different.

For Boolean circuits and in the random oracle model, they get the same
message complexity as we obtain here (without using random oracles). The
round complexity is larger than ours (namely O(n + d)). Another difference
is that mix-and-match is inherently limited to circuits where all gates can
be specified by constant size truth-tables - thus excluding arithmetic circuits
over large rings. It should be noted, however, that while mix-and-match can
be based on the DDH assumption, it is not known if threshold homomorphic
encryption can be based on DDH alone.

In [15], Hirt, Maurer and Przydatek show a protocol with essentially the
same message complexity as ours. This result is incomparable to ours because
the protocol is designed for the private channels model. It achieves perfect
security assuming the channels are perfect but only tolerates less than n/3
active cheaters.

2.2 Road map to the Paper

In the following, we first give a brief explanation of the main ideas in Section
3. Some notation and the model we use for proving security of protocols is
presented in Sections 4 and 4.3. Sections 4.2, 5 and 7 state more formally
the properties needed from the sub-protocols and the encryption scheme, and
describe and prove the protocols we can build based on these properties. Fi-
nally Section 8 give our examples of threshold encryption schemes that could
be used as basis of our construction.

For an overview of the basic ideas only, one can read Sections 3 and 8
separately from the rest of the paper.

3 An Informal Description

In this section, we give a completely informal introduction to some main ideas.
All the concepts introduced here will be treated more formally later in the pa-
per. We will assume that from the start, the following scenario has been
established: we have a semantically secure threshold public-key system given,
i.e., there is a public encryption key pk known by all players, while the match-
ing private decryption key has been shared among the players, such that each
player holds a share of it.

The message space of the cryptosystem is assumed to be a ring R. In
practice R might be Z,, for some RSA modulus n. For a plaintext a € R, we
let @ denote an encryption of a. We then require certain homomorphic prop-
erties: from encryptions @,b, anyone can easily compute (deterministically)
an encryption of a 4+ b, which we denote @B b. We also require that from an
encryption @ and a constant o € R, it is easy to compute a random encryption
of aa.

Finally we assume that three secure (and sufficiently efficient) sub-protocols
are available:

Proving you know a plaintext If P, has created an encryption @, he can
give a zero-knowledge proof of knowledge that he knows a (or more
accurately, that he knows a and a witness to the fact that the plaintext
is a).

Proving multiplications correct Assume P, is given an encryption @, chooses
a constant «, computes a random encryption @a and broadcasts @, aa.
He can then give a zero-knowledge proof that indeed aa contains the
product of the values contained in @ and a.

Threshold decryption For the third sub-protocol, we have common input
pk and an encryption @, in addition every player also uses his share of

the private key as input. The protocol computes securely a as output
for everyone.

We can then sketch how to perform securely a computation specified as a
circuit doing additions and multiplications in R. Note that this allows us to
simulate a Boolean circuit in a straightforward way using 0/1 values in R.

The MPC protocol would simply start by having each player publish en-
cryptions of his input values and give zero-knowledge proofs that he knows
these values and also, if need be, that the values are 0 or 1 if we are simulating
a Boolean circuit. Then any operation involving addition or multiplication
by constants can be performed with no interaction: if all players know en-
cryptions @, b of input values to an addition gate, all players can immediately
compute an encryption of the output a4+ b. This leaves only the following
problem:

Given encryptions @, b (where it may be the case that no players knows a
nor b), compute securely an encryption of ¢ = ab. This can be done by the
following protocol:

1. Each player P; chooses at random a value d; € R, broadcasts an en-
cryption d;. All players prove (in zero-knowledge) that they know their
respective values of d;.

2. Let d = dy + ...+ d,,. All players can now compute @ Bd; B ... B d,,
an encryption of a + d. This ciphertext is decrypted using the third
sub-protocol, so all players know a + d.

3. Player P; sets a1 = (a + d) — di, all other players P; set a; = —d;.
Note that every player can compute an encryption of each a;, and that
a=a1+...+ay.

4. Each P; broadcasts an encryption a;b, and we invoke the second sub-
protocol with inputs b, @; and a;b.

5. Let C be the set of players for which the previous step succeeded, and let
F be the complement of C. We now first decrypt the ciphertext H;c ray,
giving us the value ar =), - a;. This allows everyone to compute an
encryption apb. From this, and {a;b| i € C}, all players can compute an
encryption (H;cca;b) B arb, which is indeed an encryption of ab.

This protocol is a somewhat more efficient version of a related idea from
[11], where we have exploited the homomorphic properties to add protection
against faults without loosing efficiency.

At the final stage we know encryptions of the output values, which we
can just decrypt. Intuitively this is secure if the encryption is secure because,

other than the outputs, only random values and values already known to the
adversary are ever decrypted. We will give proofs of this intuition in the
following.

Note also that this by no means shows the complexities we claimed earlier.
This depends entirely on the efficiency of the encryption scheme and the sub-
protocols. We will substantiate this in the final sections.

4 Preliminaries and Notation

Let A be a probabilistic polynomial time (PPT) algorithm, which on input
z € {0,1}* and random bits r € {0, 1}?(*) for some polynomial p(-) outputs a
value y € {0,1}*. We write y < A(x)[r| to denote that y should be computed
by running A on input z and random bits r and write y = A(z)[r] to denote
that y equals a value computed like this. By y < A(z) we mean that y
should be computed by running A on input z and random bits r, where r
is chosen uniformly random in {0,1}?(#D). By y € A(z) we mean that y is
among the values, that A(z) outputs with non-zero probability. I.e. there
exists 7 € {0,1}0#]) such that y = A(z)[r]. We use N to denote the set
{1,2,...,n} and by Q for @ C N we denote the set N \ Q.

4.1 Distribution Ensembles

A distribution ensemble is a family X = {X(k,a)}ren aep, Where k is the
security parameter, D is some arbitrary domain, typically {0,1}*, and X (k,a)
is a random variable. We call D the index set.

We have three primary notions for comparisons of distribution ensembles.

Definition 1 (Equality of ensembles) We say that two distribution en-
sembles X and Y indexed by D are equal (or perfectly indistinguishable) if
for all k and all a € D we have that X (k,a) and Y (k,a) are identically dis-

tributed. We write X 4 Y.

Definition 2 (Statistical indistinguishability of ensembles) Letd : N —
[0,1]. We say that two distribution ensembles X and Y indexed by D have
statistical distance at most § if there exists kg such that for every k > ko and
all a € D we have that

% Z | Pr[X (k,a) = y] — Pr[Y(k,a) = y]| < (k)

ye{0,1}*

If X and Y have statistical distance at most § for some negligible d we say
that X and Y are statistically indistinguishable and write X LY.

Definition 3 (Computational indistinguishability of ensembles [14, 22])
Leté : N — [0,1]. Let D be any TM which is PPT in its first input, let k € N,

a € D, and let w € {0,1}* be some arbitrary auziliary input. By the advantage

of D on these inputs we mean

advp(k,a,w) = |Pr[D(1¥, a,w, X (k,a)) = 1] — Pr[D(1*,a,w, Y (k,a)) = 1]|

where the probabilities are taken over the random variables X (k,a) and Y (k,a)
and the random choices of D.
We say that two distribution ensembles X andY indexed by D have computational
distance at most ¢ if for every adversary D, there exists kp such that for every
k> kp, alla € D, and all w € {0,1}* we have that

advp(k,a,w) < o(k) .

If X and Y have computational distance at most & for some negligible § then
we say that X and Y are computationally indistinguishable and write X ~Y.

4.2 Y-Protocols

In this section, we look at two-party zero-knowledge protocols of a particular
form. Assume we have a binary relation R consisting of pairs (z,w), where we
think of z as a (public) instance of a problem and w as a witness, a solution
to the instance. Assume also that we have a 3-move proof of knowledge for R:
this protocol gets a string x as common input for prover and verifier, whereas
the prover gets as private input w such that (z,w) € R. Conversations in the
protocol are of form (a,e, z), where the prover sends a, the verifier chooses e
at random, the prover sends z, and the verifier accepts or rejects. There is a
security parameter k, such that the length of both x and e are linear in k. We
will only look at protocols where also the length of a and z are linear in k.
Such a protocol is said to be a Y-protocol if we have the following:

e The protocol is complete: if the prover gets as private input w such that
(z,w) € R, the verifier always accepts.

e The protocol is special honest verifier zero-knowledge: from a challenge
value e, one can efficiently generate a conversation (a,e, z), with prob-
ability distribution equal to that of conversation between the honest
prover and verifier where e occurs as challenge.

e A cheating prover can answer only one of the possible challenges: more
precisely, from the common input z and any pair of accepting conversa-
tions (a, e, 2), (a, €', 2") where e # €', one can compute efficiently w such
that (z,w) € R.

It is easy to see that the definition of »-protocols is closed under parallel
composition. One can also prove that any Y-protocol satisfies the standard
definition of knowledge soundness with knowledge error 2=¢ where t is the
challenge length, but we will not use this explicitly in the following.

4.3 The MPC Model

We use the MPC model from [4] which we refer to for a more complete de-
scription of the model. Here we only mention the setting in which we use it,
our notational conventions, and some small extensions to the model.

The Real-Life Model Let m be an n-party protocol. We look at the sit-
uation, where the protocol is executed on an open broadcast network with
rushing in the presence of an active static adversary A. As a small extension
to the model in [4] we allow each party P; to receive a secret input zf and a
public input 2? and return a secret output y§ and a public output y?. The
adversary receives the public input and output of all parties.

Let @ = (xf,2Y,...,25,2h) be the parties’ input, let 7= (r1,...,7,,74)
be the parties’ and the adversary’s random input, let C' C N be the corrupted
parties, and let a € {0,1}* be the adversary’s auxiliary input.

By ADVR; 4(k,Z,C,a,7) and EXEC, 4(k,Z,C,a,T); we denote the out-
put of the adversary A resp. the output of party P; after a real-life execution
of m with the given input under an attack from A. Let

EXEC, 4(k, #,C,a,7) = (ADVR,_4(k, 7, C, a,),
EXEC, 4(k,Z,C,a,7),

c ey

EXEC, A(k, %, C,a, 7))

and denote by EXEC, A(k, Z, C, a) the random variable EXEC, 4(k, Z,C,a,T),
where 7 is chosen uniformly random.

Let I' be a monotone adversary structure and define a distribution ensemble
with security parameter k and index (Z,C,a) by

EXEC; 4 = {EXEC; 4(k, Z,C, a) bre N #e({0,1}%)2m Ol ac{o,1}* -

The Ideal Model Let f : N x ({0,1}*)®® x {0,1}* — ({0,1}*)?" be a
probabilistic n-party function computable in PPT. We name the inputs and
outputs as follows (y5,v%,...,y3,yh) «— f(k,a5,2Y,... a5, 2h,r), where k is
the security parameter and r is the random input. In the ideal model the
parties send their inputs to a incorruptible trusted party 7 which draws r

uniformly random, computes f on the inputs and returns to the party P; its

output share (yf,y”). The execution takes place in the presence of an active
static ideal-model adversary S. A the beginning of the execution the adversary
sees the values z? for all parties and the values zf for all corrupted parties.
The adversary then substitutes the values (2%, 2?) for the corrupted parties by
values (25',2%") of his choice — for the honest parties let (z§',2?") = (23, 27).
Then f is evaluated on (k,x§,2%,..., 25, 25, r) by an oracle call, where r is
chosen uniformly random. The party P, is then given his output share (yf,y?).
Again the adversary sees the values y! for all parties and y; for the corrupted
parties — we imagine that xf and yf are send over an open point-to-point
channel to and from the oracle whereas z; and y; are send over a secure
point-to-point channel.
We let

IDEAL; s(k, %, C,a,7) = (ADVR.s(k, %, C, a,),
IDEAL; s(k, 7, C, a, 7)1,

c ey

IDEAL; s(k, Z,C, a, 7))

denote the collective output distribution of the parties and the adversary and
define a distribution ensemble by

IDEALLS = {IDEALLS(/{?, .i", C, a)}keN,fe({O,l}*)2",CEF,a6{O,1}* .

The Hybrid Model In the (g1,...,g;)-hybrid model the execution of a
protocol m proceeds as in the real-life model, except that the parties have
access to a trusted party 7 for evaluating the m-party functions g¢i,...,¢;.
These ideal evaluations proceeds as in the ideal-model!. We define as for the
other models a distribution ensemble

EXECZ{:A"(H = {EXECZ{h’gl (l{?, .i", C, a’)}kEN,fE({O,l}*)2",CEF,(16{0,1}* .

Security We now define security by requiring, that a real-life execution or
(91,---,91)-hybrid execution of a protocol 7 for computing a function f should
reveal no more information to an adversary than does the ideal evaluation of
f. To unify terminology let us denote the real-life model by the ()-hybrid
model.

Definition 4 Let f be an n-party function, let © be an n-party protocol, and
let T' be a monotone adversary structure for n parties. We say, that m I'-
securely evaluates f in the (g1,...,q)-hybrid model if for any active static

!The ideal-model is in fact just the f-hybrid model, where the parties make just one
oracle call with their protocol inputs and return the result of the oracle call.

(91,---,q1)-hybrid adversary A, which corrupts only subsets C € ', there exists
a static active ideal-model adversary S such that IDEALy s ~ EXEC?" ;9.

Security Preserving Modular Composition In [4] a modular composi-
tion operation was defined and it was proven that it is security preserving.
What this basicly means is the following. Assume that 7 I'-securely evalu-
ates f in the (g1,...,g)-hybrid model and w4, I'-securely evaluates g; in the
(915, 9i-1,9it1, - - -, gi)-hybrid model. Then the protocol 7/, which is 7 with
oracle calls to g; replaced by executions of the protocol 7y, I'-securely evalu-
ates f in the (g1,...,9i—1,8i+1,--.,9g;)-hybrid model. In this way oracle calls
can by replaced be protocol executions to construct a protocol for f in the
real-life model. One important restricting is however, that only one oracle call
is made in each round; the model has not been proven the preserve security
under parallel composition. For a detailed description of the model see [4].
In the following sections we describe some simple extensions to the model.

Restricted Input Domains The definition in [4] refers to functions where
the input domain of the parties is ({0,1}*)?". Often we can only implement
a protocol securely on a restricted domain. In [4] it is noted that if we prove
the protocol secure on a restricted domain D C ({0,1}*)?" and can prove that
the protocol is always called with inputs from that domain, then the security
preserving composition theorem still holds.

We will in the specification use the terms common input and common output
to denote a public input resp. public output that all honest parties agree on.
We cannot specify that a protocol expects a common input using a restriction
of the form D C ({0,1}*)?". We can only express that e.g. a majority input the
same value. This majority could however consist mostly of corrupted parties
allowing all honest parties to disagree on the common input. We therefore
allow restrictions of the form D C T' x ({0,1}*)?" to allow to say that e.g.
all honest parties’ input the same value to the protocol. We then restrict the
distribution ensembles IDEAL s and EXEC?&J’;{"QZ to be over indexes (¥, C, a),
where (C, %) € D. If we prove the protocol secure in contexts where (C, ¥) € D,
and make sure it is only called in such contexts, then it is fairly straight forward
to check that the modular composition operation is still security preserving.

5 Threshold Homomorphic Encryption

Definition 5 (Threshold Encryption Scheme) A tuple (K,KD, R, E, Decrypt)
is called a threshold encryption scheme with access structure II 2 and security

2 An access structure is a subset IT C 2V of all subset of the parties which is closed under
superset, i.e. if C € Il and C C C' C N, then C’ € TI. The complement (in 2V) of 1T is

10

parameter k if the following holds.

Key space The key space K = {Kj}ren is a family of finite sets of keys of
the form (pk,ski,...,sk,). We call pk the public key and call sk; the
private key share of party i. There exists a PPT algorithm K which given
k generates a uniformly random key (pk, sk, ..., sky) «— K(k) from K.

We call Q C N a qualified set of indices if @ € II and call it a non-qualified
set of indices otherwise. By skc for C C N we denote the family

{ski}tico-

Key-generation There exists a II-secure protocol KD, which on security pa-
rameter k as input computes as common output pk and as secret output
sk; for party P;, where (pk, ski,...,sky) is uniform over Kj.

Message Sampling There ezists a PPT algorithm R, which on input pk (a
public key) outputs a uniformly random element from a set Rp,. We
write m < Rpj.

Encryption There exists a PPT algorithm E, which on input pk and m €
Ry outputs an encryption M «— Ep(m) of m. By Cp, we denote the
set of possible encryptions for the public key pk.

Decryption There exists a Il-secure protocol Decrypt which on common in-
put (M,pk), and secret input sk; for the honest party P;, where sk; is
the secret key share of the public key pk and M is a set of encryptions
of the messages M C Ry, returns M as common output.3

Threshold semantic security Let A be any PPT algorithm, which on in-
put 1%, C € T, public key pk, and corresponding private keys skc out-
puts two messages mg,m1 € Ry, and some arbitrary value s € {0,1}*.
Let X;(k,C) denote the distribution of (s, c;), where (pk,ski,...,sky) is
uniformly random over Ky, (mg,m1,s) «— A(1¥,C,pk, skc), and c; «—
Epi(mi). Then X; = {Xi(k,C)yen ceq for @ = 0,1 are distribution

ensembles over the index set I1 and we require that X, ~ Xi.

In addition to the threshold properties we need the following properties.

named IT and is of course closed under subset and is therefore an adversary structure for n
parties.

3We need that the Decrypt protocol is secure when executed in parallel. The MPC-
model[4] is however not security preserving under parallel composition, so we have to state
this required property of the Decrypt protocol by simply letting the input be sets of cipher-
texts.

11

Message ring For all public keys pk, the message space Ry, is a ring in which
we can compute efficiently using the public key only. We denote the ring
(Rpks *pkes Fpks Ope, Lpk).

+pr-homomorphic There exists a PPT algorithm, which given public key pk
and encryptions ™y € Epi(m1) and My € Ep,(me) outputs a uniquely
determined encryption m € Epi(m1 +prm2). We write T « iy By, M.
Further more there exists a similar algorithm for subtraction: m; By
mo € Epk(ml — mg).

Multiplication by constant There exists a PPT algorithm, which on input
pk, m1 € Ry, and My € Epi(mg) outputs a random encryption 7 «—
Epi(my -pr, m2). We assume that we can multiply a constant from both
left and right. We write T « mq By, Mg € Epp(my -pi m2) and M«
my Elpk mo € Epk(ml “pk mg).

Note that my [, ™5 is not determined from m; and Mo, but is a random
variable. We let (my [, 2)[r] denote the unique encryption produced
by using r as random coins in the multiplication-by-constant algorithm.

Addition by constant There exists a PPT algorithm, which on input pk,
my € Ry, and My € Epk(mg) outputs a uniquely determined encryption
m € Epp(mi +pr ma). We write T «— my By, ma.

Blindable There exists a PPT algorithm Blind, which on input pk, m €
E,;(m) outputs an encryption m' € E,;(m) such that m’ 4 Epi(m)[r],
where r is chosen uniformly random.

Check of ciphertextness Given y € {0,1}* and pk, where pk is a public
key, it is easy to check whether y € Cpk4.

Proof of plaintext knowledge Let L1 = {(pk,y)|pk is a public key Ay €
Cpr}. There exists a Y-protocol for proving the relation over L; x
({0,1}*)2 given by (pk,y) ~ (z,7) <z € Ry Ny = Epp(x)[r] .

Proof of correct multiplication Let Ly = {(pk, x,y, z)|pk is a public keyA
x,Y,%2 € Cp}. There exists a X-protocol for proving the relation over
Ly x ({0,1}*)3 given by (pk,z,y,2) ~ (d,r1,72) & y = Ep(d)[r1] Az =
(d By)[r2]

4This check can be either directly or using a 3-protocol: we will always use the test in a
context, where a party publishes an encryption and then the recipients either check locally
that y € Cpr or the publisher proves it using a ¥-protocol. In the following sections we
adopt the terminology to the case, where the recipients can perform the test locally. Details
for the case where a X-protocol is used are easy extractable.

12

We call such a scheme meeting these additional requirements a threshold
homomorphic encryption scheme.

Remark 1 The existence of the algorithm for addition with a constant is
given by the additive homomorphism. Simply let my By = E(mq)[r] B me
for some fixed random string r.

Remark 2 If 1, spans all of the additive group of R, and we can easily find
n € Z such that nly, = m for m € Ry, then the algorithm for multiplying by
a constant can be implemented using a double and add algorithm combined
with the blinding algorithm.

I Section 7 we describe how to implement general multiparty computa-
tion from a threshold homomorphic encryption scheme, but as the first step
towards this we show how one can generally and efficiently extend two-party
Y-protocols, as the those for proof of plaintext knowledge and proof of correct
multiplication, into secure multiparty protocols.

6 Multiparty Y-protocols

We now explain how we can use two-party >-protocols in our multiparty set-
ting.

We will need two essential tools in this section: the notion of trapdoor
commitments and a multiparty protocol for generating a sufficiently random
bit string.

6.1 Generating (almost) Random Strings

Our underlying purpose here is to allow a player to prove a claim using a
>-protocol such that all players will be convinced. We could let the prover
do the original Y-protocol independently with each of the other players, but
this corresponds to giving n times a proof of the same statement and costs
O(nk) bits of communication. This will mean that the overall protocol will
have complexity quadratic in n. Can we do better? It may seem tempting to
make a mutually trusted random challenge by having each player broadcast an
encryption and decrypt the sum of all these. But this would lead to circularity
because secure and efficient decryption already requires zero-knowledge proofs
of the kind we are trying to construct. So here is one simple way of doing
better:

Suppose first that n < 16k. Then we create a challenge by letting every
player choose at random a [2k/n] -bit string, and concatenate all these strings.
This produces an m-bit challenge, where 2k < m < 16k. We can assume
without loss of generality that the basic 3-protocol allows challenges of length

13

m bits (if not, just repeat it in parallel a number of times). It is easy to see
that with this construction, at least k bits of a challenge are chosen by honest
players and are therefore random, since a majority of players are assumed
to be honest. This is completely equivalent to doing a Y-protocol where the
challenge length is the number of bits chosen by honest players. The cost of
doing such a proof is O(k) bits. If n > 16k, we will assume, as detailed later,
that an initial preprocessing phase returns as public output a description of a
random subset A of the players, of size 4k. By elementary probability theory,
it is easy to see that, except with probability exponentially small in &, A will
contain at least k£ honest players. We then generate a challenge by letting each
player in A choose one bit at random, and then continue as above.

6.2 Trapdoor Commitments

A trapdoor commitment scheme can be described as follows: first a public key
pk is chosen based on a security parameter value k, by running a probabilistic
polynomial time generator G.

There is a fixed function commit that the committer C' can use to com-
pute a commitment ¢ to s by choosing some random input r, computing
¢ = commit(s,r, pk), and broadcasting c¢. Opening takes place by broadcast-
ing s, r; it can then be checked that commit(r, s, pk) is the value S broadcasted
originally.

We require the following;:

Hiding: For a pk correctly generated by G, uniform r,7’ and any s,s’, the
distributions of commit(s,r, pk) and commit(s’,r’, pk) are identical.

Binding: There is a negligible function ¢() such that for any C' running in
expected polynomial time (in k) the probability that C' on input pk
computes s,7,s',r" such that commit(s,r,pk) = commit(s',r’, pk) and
s # s is at most 0(k).

Trapdoor Property: The algorithm for generating pk also outputs a string
t, the trapdoor. There is an efficient algorithm which on input ¢, pk
outputs a commitment ¢, and then on input any s produces r such
that ¢ = commit(s,r,pk). The distribution of ¢ is identical to that of
commitments computed in the usual way.

In other words, the commitment scheme is binding if you know only pk, but
given the trapdoor, you can cheat arbitrarily.

Finally, we also assume that the length of a commitment to s is linear
in the length of s. Existence of commitments with all these properties fol-
low in general merely from existence of Y-protocols for hard relations, and
this assumption in turn follows from the properties we already assume for

14

the threshold cryptosystems. For concrete examples that would fit with the
examples of threshold encryption we use, see [7].

6.3 Putting Things Together

In our global protocol, we assume that the initial preprocessing phase generates
for each player P; a public key k; for the trapdoor commitment scheme and
distributes it to all participating parties. We may assume in the following
that the simulator for our global protocol knows the trapdoors t; for (some
of) these public keys. This is because it is sufficient to simulate in the hybrid
model where players have access to a trusted party that will output the k;’s on
request. Since this trusted party gets no input from the players, the simulator
can imitate it by running G itself a number of times, learning the trapdoors,
and showing the resulting k;’s to the adversary.

In our global protocol there are a number of proof phases. In each such
phase, each player in some subset N’ of the parties is supposed to give a proof
of knowledge: each P; in the subset has broadcast an z; and claims he knows
wj such that (z;,w;) is in some relation R; which has an associated X-protocol.
We then do the following:

1. Each P; computes the first message a; in his proof and broadcasts ¢; =
commit(a;,ri, k;). If P; is not doing a proof in this phase, he broadcasts
nothing.

2. Make random challenge e according to the method described earlier.

3. Each P, who does a proof in this phase computes the answer z; to chal-
lenge e, and broadcasts a;, 7, 2;

4. Every player can check every proof given by verifying ¢; = commit(a;, 4, k;)
and that (a;, e, z;) is an accepting conversation.

It is clear that such a proof phase has communication complexity no larger
than n times the complexity of a single Y-protocol, i.e. O(nk) bits. We
denote the execution of the protocol by (A, N") «— X(A,zn, wynn', kn),
where A is the state of the adversary before the execution, zn/ = {z;}iens
are the instances that the parties N’ are to prove that they know a witness
to, wynn' = {w;}iegnns are witnesses for the instances x; corresponding to
honest P;, kn = {k;}ien is the commitment keys for all the parties, A’ is the
state of the adversary after the execution, and N” C N’ is the subset of the
parties completing the proof correctly. The reason why the execution only
depends on witness for the honest parties’ instances is, that the corrupted
parties are controlled by the adversary and their keys, if even well-defined, are
included in the start-state A of the adversary.

15

Now let tgr = {t; }ic be the commitment trapdoors for the honest parties.
We describe a procedure (A', N wyinco) «— Ss(A,zn/, th, ky) that will be
used as subroutine in the simulation of our overall protocol.

Sx (A, xn7, kn,ty) will have the following properties:

o Sy(A,zn/, kn,ty) runsin expected polynomial time and the part (A, N”)
of the output is perfectly indistinguishable from the output of a real ex-
ecution (A, xn/, wynn/, kn) given the start state A of the adversary
(which we assume includes x s and ky).

e Except with negligible probability wyrno = {w;}ienvne is valid wit-
nesses to the instances x; corresponding the corrupted parties completing
the proofs correctly.

The algorithm of Sy; is as follows:

1. For each P;: if P; is honest, use the trapdoor t; for k; to compute a com-
mitment ¢; that can be opened arbitrarily and show ¢; to the adversary.
If P; is corrupt, receive ¢; from the adversary.

2. Run the procedure for choosing the challenge, choosing random contri-
butions on behalf of honest players. Let ey be the challenge produced.

3. For each P; do (where the adversary may choose the order in which
players are handled):

if P; is honest, run the honest verifier simulator to get an accepting
conversation (a;,eq,z;). Use the commitment trapdoor to compute 7;
such that ¢; = commit(a;,r;) and show (a;,r;, ;) to the adversary.

If P, is corrupt, receive (a;, 7, 2;) from the adversary.

The current state A’ of the adversary and the subset N of parties cor-
rectly completing the proof is copied to the output from this simulation
subroutine. In addition, we now need to find witnesses for x; from those

corrupt P; that sent a correct proof in the simulation. This is done as
follows:

4. For each corrupt P; that sent a correct proof in the view just produced,
execute the following loop:

(a) Rewind the adversary to its state just before the challenge is pro-
duced.

(b) Run the procedure for generating the challenge using fresh random
bits on behalf of the honest players. This results in a new value e;.

16

(¢) Receive from the adversary proofs on behalf of corrupted players
and generate proofs on behalf of honest players, w.r.t. e, using
the same method as in Step 3. If the adversary has made a correct
proof al,r}, e, z; on behalf of P;, exit the loop. Else go to Step 4a.

277)

If ey # e1 and a; = a; compute and output a witness for x;, from the
conversations (a;, €o, z;), (a}, e1, z/). Else output ¢;, a;, 7, a}, r} (this will
be a break of the commitment scheme). Go on to next corrupt P;.

It is clear by inspection and assumptions on the commitments and Y-
protocols that the part (A, N”) of the output is distributed correctly.

For the running time, assume P, is corrupt and let ¢ be the probability
that the adversary outputs a correct a;,r;,z; given some fixed but arbitrary
value View of the adversary’s view up to the point just before e is generated.
Observe that the contribution from the loop to the running time is € times
the expected number of times the loop is executed before terminating, which
is 1/¢, so that to the total contribution is O(1) times the time to do one it-
eration, which is certainly polynomial. As for the probability of computing
correct witnesses, observe that we do not have to worry about cases where €
is negligible, say € < 27%/2_ since in these cases P; ¢ N” with overwhelming
probability. On the other hand, assume € > 275/2 let Ze) denote the part
of the challenge e chosen by honest players, and let pr() be the probability
distribution on € given the view View and given that the choice of € leads to
the adversary generating a correct answer on behalf of P;. Clearly, both ey
and ¢é; are distributed according to pr(). Now, the a priori distribution of €
is uniform over at least 2% values. This, and € > 27%/2 implies by elementary
probability theory shows that pr(e) < 27k/2 for any e, and so the probability
that €y = €1 is < 27%/2. We conclude that except with negligible probabil-
ity, we will output either the required witnesses, or a commitment with two
different valid openings. However, the latter case occurs with negligible prob-
ability. Indeed, if this was not the case, observe that since the simulator never
uses the trapdoors of k; for corrupt P;, the simulator together with the ad-
versary could break the binding property of the commitments. Formulating a
reduction proving this formally is straightforward and is left to the reader.

In the above description each party in N’ does one proof. The description
extends straightforwardly to the situation, where each party has broadcast [;
instances x; 1, ..., %;;, and claims he knows [; witnesses wj 1, ..., w; , such that
(5, w; ;) is in some relation R;. For | = max(n, Y . l;) the communication
complexity of the protocol is no larger than [times the complexity of a single
Y-protocol, i.e. O(lk) bits.

17

7 General MPC from Threshold Homomorphic En-
cryption

Assume that we have a threshold homomorphic encryption scheme as described
in Section 5. In this section we describe the FuncEval; protocol which securely
computes any PPT computable n-party function f using an arithmetic circuit
over the rings R, by computing on encrypted values. We focus on functions
(Y1, ---sYn) — f(x1,...,2p,) with private inputs and outputs only and unre-
stricted domains. Since our encryption scheme is only +-homomorphic we will
be needing a sub-protocol Mult for computing an encryption from FE(mjims)
given encryptions from E(mj) and E(mgy). We start by constructing the Mult
sub-protocol.

Besides the Mult sub-protocol we will need a sub-protocol called PrivateDecrypt
which is used to decrypt an encryption @ in a way that only one specific party
learns a.

In all sub-protocols we give as common input a set N’ C N. This is
the subset of parties that is still participating in the computation. The set
X = N\ N’ is called the excluded parties. Parties are excluded if they
are caught deviating from the protocol. It is always the case that X C C,
where C' is the corrupted parties. At the start and termination of all sub-
protocols all honest parties agree on the set N’ of participating parties. This
is ensured by the protocols. We will not mention N’ explicitly as input to all
sub-protocols. Neither will we at all points where a party can deviate from
the protocol mention that any party deviating should be excluded. E.g. will
obvious syntactic errors in the broadcasted data automatically exclude a party
from the remaining computation.

We assume that the parties has access to a trusted party Preprocess, which
at the beginning of the protocol outputs a public value (ki,...,k,), where k;
is a random public commitment key for a trapdoor commitment scheme as
described in Section 6.2. If n > 16k then further more the trusted party re-
turns a public description of a random 4k-subset of the parties as described in
Section 6.1°. As described in Section 6.3, we can then from the Y-protocol of
the threshold homomorphic encryption scheme for proof of plaintext knowl-
edge construct an n-party version called the POPK protocol and from the -
protocol for proof of correct multiplication construct an n-party version called
the POCM protocol. The corresponding versions of our general simulation
routine Sy; for these protocols will be called Spopk resp. SpocM.-

Besides the Preprocess trusted party we will assume that the parties have
access to a trusted party KD for generating keys for the threshold homomor-

°In the following we present the case where n < 16k. If n > 16k the only difference is
that the set A should be carried around between the protocols along with the commitment
keys (k1,...,kn).

18

phic encryption scheme and a trusted party Decrypt for decryption. We will
thus prove the sub-protocols and finally FuncEval; secure in the (Preprocess,
KD, Decrypt)-hybrid model. Using the composition theorem of [4], each of
these trusted parties can be replaced by secure implementations. We will elab-
orate on this after having proven the protocol secure in the (Preprocess, KD,
Decrypt)-hybrid model.

7.1 Some Sub-Protocols

In all the sub-protocols described we first give an informal description of the
intended behaviour of the sub-protocol and then give an implementation. All
honest parties follow the instructions of specified implementation and the cor-
rupted parties are controlled by an adversary starting in a state that we denote
by A.

7.1.1 The PrivateDecrypt Protocol

Description All honest parties P; knows public values ky = {k; }ien, © € N,
pk, and an encryption @ € E,;(a) for some possible unknown a € R, and
private values sk;.
The corrupted parties are controlled by an adversary with start-state A.
The parties want P; to receive a without any other party learning anything
new about a.

Implementation

1. P; chooses a value d uniformly at random in R, computes an encryption
d — E,i(d) and broadcasts it.

2. If d is not an encryption from Cpi the parties terminate the protocol.

3. Now the participating parties run POPK where P; proves knowledge of
r € {0,1}?*%) and d € Ry, such that d = Epx(d)[r].

4. If P, fails the proof the parties terminate the protocol.

5. All participating parties compute € = @ B d.

6. The participating parties call Decrypt to get the value e = a + d from e.
7. P; computes a = e — d.

Denote by A" « PrivateDecrypt(A, kn, pk, ski,a) the end-state of the
adversary after an execution of the PrivateDecrypt protocol.

19

The PrivateDecryptSim Simulator The simulator is given as input (A, ky,
pk,tm,a,b), where A is the start-state of an adversary, ky is the public com-
mitment keys for all parties, pk is the public key for the threshold encryption
scheme, ty is the commitment trapdoors for the honest parties, @ is an en-
cryption under pk of some possibly unknown a € Ry, and b € Ep,.

The goal is to simulate a private decryption, where we make it look as if
@ is an encryption of b.

1. If P; is corrupt, then receive from the adversary d.

If P; is honest then generate d according to the protocol.
2. If P; is corrupt, then check that d € Cpr, and terminate if not.

3.-4. Run Spopk (A, (pk,d), kn,tg), where A is the current state of the sim-
ulated adversary.

If P; is corrupt and fails the proof then terminate the protocol. If P; is
corrupt and carries through the proof correctly, then with overwhelming
probability Spopk returns (d,r) such that d = E,(d)[r] — if not give
up the simulation and terminate.

If P; is honest the execution of Spopk will go through and in all cases
at this point at the execution the simulator knows (d,r) such that d =
Epi(d)[r].

In subsequent steps use as the new state of the simulated adversary the
state A’ returned by Spopk.

5. There is no need to compute € = a H d.

6. Receive inputs for the Decrypt protocol from the adversary and give
e = b+ d to the adversary.

Denote by A’ « PrivateDecryptSim (A, kn, pk, ty, @, b) the end-state of the
simulated adversary after an execution of the PrivateDecryptSim simulator.

Theorem 1 For all values of start-state A of the adversary, commitment keys
kn, corresponding trapdoors ty for the honest parties, public key pk for the
threshold encryption scheme, corresponding secret keys sk for the honest par-
ties, a € Rpy,, and @ € E,i(a) the random variables PrivateDecrypt (A, kn, pk,
sk, a) and PrivateDecryptSim (A, ky, pk,tr,a,a) are statistically indistin-
guishable given all of A, kn, tg, pk, sky, @, and a.

Proof: First of all observe, that we can consider both PrivateDecrypt(A, ky,
pk, sk, a) and PrivateDecryptSim(A, ky, pk,tm,a,a) to be ensembles over
an index consisting of the tuples (A, ky,tm, pk, ski,a,a) and they are thus
comparable.

20

For the statistical closeness observe that the simulation follows the protocol
exactly except for step 3 and step 6, where in step 3 the protocol runs POPK
and the simulation runs Spopk and in step 6 the protocol returns e = a + d
to all parties from the decryption oracle and where in the simulation e = b+ d
is given to the parties. However, in the conditions of the theorem we have
assumed that b = a, so 3 constitutes the sole difference between the protocol
and the simulation.

Assume first that the simulation does not give up and terminate in step
3. Since the simulation and the protocol run identically up to step 3 the
state of the adversary is identical up to that step in both distributions. In the
protocol POPK is executed and in the simulation Spopk is executed, but with
identically distributed adversaries. From the first property of Spopk proven in
6.3 it then follows that the adversary is identically distributed in the protocol
and in the simulation at the beginning of step 5 and thus will stay identically
distributed in the protocol and the simulation until the end of the executions.

The statistical closeness of the distributions now follow from the second
property of Spopk proven 6.3, which guarantees that the probability that the
simulation gives up and terminates in step 3 is negligible. O

We will be needing a parallel version of PrivateDecrypt. For simplicity we
have described and analysed a single instance of the protocol. Again, since the
MPC model[4] is not proven security preserving under parallel composition, we
have to analyse the parallel version directly. The above protocol, simulator,
and proof generalises fairly straightforward to the parallel case. The two
important steps to consider in the generalisation is Step 3 and Step 6. As
described in Section 6.3 the n-party proof of knowledge used in Step 3 is
indeed secure when carried out in parallel. Further more we have assumed
that we have a secure parallel protocol for the Decrypt protocol used in Step
6. The remaining steps only constitutes local computations and broadcast and
give no problems in the parallel simulation.

7.1.2 The ASS (Additive Secret Sharing) Protocol

We will now describe a generalisation of the PrivateDecrypt protocol, where
a subset of participating parties additively secret shares a.

Description The participating parties N’ know a public encryption @ €
E,;(a) for some possible unknown a € Ry,,. For i € N’ the party P; is to
receive a secret share a; € Ry, such that a = ;v a;. However, some of the
parties in N’ might try to cheat. We define N®) to be N’ without those parties
caught cheating and require that a is shared between the parties in N® only.
Further more all parties output a common value A = {@;};c y@), where @; is a
random encryption for which only P; knows r; such that @; = Ep(a;)[rs].

21

Implementation

1. P;, for ¢ € N’ chooses a value d; uniformly at random in Ry, computes
an encryption d; <« E(d;) and broadcasts it.

2. Let X be the subset of parties failing to broadcast a value from Cj;, and
set N — N\ X.

3. For i € N" the participating parties run POPK to check that indeed
each P, knows r € {0,1}?®) and d € Ry such that d; = E,(d)[r].

4. Let X’ be the subset failing the proof of knowledge and set N®) «—
N"\ X'

5. Let d denote the sum } .. n@) d;. All parties compute d= EEieN(?’)Ei and
e=aMld.

6. The parties in N®) call Decrypt to compute the value a + d from €.

7. The party in N®) with smallest indexiets @; «— €8d; and a; — a+d—d;.
The other parties in N () et a; < Hd; and a; «— —d;.

Denote by (A, N®) A, ane T N@) — ASS(A, kn, pk, ski, @) the output of
the protocol, where A’ is the end-state of the adversary, N®) is the subset
of the parties correctly completing the execution, A is their encrypted shares,
and ay s and 7y the values such used to compute the encrypted shares as
@; — Epg(a;)[r1]-

The ASS protocol secret shares a between all participating parties. Sharing
it between fewer parties is also possible. To share between a subset S of
the parties simply let P; for ¢ € S generate the d; values and run the above
protocol with the remaining parties participating only as verifiers in the proofs
of knowledge and when decrypting e.

The ASSSim Simulator The simulator is given as input (A, ky, pk,tm,a),
where A is the start-state of an adversary, ky is the public commitment keys
for all parties, pk is the public key for the threshold encryption scheme, ¢y is
the commitment trapdoors for the honest parties, @ is an encryption under pk
of some possibly unknown a € Ry

1. Let s be the smallest index of a honest party and let H' be the set of
remaining honest parties. Generate d; and d; correctly for i € H' and
for party s choose d, uniformly random, let ds « Blind(E,(d,) Ba),
and define ds to be the value (d — a) encrypted by ds. Hand the values
{d;};cq to the adversary and receive from the adversary {d;}icnnc-

2. Define N” as in the ASS protocol.

22

3. Run Spopk (A, {(pk,d;)}Yienr, kn,tr), where A is the current state of
the adversary. If Spopk did not for all corrupted parties that continue
to participate return (d;,;) such that d; = E,(d;)[r;] then give up the
simulation and terminate. Otherwise continue the simulation using the
state of the adversary returned by Spopk.

4. Define N® as in the ASS protocol.

5. Compute e = (X ;enen sy di) + ds = ienongsy di) + (ds +a) =
(ZieN(3) di) +a=a+d.

Compute d and € as specified by the protocol. Observe that d and € are
indeed encryptions of d =),) d; resp. e = a +d.

6. We now need to simulate the oracle call of Decrypt. This is easy as we
know the plaintext of €. We simply hand e to the adversary.

7. For i € N®) compute the @ as in the ASS protocol and for i € H’
compute a; as in the protocol. For the honest party s we do not know
the value as encrypted by the encrypted share as. The reason is that dg
is not known to the simulator. Doing the computation using d,, instead
of ds we can however compute the value o), = a5 + a.

Denote by (A/,N(?’),A,(ZN(a)\{S},als) — ASSSim(A, ky, pk,ty,a) the out-
put of the ASSSim simulator, where A’ is the end-state of the adversary, N)
is the subset of parties correctly completing the execution, A is their encrypted
shares, aNG\ (s} is the shares of the participating parties except s, and a’, is
the 'modified’ share (a5 — a) of party s.

Remark 3 Note, that whereas the ASS protocol restricted to ’sharing’ be-
tween one party ¢ does in fact yield the PrivateDecrypt protocol it is not the
case that ASSSim simulator restricted to this setting yields the PrivateDecryptSim
simulator. The reason for this is that for the ASSSim simulator to work it must

be the case, that the set H in Step 1 of honest parties receiving a share of a

is not empty. The simulator ASSSim will only be used in such settings. How-
ever in the PrivateDecrypt protocol only one party receives a share and we
cannot hope for that party to be honest. This is why the PrivateDecryptSim
simulator needs the auxiliary input b to guide the simulation.

To be able to compare ASS and ASSSim we define the distributions ASS’
and ASSSim’ as follows. Let ASS be the random variable (A', N A a @),
where (A, N®) | A aye),m vo) — ASS(A, ky,pk, ski,a). For (A, NG A,
aN(a)\{s},a;) — ASSSim(A, kn,pk,tg,a) compute as < al, — a, where a
is the value encrypted by @ and let ASSSim’ denote the random variable

a
(A/a N(3)7 A7 aN(S)\{s} U {GS}).

23

Theorem 2 For all values of the start-state A of the adversary, commitment
keys kn, corresponding trapdoors ty for the honest parties, public key pk for
the threshold encryption scheme, corresponding secret keys sk for the honest
parties, a € Ry, and @ € Eyi(a) the random variables ASS'(A, kn, pk, sk, @)
and ASSSim’ (A, kx, pk, ty,a) are statistically indistinguishable given all of A,
kn, tg, pk, ski, @, and a.

Proof: Observe that except for dg, the simulated zero-knowledge proof, and
the lacking value as the simulator ASSSim just follows the ASS protocol and
is thus distributed exactly as in the execution.

In the execution the value of dg is a random encryption of a uniformly
random element from R,;. In the simulation d is uniformly random from
Ry, so d; — a is uniformly random and thus, because of the blinding, ds is a
random encryption of a uniformly random element from R,;. All in all dy is
distributed identically in the simulation and the execution.

The statistical indistinguishability in the two distributions of the values
(.A’,N(?’),A, G,N(3)\{S}) then follows from the properties we have shown for
Spopk in Section 6.3.

Finally, in the simulation ASSSim we have that a,, = as + a, where a; is
defined to be the value encrypted by a@s. Therefore in the ASSSim’ distribution
we have that the value a; is indeed the value encrypted by as. This also holds in
the execution and thus the values (A, N® A, ane) (s} U{as}) are distributed
statistically indistinguishable in the distributions ASS’ and ASSSim’. O

As for the PrivateDecrypt protocol we will be needing a parallel version
of the ASS protocol. Again for simplicity we have described and analysed a
single instance and the generalisation to the parallel version is straightforward
using the line of reasoning used for the PrivateDecrypt protocol.

7.1.3 The Mult Protocol

Description All honest parties P; knows public values ky = {k;}icn, Pk,
and encryptions @,b € Eyi(a), for some possible unknown a,b € Ry, and
private values sk;.
The corrupted parties are controlled by an adversary with start-state .A.
The parties want to compute a common value ¢ € FE,(ab) without anyone
learning anything new about a, b, or ab.

Implementation

1. First all participating parties additively secret share the value of a by
running (A, N®), A, aN®)Ta, s) < ASS(A, by, pk, ski, a).

2. Each party P; for i € N®) _computes fi < (a; O b)[ra,) for uniformly
random rg; and broadcasts f;.

24

3. Each party P; for i € N® proves that f: was computed correctly by
participating in the execution of

POCM(Aa {(pka Ea a_i? ﬁ)}iEN(3)) {(aia 1,45 T2,i)}i6N(3)) kn)
4. Let X" be the subset failing the proof and let N — NG\ X7

5. The parties compute ax» = H;cx»a; and decrypt it using Decrypt to
obtain axr = Y, xn a;.

6. All parties compute ¢ « (B;cyw f;) B (ax» Eb) € Ep(ab).

Denote by (A’,¢) « Mult(A, kx, pk, skx, @, b) the end-state of the adver-
sary after the above execution resp. the result ¢ of the execution.

The MultSim Simulator The simulator is given as input (A, ky, pk, tg,a,b,),
where A is the start-state of an adversary, ky is the public commitment keys
for all parties, pk is the public key for the threshold encryption scheme, ¢y

is the commitment trapdoors for the honest parties, @ and b are encryptions
under pk of some possibly unknown a,b € Ry, and € is any encryption under
pk of ¢ = ab.

1. First we simulate the ASS protocol by running (A, N®, A, NOINAE al) «—
ASSSHH(.A, kn,pk,tm, E).

2. For i € H compute the f; values correctly as a; 1b. For s we must
compute as Db = (a, —a) Db € Ep(alb — ab). We do this as f, «
Blind((a’, D b) B¢). Hand these values to the adversary and receive the
f. values for the corrupted parties that are still participating.

3. Run Spocm (A, {(pk,b,a;, fi)}e N s kno tr), where A is the current state
of the adversary. Then set the new state of the adversary to be the state
returned by Spocum.

4. Let X” be the subset failing the proof and let N 4 be as in the protocol.

5. For i € X" we know a; and can easily simulate the Decrypt protocol by
handing ax» =) ;. y» a; to the adversary.

6. Let ¢ «— (EaieN(4)7i) B (ax» O E) S Epk(ab).

Let (A',€) « MultSim(A, ky, pk,ts,a,b,@) denote the end-state of the
adversary after the execution of MultSim and the result ¢ of executing MultSim.

Theorem 3 For all values of the start-state A of the adversary, commitment
keys kn, corresponding trapdoors ty for the honest parties, public key pk for

25

the threshold encryption scheme, corresponding secret keys sky for the hon-
est parties, a,b € Ry, @ € Epk(a) b € Ep(b), and @ € Eyp(ab) the random
variables Mult(A, ky, pk, sk, @, b) and MultSim(A, ky, pk,ty,a,b,T) are sta-

tistically indistinguishable given all of A, kn, ty, pk, skg, @, b, €, a, and b.

Proof: In the simulation define as to be the contents of as. Then by Theorem
2 the values (A', N ®) A a N3) are distributed statistically indistinguishable
in Mult and MultSim, where A’ is the state of the adversary after Step 1.

In the execution the value of f; is computed as a; [] b and is a random
encryption of a;s. In the simulation all f; is computed in the same way except
that f, « Blind((a’, 1b) B¢). However by Theorem 2 (a’ — a) is the value
encrypted by @, so (a’ [0 b) B¢ is an encryption of asb and because of the
blinding f, is indeed a random encryption of asb.

We now have that the input {(pk,b,a;, E)}iEN(?’) to POCM and Spocm
in the two distributions is distributed statistically indistinguishable and by
inspection the remaining parameters are such that we can use the properties
that we have shown for Spocm in Section 6.3 to prove that the state of the
adversary is the same in the two distributions after Step 3.

From Step 4 the simulator simply follows the protocol. This is possible as
as is not necessary in the computations as we are guaranteed that s ¢ X”.
It follows that the output of the simulation and the execution is distributed
statistically indistinguishable. O

Also for the Mult protocol we need a parallel version. Using that we
have a parallel version of the zero-knowledge proofs and the ASS and Decrypt
protocols the generalisation from the above description and analysis of a single
instance to the parallel version is straightforward.

7.2 The FuncEval; Protocol (Deterministic f)

We are set up to present the FuncEval; protocol for deterministic f. The
protocol evaluates any deterministic n-party function f : N x ({0,1}*)" —
({0,1}*)™ using a uniform polynomially sized family of arithmetic circuits
over the rings R,;. One way of doing this is to write f as a boolean circuit
with only A and —-gates and then evaluate this circuit using the standard
arithmetisation identifying 0 and 1 with 0, resp. 1, and identifying A and
- with (2,y) — @ i y resp. & +— 1, —pr . Depending on the rings R,
and f much more efficient embeddings might be possible. We therefore make
minimal assumptions about the way the computation of the function f is
embedded into the rings R,.

We assume that we are given three PPT algorithms: the input encoder I,
the circuit generator H, and the output decoder O.

26

The Input Encoder On input pk, i € N, and z; € {0, 1}* the input encoder
I outputs an encoding & € (Ry)"®) for some polynomial I;(k). We call the
value §; the legal circuit input of P;. Let ZEp;; C (Rpk)li denote the codomain
of I(pk,i,-). We require that I is PPT invertible in x;, i.e. there exists a
PPT algorithm I~! which on input pk, 4, and &; € Epk,: computes x; such that
I(pk,i,z;) = &. By Epri C (Cpk)li(k) we denote the set

{(€1, - &) € (Co) W&y, ... »&ik)) € Epkii)

of legal encrypted circuit inputs of P;.

We require that we have a ¥-protocol allowing a party that knows xz; €
{0,1}*, has computed (&1,...,&,x)) < I(pk,i,x;), and published (&4,
Eli(k)) € E,k,i to prove that the published value is indeed an encrypted circuit
input. For the simulation of Boolean circuits mentioned above, such protocols
are easily constructed in our example cryptosystems shown later.

The Circuit Generator On input 1¥ and pk the circuit generator H out-
puts an arithmetic circuit Hp over Ry using inputs and constants from Ry,
and addition, subtraction, and multiplication over R,;. The circuit Hpy is

given as a list of gates (H;k, e 7HII)}{J) and n lists Oq,...,0, of output gates

O; = (0i1,...,0;,,). We require that no gate Hgk depends on a gate HZJ);
where j' > j and that 1 < O;; <lfori=1,...,n,j=1,...,0;. The gates is
on one of the following forms.

° H;k = (input, 7, 71), where 1 <i <mn and 1 < j; <[;(k).

Hgk = (constant,v), where v € Ryy.

HJ, = (+,71,2), where 1 < j1, ja < j.

H)\ = (=, j1,72), where 1 < ji, ja < j.

Hf;k = (-, J1,J2), where 1 < j1,j2 < j.

We call (R!,...,hl) € (Rpk)l a plaintext evaluation of Hy, on circuit input
(&1,...,&,) if the following holds. If H]J;k = (input,i,j1), then b/ = & ;,; if
H;}k = (constant, v), then h/ = v; if H;}k = (+,j1,72), then b/ = Wit 41 hJ2;
if H), = (—,j1,j2), then R = hit —p 92, and if sz;k = (-, j1,72), then

P
B/ = Rt - hI2.

We call (ﬁl, . ,El) € (Cpk)l a ciphertext evaluation of H,j on input (¢1,...,&,)
if (h',...,h!), where b/ is the plaintext of 17, is a plaintext evaluation of Hpy,

on input (&1,...,&).

27

For function input (z1,...,2z,) € ({0,1}*)" the circuit input (£1,...,&,) €
= is uniquely given and thereby the plaintext evaluation is uniquely given.
Of course many ciphertext evaluations exists. Let (h',...,A!) be the plain-
text evaluation on circuit input (&1, ...,&,) (function input (z1,...,z,)). We
call (h9i1, h92 . hO%) the circuit output of P; on circuit input (£1,...,&,)
(function input (z1,...,2,)).

The Output Decoder For all function inputs (z1, ..., z,) and correspond-
ing circuit output (h9i1,h92 ... hO) of party P; the output decoder O
outputs y; € {0,1}* such that y; = f(x1,...,2,);. We require that O is in-
vertible in the circuit output and that O~!(pk,4,y;) is computable in PPT.
This is trivially the case for standard arithmetisation.

Some Terminology When evaluating a circuit we say that a gate H ;k has
been evaluated if A/ is defined and say that H;k is ready to be evaluated
if either Hgk = (constant,v), Hgk = (input,i,j1), or Hgk = (o, J1,J2) for
o € {+,—,-} and H); and HJ} has been evaluated.

The FuncEval; Algorithm (Deterministic f)

0. Party P; receives as input k, n, x; € {0,1}*, and a random string r; €
{0,1}*. The adversary receives as input k, n, a set of corrupted parties
C, their private input {z;};cc, an auxiliary string a € {0,1}*, and a
random string r 4 € {0,1}*.

1. The parties make an oracle call to the trusted party Preprocess and ob-
tains as common output n random commitment keys (ki, ..., ky), where
k; is intended as the public key of P;.

2. The parties make an oracle call to the trusted party KD and obtains as
common output pk. Further more P; obtains as private output sk; such
that (pk, ski,...,sky) is a random key for the threshold homomorphic
encryption scheme.

3. Each party generates (Hpi, Opi1; - - -, Opion) < H(pk).
4. Each party P; computes & = (&1, --.,&,) < I(pk, 1, z;).
5. For i =1 ton, j =1 to l; in parallel do the following

e Party P; computes an encryption &; ; < Epi (& ;)[ri;] for uniformly
random r; ; and broadcasts it.

The parties run the POPK protocol to check in parallel that each P;
does in fact know the plaintext of §; ; for j =1,...,1;.

28

6. All parties P; not failing the above proofs of plaintext knowledge prove
in parallel that &; = (&;1,.--,&;;,) € Zi.
Let X be the set of parties failing either a proof of plaintext knowledge
or a proof that &, is a legal encrypted circuit input. For ¢ € X all
other parties take x; to be € and compute & «— I(pk,i,x;) and §ij —
E,i(&i j)[rs] for some fixed agreed upon string r; ; = r € {0, 1}P5) | say
r = rk),
In this way all parties get to know legal encrypted circuit inputs for all
parties.

7. Until all the gates H;k, e aH;l;k are evaluated do the following. Let
J C {1,...,l} be the set of gates that have not yet been evaluated and

are now ready to be evaluated. For all j € J in parallel do the following:
(a) If Hgk = (input, i, j1) then all parties set 7 to Ei,jl.

(b) If H;Zk = (constant,v) then all parties set 7 otom = E,i(v)[r] for
some fixed agreed upon string r € {0, 1}P(*).

(c) If Hgk = (+, j1,j2) then all parties set 7 to B @R,

(d) If Hgk = (—,J1,J2) then all parties set 7 to 7 R

(e) If Hgk = (-,71,72) then the parties execute the Mult protocol on

the encryptions 77" and 77 and set 7’ to be the result of the Mult
protocol.

8. For each party P; still participating and j =1, ..., 0; the parties execute
the PrivateDecrypt protocol and reveals h% to P;.

9. Bach party P; computes y; «— O(pk, i, (hO1, hOi2 . hOue)).

The Simulator for the FuncEvaly Protocol (Deterministic f) Let A
be any (Preprocess, KD, Decrypt)-hybrid-model adversary. We construct a
corresponding ideal-model adversary I(A). The inputs for the adversary I(.A)
is n, k, a set of corrupted parties C, their secret inputs {z; };cc, an auxiliary
string a, and a random input rg.

0. Simulate the hybrid adversary A. Initialise the simulated adversary with
k, C, {z;}icc, a, and r4, where r4 are uniformly random (a prefix of
rs). In the following let H = N \ C.

1. Simulate the oracle call to Preprocess: For ¢ = 1,...,n run the key-
generator for the trapdoor commitment scheme to obtain (k;,t;). Give
{(k1,...,kn)}icc to the simulated adversary and save ty = {t;};cp for
use in the simulation of the n-party o-protocols.

29

. Simulate the oracle call to KD: Generate a random key (pk, sk1, ..., sky) <
K (k) for the threshold homomorphic encryption scheme. Give {(sk;, pk)}icc
to the simulated adversary. Save pk for later use, but discard sk; for
1€ H.

. Generate (Hpk, Opk.1, Opk,n) — H(pk).

. Generate the circuit inputs (&1,...,&) < I(pk,i,2;) for the honest
parties using z; = e.

. Fori=1ton,j=1tol; in parallel do the following

e If P is honest then compute §; ; = Epi(&;,;)[ri,;] as in the protocol.
Otherwise receive the encryption E” from A.

Using the current state of the simulated adversary and the previously
saved commitment trapdoors tg run Spopk. Set the new state of the
simulated adversary to be that returned by Spopk.

If Spopk did not return all &; ; for those corrupted P; that continue to
participate then give up the simulation and terminate. Otherwise save
these for later use.

. Using the current state of the simulated adversary and ¢ty run Sy to
simulate the proofs that that & € E,; ;. Let the new state of the sim-
ulated adversary be the state returned by the simulation of this proof
phase.

If any corrupted party fails the above proofs then handle this as in the
protocol. Since the plaintexts &; ; of all corrupted parties completing
the above proofs were extracted in the previous step the simulator now
knows a legal plaintext circuit input for all parties. From these com-
pute the corresponding plaintext evaluation (h!,...,h!) and from this a
ciphertext evaluation (h!,...,A).

From the legal plaintext circuit inputs of the corrupted parties com-
pute the corresponding function input z; = I~ *(pk,i, (& 1,-..,&1))-
Use these function inputs as the corrupted parties’ inputs in the ideal-
evaluation. From the ideal evaluation of f we obtain y; for all corrupted
parties and compute the plaintext circuit output (hoi’l,...,hoi"’i) =
O~ Y(pk,i,y;) of all corrupted parties.

. Until all the gates H;k, e aH;l;k are evaluated do the following. Let
J C {1,...,1} be the set of gates that have not yet been evaluated and
are now ready to be evaluated. For all j € J in parallel do the following:

(a) If H;k = (input,i,jl) then set Ej — Em.

30

(b) If H;Zk = (constant, v) then set 7= Epi(v)[r].

(c) If Hgk = (+,J1,J2) then set =1 ®mn".

(d) If Hgk = (—,J1,J2) then set =1 an”.

(e) If Hgk = (-, 71, j2) then let A7 be the encryption computed in Step 6

and using the current state of the simulated adversary and ¢y run
the MultSim-simulator on the inputs @ = Wb =077 =hi. Set
7’ to be the result ¢ of MultSim.

Note, that the simulation of all Mult-protocols executed in one iteration
are done in one simulation using the parallel simulator. After each such
simulation of the parallel Mult-protocol set the new state of the simu-
lated adversary to be that returned by the parallel MultSim-simulator.

8. For each party P; still participating and j = 1,...,0; do the following.
If P; is corrupted, then run the PrivateDecryptSim simulator on the
input (Eoi’j ,h9i3), where h¥ is the value computed in Step 6. If P
is honest we do not know what we should decrypt to and it does not
matter, so run the simulator PrivateDecryptSim on say (Eoi’j 1pk). The
simulation is done using the current state of the simulated adversary and
ty and the state of the simulated adversary is then set to that returned
by PrivateDecryptSim.

9. Now for all corrupted parties P; we have that y; = O(pk, i, (h9u1, b2 .
hoi"’z’) as should be, where y; is the secret output of P; from the ideal-
evaluation in Step 6.

It is clear from the description that this simulation runs in expected poly-
nomial time. In order to argue that the output distribution is correct, we need
to define an ”intermediary” distribution:

Yet Another Distribution We describe two distributions over the indices
(k,Z,C,a). The idea is to define them by one procedure taking an encryption
b of a bit b as input. The two distributions result from b = 0 resp. b = 1. The
procedure will be constructed such that if b = 1, it produces something close
to the adversary’s view of a real execution, whereas b = 0 results in something
close to a simulation. Our result then follows from semantic security of the
encryption.

Let A be any (Preprocess, KD, Decrypt)-hybrid-model adversary, let pk be
a public key, and let b € E,i(b) be an encryption, where b is either Opy or 1.
For vg,v1 € Ry let d(vg,v1,b) = Blind((v1 Eb) B (voE(1,,3b))). Observe that
d(vo,v1,b) is a random encryption of vg if b = Opx and a random encryption
of U1 if b= 1pl<:-

31

By YADljf ’Skc’g(k‘, Z,C, a) we denote the distribution produced as follows.

0. Simulate the hybrid adversary A. Initialise the simulated adversary with
k, C, {z;}icc, a, and r4, where r4 are uniformly random (a prefix of
rs). In the following let H = N \ C.

1. Simulate the oracle call to Preprocess: For ¢ = 1,...,n run the key-
generator for the trapdoor commitment scheme to obtain (k;,t;). Give
{(k1,...,kn)}icc to the simulated adversary and save ty = {t;};cp for
use in the simulation of the n-party o-protocols.

2. Simulate the oracle call to KD: Give {(sk;,pk)}icc to the simulated
adversary. Save pk for later use.

3. Generate (Hpk, Opi1s- -, Opkn) — H(pk).

4. For the honest parties we use as plaintext input to the circuit either the
values fll = I(pk,i,z;), where z; is given in the index of the distribu-
tion YAD or & = I(pk,i,€) as in the simulator. We make the choice
conditioned on b using the d function described above.

5. Fori=1ton, j=1,...,l; in parallel do the following
e If P, is honest then compute &; ; as d(? i : j,g) and broadcast.
Otherwise receive the encryption E” from A.
Using the current state of the simulated adversary and the previously

saved commitment trapdoors tgy run Spopk. Set the new state of the
simulated adversary to be that returned by Spopk.

If Spopk did not return all &; ; for those corrupted P; that continue to
participate then give up the simulation and terminate. Otherwise save
these for later use.

6. Using the current state of the simulated adversary and ty run Sy to
simulate the proofs that that & € E,; ;. Let the new state of the sim-
ulated adversary be the state returned by the simulation of this proof
phase.

If any corrupted party fails the proofs, then handle this as in the protocol.
Since the plaintext circuit inputs of all corrupted parties completing
the proofs were extracted we now know plaintext circuit inputs for all
corrupted parties. We don’t know the plaintext values for the honest
parties’ input lines as these depend on the value of b.

Let (hi,hd,... hl) be the plaintext evaluation corresponding to func-
tion input z; for the honest parties (b = 1), let (h{,RY,...,hY) be the

32

plaintext evaluation corresponding to function input e for the honest
parties (b = 0), and let 7 « d(h?, hi,b) for j = 0,...,l. Then obviously
(ﬁl,...,ﬁl) is a ciphertext evaluation of Hp, on the ciphertext input
published in Step 5.

From the legal plaintext circuit inputs of the corrupted parties compute
the corresponding function input z; = I Y(pk,i, (&1,...,&4,)). Use
these function inputs as the corrupted parties’ function inputs, use x; as
given in the index of YAD as the honest parties’ function inputs, and
compute (y1,...,yn) — f(z1,...,2,). We then compute the plaintext
circuit output (RO, ... hOei) = O~ (pk,i,y;) of all corrupted parties.

7. Until all the gates H;k, . aH;l;k are evaluated do the following. Let
J C {1,...,1} be the set of gates that have not yet been evaluated and
are now ready to be evaluated. For all j € J in parallel do the following:

(a) If Hj = (input, 7, j1) then set 7= iy

(b) If ij = (constant, v) then set 7= Epi(v)[r].

(c) If H;])k = (+,71,J2) then set =1 Emn".

(d) If H;j;k = (—,J1,j2) then set =Y

(e) If H;k = (-,1,J2) then let h7 be the encryption computed in Step

6 and run the MultSim-simulator on the inputs (Ejl,ﬁjQ, h7). Set
1’ to be the result of the simulation.

8. For each party F; still participating and j = 1, ..., 0; do the following. If
P; is corrupted, then run the PrivateDecryptSim-simulator on the input

(Eoi’j ,h94i), where h¥% is the value computed in Step 6. If P; is honest
we do not know what we should decrypt to and it does not matter, so

run the simulator PrivateDecrypt on (EO” k).

9. Now for all honest parties P; take the output to be y; as computed in Step
6 and for the corrupted parties let the output be y; = L. Receive the

final output z from A and set YAD%’SkC’b(k:,gE’, C,a) = (Y1, -+ Yn, 2)-

For b € {0,1} let YADY(k,%,C,a) be YADpk skob (k,Z,C,a) where the
keys are uniformly random over K »and b is a random encryptlon of by. Let
YAD% denote the distribution ensemble

{YADZl(k’ z,C, a)}keN,fe({O,l}*)n,Ceﬁ@e{O,l}*

33

Lemma 1

Preprocess,KD,Decrypt S 1
EXECFuncEvalf,I(.A) ~ YAD-A

Proof: First observe, that the ensembles are indeed comparable, as they are
over the same index set ({0,1}*)™ x IT x {0,1}*. To prove statistical indistin-

guishability we simply look at how the distributions EXECES?EE:IS;’ﬁi’)Decrypt(k, 7,C,a)

and YADh(k, Z,C,a) are defined an observe that they maintain statistically
indistinguishability for each step.

0. In both distributions the adversary is initialised with k, C, {x;}icc, a,
and uniformly random input 7 4.

1. Then in both distributions the adversary is given random keys (k1, . .., kp).

2. Then the oracle call to KD is performed: in both distributions the ad-
versary receives {(sk;, pk)}icc for keys chosen uniformly random in Kj.

3. Then all parties locally generate (Hpi, Opk1,-- -, Opkon)-

4. The function inputs x; used by the honest parties are the same in the
two distributions as they are a part of the index of the ensembles.

5. Then the inputs are distributed

e In the hybrid-model execution the honest parties broadcast a ran-
dom encryption of & ; and in the YAD}4 distribution the value
d(&gj, il,j,g), which is a random encryption of 5},j = &, is dis-
tributed.

In the hybrid-model execution the honest parties all run the POPK
protocol correctly. In the YAD}4 distribution the protocol is simulated.
However as proven in 6.3 this simulation is statistically indistinguishable
from a hybrid-model execution.

6. In the YAD}4 distribution the honest parties simulate the proof that
&, € Z;, but again this is statistically indistinguishable from a hybrid-
model execution of the zero-knowledge protocol.

Obviously the values b/ preprocessed in the YAD}4 distribution for gate

7 will contain exactly the same plaintext as the encryption 1’ computed
for that gate in the hybrid-model execution.

7. Now the gates are evaluated in both distributions.

34

(a-d) Inputting, constant assignment, addition, and subtraction are lo-
cal computations and are performed exactly the same way in both
distributions.

(e) In the hybrid-model execution multiplications are carried out us-
ing the Mult protocol to compute 7’. In the YAD}4 distribution
they are carried out using the MultSim simulator on the inputs
(R’ 7’ h7). But the inputs A" and A’* are as noted distributed
statistically indistinguishable in the two distributions and as noted
in Step 6 the encryptions A7 and 7’ contain the same plaintext. It
then follows from Theorem 3 that indeed k’ is statistically indis-
tinguishable in the two distributions.

8. Using Theorem 1 and the fact that I~! computes the correct plaintext
output of the circuit, we get that the adversary’s view of the decryptions
in the two views are computationally indistinguishable.

9. Now in both distributions the output of honest party P; is y; = O(pk, i, (h91,
hOi2 .. hOue:). In the hybrid-model execution y; is computed that way
and in YAD}4 the value (931, hO:2 ... h%wei) is computed from y; in
Step 6. Since the distribution of (h9%1, hO2, ... h9e:) is statistically
indistinguishable in the hybrid-model execution and in YAD}4 for all
honest parties and in both distributions y; = L for the corrupted parties
it follows that (y1,...,yyn) is statistically indistinguishable in the two
distributions. Finally, since the values presented to the adversary in the
two distributions are computationally indistinguishable, so is z, the final
output of the adversary. All in all the value (y1,...,yn, 2) is statistically
indistinguishable in the two distributions.

Lemma 2

IDEAL; 4 < YADY

Proof: This is a simple comparison of the definitions of the distributions as
done in the proof of Lemma 1. O

Lemma 3
C
YADY ~ YADY

35

Proof:

Assume that we have a hybrid adversary A and a distinguisher D for the
distributions YAD94 and YAD}4 that does better than negligible. That means
that for any negligible function 6 and any k € IN there exists (25, Csk, a5 k) €
({0,1}*)™ x II x {0, 1}* and wgy, € {0,1}* such that

’ PI‘[D(k, f&]m C&k, a57k, w57k, YAD&(/{?, fg,k, C(;,k, a(;,k)) = 1]—
Pr[D(k, sk, Cs ki, G5k, Ws o, YADY (k, Fs 1, Cs 1oy as k) = 1]
> 5(k)

From D we build a distinguisher D’ for the distributions (C, pk, skc, Opr)
and (C, pk, skc, Tpx) as follows. On input (k,C, pk, skc,b,w'), where w' €
{0,1}* is an auxiliary input, interpret a prefix of w’ as an input Z = (1, ..., 2,)
for the function f and an auxiliary input a for A. Denote the remaining
part of w’ by w. Then compute a value YAD according to the distribution

YADZk ’Skc’b(k:, Z,C,a). Observe that since the keys are chosen uniformly ran-
dom YAD is drawn from the distribution YADY (k, Z, C,a). Now run D on the
input (k, #, C,a,w, YAD) and output the same as D.

Now for any negligible function 0 and any k let C§, = Cs and let w§, =
Tsk, a5k, W k- LThen 7 ,

|PI‘[D/(]C, C(/ik’pk:’ Skc’@, w:ik) = 1] - PI‘[DI(k‘, Cé,kapka SkCama w:s,k) = 1” =
‘ Pr[D(k7 'i:(s,ka C5,k7 a5,k7 w5,k7 YAD?A(k7 f{S,ka C5,k7 a(;,k)) = 1]_

PI‘[D(k, f&k, C(;,k, a57k, w(;,k, YADh(k, f&k, C&k, a(;,k)) = 1”

> (k)

This is in contradiction with the threshold semantic security assumption,
which guarantees that the distributions (pk, C, skc,0,%) and (pk, C, sk, 1)
are computationally indistinguishable for C' € II and uniformly random key
(pk, sk1,...,sky). O

We note that the threshold homomorphic encryption schemes we present
in Section 8 are all secure against the minority threshold adversary structure,
where the adversary can corrupt any minority of the parties.

In the examples of threshold homomorphic encryption schemes presented
in Section 8 we describe efficient and secure implementations of decryption.
In both cases we therefore obtain an efficient and secure implementation in
the (Preprocess, KD)-hybrid model.

We do not present implementations of the Preprocess and KD oracles.
Both are however only called at the beginning of the protocol. In practice
these can therefore be implemented by a general purpose MPC protocol or

36

by actually relying on a trusted party for key-generation. The keys setup by
Preprocess and KD can be used for evaluating several circuits and therefore
just have to be setup once and for all. In the following theorem we there-
fore do not count in the communication complexity of the setup phase in the
communication complexity of the protocol.

Theorem 4 Let f be any deterministic n-party function. The FuncEvaly pro-
tocol as described above, but with the Decrypt trusted party replaced by real-
life executions of the Decrypt protocol of a threshold homomorphic encryption
scheme with the assumed properties and the majority threshold access struc-
ture securely evaluates f in the presence of active static minority threshold
adversaries in the (Preprocess, KD)-hybrid model.

The communication complexity of the protocol is O((nk-+d)|f|) bits, where
|f| denotes the size of the circuit for evaluating f and d denotes the commu-
nication complexity of a decryption.

Proof: The security claim follows directly from Lemmas 1, 2, and 3 and the
modular composition theorem of the MPC model[4].

The communication complexity follows by inspection. The gates that give
rise to communication is the input, multiplication, and output gates. The
communication used to handle these gates is in the order of n encryptions
(O(nk) bits), n zero-knowledge proofs (O(nk) bits as we have assumed that the
Y-protocols have communication complexity O(k)) and 1 decryption (O(d) bits
by definition). The total communication complexity therefore is O((nk+d)|f|)
as claimed.

Observe that this communication complexity holds even when parties are
caught deviating from the protocol. The only place, where correcting faulty
behaviour has a significant cost is in Step 5 in the Mult protocol, where an
execution of the Decrypt protocol is necessary. The Mult protocol does how-
ever already use an execution of the Decrypt protocol, so the fault handling
only costs a constant factor. O

The threshold homomorphic encryption schemes we present in Section 8
both have d = O(kn). It follows that for deterministic f the FuncEval; pro-
tocol based on any of these schemes has communication complexity O(nk|f])
bits.

In the scheme based on Paillier’s cryptosystem [19] the expansion factor of
the encryption is constant and the plaintext space is Z,, for a RSA modulus
n. If the function f is over Z it might therefore very well be possible to
embed its computation into Z,, in a way, where each encryption in a ciphertext
evaluation represents O(k) bits of an arithmetic circuit for computing f. In
this case the communication complexity would be O(nT'(f)), where T'(f) is
the circuit complexity of f over Z.

37

7.3 The FuncEval; Protocol (Probabilistic f)

Assume now that f takes a random input r. We can simply regard r as the
input of a (n+1)th party and let the n parties in corporation choose a random
input for that party. Our MPC model obviously requires that the parties does
not learn the random input. How to choose the random input depends on
the input encoding. Assume that we simply represent r € {0, 1}p(k) in the
trivial way over {0y, 1pk}p(k). The parties then need to be able to choose an
encryption b of a uniformly random value b € {0,1}.

One way to do this is to let the parties each choose at random a bit x;
and then use the FuncEval protocol to compute the function ®(z1,...,z,) =
x1 @ -+ @z as if the result was for a (n 4 1)th party, i.e. up to, but not
including the execution of PrivateDecrypt on the final result x1 & - - - ® ,. As
the result was computed as if b was to be revealed only to the n + 1th party,
the value b is unknown to the n actual parties. Using that a ®b = a+b— 2ab
we can compute 69(3:1, - ,xn) =x1 D - @z, using n — 1 invocations of the
Mult protocol.

7.4 Generalisations

First of all, the same key can be used for evaluating several circuits. It is
easy to see that this is indeed secure. Whether the circuits are evaluated one
at a time or we consider them to be one circuit and evaluate them at the
same time really doesn’t matter as all our protocols are secure under parallel
composition.

The second generalisation is to allow only a subset of parties that partici-
pated in the key-generation to participate in the actual computation. This is
in particular interesting in a setting, where the same key is used for several
evaluations. The protocol is already set up to handle this using the variable
N’ of participating parties. The adversary structure on the participating par-
ties is given by the restriction that the union of the corrupted parties and the
non-participating set N \ N’ is not a qualified set.

Above we imagine that only parties which do not input to a evaluation
retract from the actual computation. Another possibility is that a party first
publishes its encrypted circuit input and then retract from the computation.
In this case the remaining participating parties will then do the ciphertext
evaluation. There are several possibilities for key distribution in this setting.
Typically we would have that secret key distributed only among the computing
parties (we can imagine them being a distributed trusted party doing compu-
tation for some clients). We would then use a variant of the PrivateDecrypt,
where the client, which is to receive the output, adds in d and therefore is the
only one to learn the actual output.

38

8 Examples of Threshold Homomorphic Cryptosys-
tems

In this section, we describe some concrete examples of threshold systems meet-
ing our requirements, including Y-protocols for proving knowledge of plain-
texts, correctness of multiplications and validity of decryptions.

Both our examples involve choosing as part of the public key a k-bit RSA
modulus N = pq, where p, g are chosen such that p =2p’ +1,q = 2¢' + 1 for
primes p’, ¢’ and both p and ¢ have k/2 bits. For convenience in the proofs
to follow, we will assume that the length of the challenges in all the proofs is

k/2—1.

8.1 Basing it on Paillier’s Cryptosystem

In [19], Paillier proposes a probabilistic public-key cryptosystem where the
public key is a k-bit RSA modulus N and an element g € Z*, of order divisible
by N. The plaintext space for this system in Zp, and to encrypt a € Zy, one
chooses r € Z}, at random and computes the ciphertext as

@ = ¢°r" mod N?

The private key is the factorisation of N, i.e., ¢(N) or equivalent information.
Under an appropriate complexity assumption given in [19], this system is
semantically secure, and it is trivially homomorphic over Z, as we require
here: we can set
aBb=a-bmod N2

Furthermore, from « and an encryption @, a random encryption of aa can be
obtained by multiplying @ mod N? by a random encryption of 0.

8.1.1 Threshold decryption

In [9] and independently in [10], threshold versions of this system have been
proposed, based on a variant of Shoup’s [20] technique for threshold RSA.
We do not need to go into the details here, it is enough to note that the
threshold decryption protocols for these systems have been proved secure in
exactly the sense we need here, and that the efficiency of these protocols is
such that to decrypt a ciphertext, each player broadcasts one message and does
a Y-protocol proving that this was correctly computed. The total number of
bits broadcast is therefore O(kn). In the original protocol, the random oracle
model is used when players prove that they behave correctly. However, the
proofs can instead be done according to our method for multiparty Y-protocols
without loss of efficiency (Section 6). This also immediately implies a protocol
that will decrypt several ciphertexts in parallel.

39

8.1.2 Proving multiplications correct

We now describe a Y-protocol for securely multiplying an encrypted value
by a constant. So we have as input encryptions C, = ¢*" mod N2,C, =
g*s" mod N2, D = C2y" mod N? and a player P; knows in addition a, s, 7.
What we need is a proof that D encrypts aa mod N°. We proceed as follows:

1. P; chooses x € Zy and v,u € Zy, at random, computes and sends

A= C'(va mod N?, B = ¢g*u" mod N?

2. The verifier sends a random challenge e.

3. P; computes and sends
w =z + ea mod N, z = us®g’ mod N?,y = vC%y® mod N>
where t is defined by x + ea = w + tN.

4. The verifier checks that
g¥zN = BC¢ mod N?, C¥yN = AD® mod N>
and accepts if and only if this is the case.

Lemma 4 The above protocol is a Y-protocol proving knowledge of «, s and
7 such that Cy, = g*s” mod N? and D = C%y" mod N?2.

Proof With respect to zero-knowledge, it is straightforward to make a correctly
distributed conversation given any challenge e: one just chooses the values
w, Yy, z at random in their respective domains and computes matching values
A, B using the equations ¢g¥z" = BC¢ mod N?,C¥y"N = AD® mod N?2.

Completeness is straightforward to check. For soundness, if we assume
that P; could for the some value of A, B answer correctly two distinct values
e, €', we would have values satisfying equations

g¥zY = BCS mod N?, C¥y"N = AD® mod N*
w' N e’ 2 w' IN __ ‘e 2
g¥ 2" =BC; mod N°, C))y" = AD “mod N
which immediately implies that

g (z/2)N = €< mod N?, C¥* (y/y/)N = D¢ mod N?

5 A multiplication protocol was also given in [9], but it requires that the prover knows all
involved factors and so cannot be used here

40

The ged of e — ¢’ and N must be 1 because e — €’ is numerically smaller than
p,q. Solet 8 be such that B(e—e’) = 1+mN for some m. Then by raising both
equations to power 3 and straightforward manipulations, we get expressions
that ”open” both C, and D:

gu3((2/2 PO = Cy mod N2, CLo=)B((y/y/)? D=™)N = D mod N2

a

From this we can conclude that a = (w — w') mod N, s = (z/2')?C;™ mod
N? and that hence D indeed encrypts a value that is ca modulo N. O

8.1.3 Proving you know a plaintext

Finally, we need that after having created an encryption @ player P; can do
a Y-protocol proving that he knows «. But this is already implicit in the
above protocol: if P; sends only B in the first step and responds to e by
the values w, z, we have a X-protocol proving knowledge of «,s such that
Co = ¢%sY mod N2.

8.2 Basing it on QRA and DDH

In this section, we describe a cryptosystem which is a simplified variant of
Franklin and Haber’s system [11], a somewhat similar (but non-threshold)
variant was suggested by one the authors of this paper and appears in [11].

For this system, we choose an RSA modulus N = pq, where p, q are chosen
such that p = 2p’ +1,q = 2¢' + 1 for primes p’,¢’. We also choose a random
generator g of SQ(N), the subgroup of quadratic residues modulo N (which
here has order p/'q’). We finally choose z at random modulo p'q’ and let
h = ¢* mod N. The public key is now N, g, h while x is the secret key.

The plaintext space of this system is Z;. We set A = n! (recall that n
is the number of players). Then to encrypt a bit b, one chooses at random r
modulo N2 and a bit ¢ and computes the ciphertext

((=1)°g" mod N, (—1)’A***" mod N)

The purpose of choosing r modulo N? is to make sure that g" will be close to
uniform in the group generated by g even though the order of g is not public.
It is clear that a ciphertext can be decrypted if one knows x. The purpose of
having h42°r (and not h") in the ciphertext will be explained below.

The system clearly has the required homomorphic properties, we can set:

(o,) B (7,9) = (ary mod N, 36 mod N)

Finally, from an encryption («, 3) of a value a and a known b, one can obtain
a random encryption of value ba mod 2 by first setting (,d) to be a random
encryption of 0 and then outputting (a’y mod N, 3°§ mod N).

41

We now argue that under the Quadratic Residuosity Assumption (QRA)
and the Decisional Diffie Hellman Assumption (DDH), the system is seman-
tically secure. Recall that DDH says that the distributions (g,h,¢" mod
p, k" mod p) and (g,h,g" mod p,h® mod p) are indistinguishable, where g, h
both generate the subgroup of order p’ in Z, and r,s are independent and
random in Z,. By the Chinese remainder theorem, this is easily seen to im-
ply that also the distributions (g, h,g" mod N,h" mod N) and (g, h,g" mod
N, h® mod N) are indistinguishable, where g, h both generate SQ(N) and r, s
are independent and random in Z,,. Omitting some tedious details, we can
then conclude that the distributions

(g,h,(—=1)¢g" mod N, K2 mod N)
(g,h,(=1)°g" mod N, R4 mod N)
(g,h,(=1)°¢g" mod N, —Rh*2% mod N)
(g,h,(—=1)g" mod N, — R4 mod N)

are indistinguishable, using (in that order) DDH, QRA and DDH.

8.2.1 Threshold decryption

Shoup’s method for threshold RSA [20] can be directly applied here: he shows
that if one secret-shares x among the players using a polynomial computed
modulo p'q’ and publishes some extra verification information, then the players
can jointly and securely raise an input number to the power 4A2%z. This is
clearly sufficient to decrypt a ciphertext as defined here: to decrypt the pair
(a,b), compute ba=42’T mod N. We do not describe the details here, as the
protocol from [20] can be used directly. We only note that decryption can
be done by having each player broadcast a single message and prove by a
Y-protocol that it is correct. The communication complexity of this is O(nk)
bits. In the original protocol the random oracle model is used when players
prove that they behave correctly. However, the proofs can instead be done
according to our method for multiparty »-protocols without loss of efficiency
(Section 6). This also immediately implies a protocol that will decrypt several
ciphertexts in parallel.

8.2.2 Proving you know a plaintext

We will need an efficient way for a player to prove in zero-knowledge that a
pair (o, 3) he created is a legal ciphertext, and that he knows the correspond-
ing plaintext. A pair is valid if and only if «, 8 both have Jacobi symbol 1
(which can be checked easily) and if for some r we have (¢?)" = o mod N
and (hSAQ)T = (2 mod N. This last pair of statements can be proved non-
interactively and efficiently by a standard equality of discrete log proof ap-

42

pearing in [20]. Note that the squarings of «, 5 ensure that we are working in
SQ(N), which is necessary to ensure soundness.

This protocol has the standard 3-move form of a ¥-protocol. It proves that
an r fitting with «, 8 exists. But it does not prove that the prover knows such
an r (and hence knows the plaintext), unless we are willing to also assume
the strong RSA assumption’. With this assumption, on the other hand, the
equality of discrete log proof is indeed a proof of knowledge.

However, it is possible to do without this extra assumption: observe that if
B was correctly constructed, then the prover knows a square root of 3 (namely
h2A°T mod N) iff b = 0 and he knows a root of —(otherwise. One way to
exploit this observation is if we have a commitment scheme available that
allows committing to elements in Zn. Then P, can commit to his root «,
and prove in zero-knowledge that he knows « and that a* = 32 mod N. This
would be sufficient since it then follows that o? is 8 or —f.

Here is a commitment scheme (already well known) for which this can be
done efficiently: choose a prime P, such that N divides P — 1 and choose
elements G, H of order n modulo P, but where no player knows the discrete
logarithm of H base G. This can all be set up initially (recall that we already
assume that keys are set up once and for all). Then a commitment to « has
form (G" mod P,G*H" mod P), and is opened by revealing «, r. It is easy to
see that this scheme is unconditionally binding, and is hiding under the DDH
assumption (which we already assumed). Let [a] denote a commitment to «
and let [@][#] mod P be the commitment you obtain in the natural way by
component-wise multiplication modulo P. It is then clear that [a][5] mod P
is a commitment to o + § mod N.

It will be sufficient for our purposes to make aX-protocol that takes as
input commitments [a], [3], [7], shows that the prover knows « and shows that
aff =y mod N. Here follows such a protocol:

1. Inputs are commitments [«], [3], [y] where P; claims that o = v mod N.
P; chooses a random ¢ and makes commitments [0], [00].

2. The verifier send a random e.

3. P; opens the commitments [«]¢[6] mod P to reveal a value e;. P; opens
the commitment [3]°[§3]1[y]~¢ mod P to reveal 0.

4. The verifier accepts if an only if the commitments are correctly opened
as required.

By arguments similar to those for Lemma 4, it is straightforward to show
that this protocol is a YX-protocol.

"that is, assume that it is hard to invert the RSA encryption function, even if the adversary
is allowed to choose the public exponent

43

8.2.3 Proving multiplications correct

Finally, we need to consider the scenario where player P; has been given an
encryption C, of a, has chosen a constant b, and has published encryptions
Cy, D, of values b, ba, and where D has been constructed P; as we described
above. It follows from this construction that if b = 1, then D = C, H E where
FE is a random encryption of 0. Assuming b = 1, E can be easily reconstructed
from D and C,.

Now we want a Y-protocol that P; can use to prove that D contains the
correct value. Observe that this is equivalent to the statement

((Cy encrypts 0) AND (D encrypts 0)) OR
((Cp encrypts 1) AND (E encrypts 0))

We have already seen how to prove by a Y-protocol that an encryption (a, 3)
contains a value b, by proving that you know a square root of (—1)?3. Now,
standard techniques from [6] can be applied to building a new X-protocol
proving a monotone logical combination of statements such as we have here.

References

[1] Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
Chicago, Illinois, 2-4 May 1988.

[2] D. Beaver. Foundations of secure interactive computing. In Joan Feigenbaum, ed-
itor, Advances in Cryptology - Crypto ’91, pages 377-391, Berlin, 1991. Springer-
Verlag. Lecture Notes in Computer Science Volume 576.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In ACM [1], pages 1-10.

[4] Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143-202, winter 2000.

[5] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally
secure protocols (extended abstract). In ACM [1], pages 11-19.

[6] R. Cramer, L. B. Damgard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Yvo Desmedt, editor, Advances
in Cryptology - Crypto '94, pages 174-187, Berlin, 1994. Springer-Verlag. Lecture
Notes in Computer Science Volume 839.

[7] Ronald Cramer and Ivan Damgaard. Zero-knowledge proofs for finite field arith-
metic, or: Can zero-knowledge be for free. In Hugo Krawczyk, editor, Advances
in Cryptology - Crypto '98, pages 424-441, Berlin, 1998. Springer-Verlag. Lecture
Notes in Computer Science Volume 1462.

44

8]

Ronald Cramer, Ivan Damgard, and Ueli Maurer. General secure multi-party
computation from any linear secret-sharing scheme. In Bart Preneel, editor,
Advances in Cryptology - EuroCrypt 2000, pages 316-334, Berlin, 2000. Springer-
Verlag. Lecture Notes in Computer Science Volume 1807.

Ivan B. Damgard and Mads J. Jurik. Efficient protocols based on probabilis-
tic encryption using composite degree residue classes. Research Series RS-00-5,
BRICS, Department of Computer Science, University of Aarhus, March 2000.

P. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting
or lotteries. In Proceedings of Financial Crypto 2000, 2000.

Matthew Franklin and Stuart Haber. Joint encryption and message-efficient
secure computation. Journal of Cryptology, 9(4):217-232, Autumn 1996.

R. Gennaro, M. Rabin, and T. Rabin. Simplified vss and fast-track multi-
party computations with applications to threshold cryptography. In Proc. ACM
PODC"98, 1998.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, pages 218—
229, New York City, 25-27 May 1987.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270-299, April 1984.

M.Hirt, U.Maurer and B. Przydatek: Efficient Secure Multiparty Computation,
Proc. of AsiaCrypt 00, to appear in Springer Verlag LNCS.

IEEE. 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, 3-5 November 1982.

M.Jacobsson and A.Juels: Mixz and Match: Secure Function evaluation via ci-
phertexts, Proc. of AsiaCrypt 00, to appear in Springer Verlag LNCS.

S. Micali and P. Rogaway. Secure computation. In Joan Feigenbaum, editor,
Advances in Cryptology - Crypto 91, pages 392-404, Berlin, 1991. Springer-
Verlag. Lecture Notes in Computer Science Volume 576.

P. Paillier. Public-key cryptosystems based on composite degree residue classes.
In Michael Wiener, editor, Advances in Cryptology - EuroCrypt 99, pages 223—
238, Berlin, 1999. Springer-Verlag. Lecture Notes in Computer Science Volume
1666.

Victor Shoup. Practical treshold signatures. In Bart Preneel, editor, Advances
in Cryptology - EuroCrypt 2000, pages 207—220, Berlin, 2000. Springer-Verlag.
Lecture Notes in Computer Science Volume 1807.

Andrew C. Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science [16], pages 160-164.

Andrew C. Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science [16],
pages 80-91.

45

